linux-stable/fs/sync.c
Al Viro 1da91ea87a introduce fd_file(), convert all accessors to it.
For any changes of struct fd representation we need to
turn existing accesses to fields into calls of wrappers.
Accesses to struct fd::flags are very few (3 in linux/file.h,
1 in net/socket.c, 3 in fs/overlayfs/file.c and 3 more in
explicit initializers).
	Those can be dealt with in the commit converting to
new layout; accesses to struct fd::file are too many for that.
	This commit converts (almost) all of f.file to
fd_file(f).  It's not entirely mechanical ('file' is used as
a member name more than just in struct fd) and it does not
even attempt to distinguish the uses in pointer context from
those in boolean context; the latter will be eventually turned
into a separate helper (fd_empty()).

	NOTE: mass conversion to fd_empty(), tempting as it
might be, is a bad idea; better do that piecewise in commit
that convert from fdget...() to CLASS(...).

[conflicts in fs/fhandle.c, kernel/bpf/syscall.c, mm/memcontrol.c
caught by git; fs/stat.c one got caught by git grep]
[fs/xattr.c conflict]

Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-08-12 22:00:43 -04:00

392 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* High-level sync()-related operations
*/
#include <linux/blkdev.h>
#include <linux/kernel.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/namei.h>
#include <linux/sched.h>
#include <linux/writeback.h>
#include <linux/syscalls.h>
#include <linux/linkage.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/backing-dev.h>
#include "internal.h"
#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
SYNC_FILE_RANGE_WAIT_AFTER)
/*
* Write out and wait upon all dirty data associated with this
* superblock. Filesystem data as well as the underlying block
* device. Takes the superblock lock.
*/
int sync_filesystem(struct super_block *sb)
{
int ret = 0;
/*
* We need to be protected against the filesystem going from
* r/o to r/w or vice versa.
*/
WARN_ON(!rwsem_is_locked(&sb->s_umount));
/*
* No point in syncing out anything if the filesystem is read-only.
*/
if (sb_rdonly(sb))
return 0;
/*
* Do the filesystem syncing work. For simple filesystems
* writeback_inodes_sb(sb) just dirties buffers with inodes so we have
* to submit I/O for these buffers via sync_blockdev(). This also
* speeds up the wait == 1 case since in that case write_inode()
* methods call sync_dirty_buffer() and thus effectively write one block
* at a time.
*/
writeback_inodes_sb(sb, WB_REASON_SYNC);
if (sb->s_op->sync_fs) {
ret = sb->s_op->sync_fs(sb, 0);
if (ret)
return ret;
}
ret = sync_blockdev_nowait(sb->s_bdev);
if (ret)
return ret;
sync_inodes_sb(sb);
if (sb->s_op->sync_fs) {
ret = sb->s_op->sync_fs(sb, 1);
if (ret)
return ret;
}
return sync_blockdev(sb->s_bdev);
}
EXPORT_SYMBOL(sync_filesystem);
static void sync_inodes_one_sb(struct super_block *sb, void *arg)
{
if (!sb_rdonly(sb))
sync_inodes_sb(sb);
}
static void sync_fs_one_sb(struct super_block *sb, void *arg)
{
if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) &&
sb->s_op->sync_fs)
sb->s_op->sync_fs(sb, *(int *)arg);
}
/*
* Sync everything. We start by waking flusher threads so that most of
* writeback runs on all devices in parallel. Then we sync all inodes reliably
* which effectively also waits for all flusher threads to finish doing
* writeback. At this point all data is on disk so metadata should be stable
* and we tell filesystems to sync their metadata via ->sync_fs() calls.
* Finally, we writeout all block devices because some filesystems (e.g. ext2)
* just write metadata (such as inodes or bitmaps) to block device page cache
* and do not sync it on their own in ->sync_fs().
*/
void ksys_sync(void)
{
int nowait = 0, wait = 1;
wakeup_flusher_threads(WB_REASON_SYNC);
iterate_supers(sync_inodes_one_sb, NULL);
iterate_supers(sync_fs_one_sb, &nowait);
iterate_supers(sync_fs_one_sb, &wait);
sync_bdevs(false);
sync_bdevs(true);
if (unlikely(laptop_mode))
laptop_sync_completion();
}
SYSCALL_DEFINE0(sync)
{
ksys_sync();
return 0;
}
static void do_sync_work(struct work_struct *work)
{
int nowait = 0;
/*
* Sync twice to reduce the possibility we skipped some inodes / pages
* because they were temporarily locked
*/
iterate_supers(sync_inodes_one_sb, &nowait);
iterate_supers(sync_fs_one_sb, &nowait);
sync_bdevs(false);
iterate_supers(sync_inodes_one_sb, &nowait);
iterate_supers(sync_fs_one_sb, &nowait);
sync_bdevs(false);
printk("Emergency Sync complete\n");
kfree(work);
}
void emergency_sync(void)
{
struct work_struct *work;
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work) {
INIT_WORK(work, do_sync_work);
schedule_work(work);
}
}
/*
* sync a single super
*/
SYSCALL_DEFINE1(syncfs, int, fd)
{
struct fd f = fdget(fd);
struct super_block *sb;
int ret, ret2;
if (!fd_file(f))
return -EBADF;
sb = fd_file(f)->f_path.dentry->d_sb;
down_read(&sb->s_umount);
ret = sync_filesystem(sb);
up_read(&sb->s_umount);
ret2 = errseq_check_and_advance(&sb->s_wb_err, &fd_file(f)->f_sb_err);
fdput(f);
return ret ? ret : ret2;
}
/**
* vfs_fsync_range - helper to sync a range of data & metadata to disk
* @file: file to sync
* @start: offset in bytes of the beginning of data range to sync
* @end: offset in bytes of the end of data range (inclusive)
* @datasync: perform only datasync
*
* Write back data in range @start..@end and metadata for @file to disk. If
* @datasync is set only metadata needed to access modified file data is
* written.
*/
int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
if (!file->f_op->fsync)
