mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
5baf8b037d
Currently MTE is permitted in two circumstances (desiring to use MTE
having been specified by the VM_MTE flag) - where MAP_ANONYMOUS is
specified, as checked by arch_calc_vm_flag_bits() and actualised by
setting the VM_MTE_ALLOWED flag, or if the file backing the mapping is
shmem, in which case we set VM_MTE_ALLOWED in shmem_mmap() when the mmap
hook is activated in mmap_region().
The function that checks that, if VM_MTE is set, VM_MTE_ALLOWED is also
set is the arm64 implementation of arch_validate_flags().
Unfortunately, we intend to refactor mmap_region() to perform this check
earlier, meaning that in the case of a shmem backing we will not have
invoked shmem_mmap() yet, causing the mapping to fail spuriously.
It is inappropriate to set this architecture-specific flag in general mm
code anyway, so a sensible resolution of this issue is to instead move the
check somewhere else.
We resolve this by setting VM_MTE_ALLOWED much earlier in do_mmap(), via
the arch_calc_vm_flag_bits() call.
This is an appropriate place to do this as we already check for the
MAP_ANONYMOUS case here, and the shmem file case is simply a variant of
the same idea - we permit RAM-backed memory.
This requires a modification to the arch_calc_vm_flag_bits() signature to
pass in a pointer to the struct file associated with the mapping, however
this is not too egregious as this is only used by two architectures anyway
- arm64 and parisc.
So this patch performs this adjustment and removes the unnecessary
assignment of VM_MTE_ALLOWED in shmem_mmap().
[akpm@linux-foundation.org: fix whitespace, per Catalin]
Link: https://lkml.kernel.org/r/ec251b20ba1964fb64cf1607d2ad80c47f3873df.1730224667.git.lorenzo.stoakes@oracle.com
Fixes: deb0f65628
("mm/mmap: undo ->mmap() when arch_validate_flags() fails")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Jann Horn <jannh@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
5371 lines
142 KiB
C
5371 lines
142 KiB
C
/*
|
|
* Resizable virtual memory filesystem for Linux.
|
|
*
|
|
* Copyright (C) 2000 Linus Torvalds.
|
|
* 2000 Transmeta Corp.
|
|
* 2000-2001 Christoph Rohland
|
|
* 2000-2001 SAP AG
|
|
* 2002 Red Hat Inc.
|
|
* Copyright (C) 2002-2011 Hugh Dickins.
|
|
* Copyright (C) 2011 Google Inc.
|
|
* Copyright (C) 2002-2005 VERITAS Software Corporation.
|
|
* Copyright (C) 2004 Andi Kleen, SuSE Labs
|
|
*
|
|
* Extended attribute support for tmpfs:
|
|
* Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
|
|
* Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
|
|
*
|
|
* tiny-shmem:
|
|
* Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vfs.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/ramfs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fileattr.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/export.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/fs_parser.h>
|
|
#include <linux/swapfile.h>
|
|
#include <linux/iversion.h>
|
|
#include "swap.h"
|
|
|
|
static struct vfsmount *shm_mnt __ro_after_init;
|
|
|
|
#ifdef CONFIG_SHMEM
|
|
/*
|
|
* This virtual memory filesystem is heavily based on the ramfs. It
|
|
* extends ramfs by the ability to use swap and honor resource limits
|
|
* which makes it a completely usable filesystem.
|
|
*/
|
|
|
|
#include <linux/xattr.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/posix_acl.h>
|
|
#include <linux/posix_acl_xattr.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/splice.h>
|
|
#include <linux/security.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/fcntl.h>
|
|
#include <uapi/linux/memfd.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/rcupdate_wait.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
|
|
#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
|
|
|
|
/* Pretend that each entry is of this size in directory's i_size */
|
|
#define BOGO_DIRENT_SIZE 20
|
|
|
|
/* Pretend that one inode + its dentry occupy this much memory */
|
|
#define BOGO_INODE_SIZE 1024
|
|
|
|
/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
|
|
#define SHORT_SYMLINK_LEN 128
|
|
|
|
/*
|
|
* shmem_fallocate communicates with shmem_fault or shmem_writepage via
|
|
* inode->i_private (with i_rwsem making sure that it has only one user at
|
|
* a time): we would prefer not to enlarge the shmem inode just for that.
|
|
*/
|
|
struct shmem_falloc {
|
|
wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
|
|
pgoff_t start; /* start of range currently being fallocated */
|
|
pgoff_t next; /* the next page offset to be fallocated */
|
|
pgoff_t nr_falloced; /* how many new pages have been fallocated */
|
|
pgoff_t nr_unswapped; /* how often writepage refused to swap out */
|
|
};
|
|
|
|
struct shmem_options {
|
|
unsigned long long blocks;
|
|
unsigned long long inodes;
|
|
struct mempolicy *mpol;
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
umode_t mode;
|
|
bool full_inums;
|
|
int huge;
|
|
int seen;
|
|
bool noswap;
|
|
unsigned short quota_types;
|
|
struct shmem_quota_limits qlimits;
|
|
#define SHMEM_SEEN_BLOCKS 1
|
|
#define SHMEM_SEEN_INODES 2
|
|
#define SHMEM_SEEN_HUGE 4
|
|
#define SHMEM_SEEN_INUMS 8
|
|
#define SHMEM_SEEN_NOSWAP 16
|
|
#define SHMEM_SEEN_QUOTA 32
|
|
};
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static unsigned long huge_shmem_orders_always __read_mostly;
|
|
static unsigned long huge_shmem_orders_madvise __read_mostly;
|
|
static unsigned long huge_shmem_orders_inherit __read_mostly;
|
|
static unsigned long huge_shmem_orders_within_size __read_mostly;
|
|
#endif
|
|
|
|
#ifdef CONFIG_TMPFS
|
|
static unsigned long shmem_default_max_blocks(void)
|