return -EINVAL;
if (!datasync && (inode->i_state & I_DIRTY_TIME))
mark_inode_dirty_sync(inode);
return file->f_op->fsync(file, start, end, datasync);
}
EXPORT_SYMBOL(vfs_fsync_range);
/**
* vfs_fsync - perform a fsync or fdatasync on a file
* @file: file to sync
* @datasync: only perform a fdatasync operation
*
* Write back data and metadata for @file to disk. If @datasync is
* set only metadata needed to access modified file data is written.
*/
int vfs_fsync(struct file *file, int datasync)
{
return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
}
EXPORT_SYMBOL(vfs_fsync);
static int do_fsync(unsigned int fd, int datasync)
{
struct fd f = fdget(fd);
int ret = -EBADF;
if (fd_file(f)) {
ret = vfs_fsync(fd_file(f), datasync);
fdput(f);
}
return ret;
}
SYSCALL_DEFINE1(fsync, unsigned int, fd)
{
return do_fsync(fd, 0);
}
SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
{
return do_fsync(fd, 1);
}
int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
unsigned int flags)
{
int ret;
struct address_space *mapping;
loff_t endbyte; /* inclusive */
umode_t i_mode;
ret = -EINVAL;
if (flags & ~VALID_FLAGS)
goto out;
endbyte = offset + nbytes;
if ((s64)offset < 0)
goto out;
if ((s64)endbyte < 0)
goto out;
if (endbyte < offset)
goto out;
if (sizeof(pgoff_t) == 4) {
if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
/*
* The range starts outside a 32 bit machine's
* pagecache addressing capabilities. Let it "succeed"
*/
ret = 0;
goto out;
}
if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
/*
* Out to EOF
*/
nbytes = 0;
}
}
if (nbytes == 0)
endbyte = LLONG_MAX;
else
endbyte--; /* inclusive */
i_mode = file_inode(file)->i_mode;
ret = -ESPIPE;
if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
!S_ISLNK(i_mode))
goto out;
mapping = file->f_mapping;
ret = 0;
if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
ret = file_fdatawait_range(file, offset, endbyte);
if (ret < 0)
goto out;
}
if (flags & SYNC_FILE_RANGE_WRITE) {
int sync_mode = WB_SYNC_NONE;
if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) ==
SYNC_FILE_RANGE_WRITE_AND_WAIT)
sync_mode = WB_SYNC_ALL;
ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
sync_mode);
if (ret < 0)
goto out;
}
if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
ret = file_fdatawait_range(file, offset, endbyte);
out:
return ret;
}
/*
* ksys_sync_file_range() permits finely controlled syncing over a segment of
* a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
* zero then ksys_sync_file_range() will operate from offset out to EOF.
*
* The flag bits are:
*
* SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
* before performing the write.
*
* SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
* range which are not presently under writeback. Note that this may block for
* significant periods due to exhaustion of disk request structures.
*
* SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
* after performing the write.
*
* Useful combinations of the flag bits are:
*
* SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
* in the range which were dirty on entry to ksys_sync_file_range() are placed
* under writeout. This is a start-write-for-data-integrity operation.
*
* SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
* are not presently under writeout. This is an asynchronous flush-to-disk
* operation. Not suitable for data integrity operations.
*
* SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
* completion of writeout of all pages in the range. This will be used after an
* earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
* for that operation to complete and to return the result.
*
* SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER
* (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT):
* a traditional sync() operation. This is a write-for-data-integrity operation
* which will ensure that all pages in the range which were dirty on entry to
* ksys_sync_file_range() are written to disk. It should be noted that disk
* caches are not flushed by this call, so there are no guarantees here that the
* data will be available on disk after a crash.
*
*
* SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
* I/O errors or ENOSPC conditions and will return those to the caller, after
* clearing the EIO and ENOSPC flags in the address_space.
*
* It should be noted that none of these operations write out the file's
* metadata. So unless the application is strictly performing overwrites of
* already-instantiated disk blocks, there are no guarantees here that the data
* will be available after a crash.
*/
int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
unsigned int flags)
{
int ret;
struct fd f;
ret = -EBADF;
f = fdget(fd);
if (fd_file(f))
ret = sync_file_range(fd_file(f), offset, nbytes, flags);
fdput(f);
return ret;
}
SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
unsigned int, flags)
{
return ksys_sync_file_range(fd, offset, nbytes, flags);
}
#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_SYNC_FILE_RANGE)
COMPAT_SYSCALL_DEFINE6(sync_file_range, int, fd, compat_arg_u64_dual(offset),
compat_arg_u64_dual(nbytes), unsigned int, flags)
{
return ksys_sync_file_range(fd, compat_arg_u64_glue(offset),
compat_arg_u64_glue(nbytes), flags);
}
#endif
/* It would be nice if people remember that not all the world's an i386
when they introduce new system calls */
SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
loff_t, offset, loff_t, nbytes)
{
return ksys_sync_file_range(fd, offset, nbytes, flags);
}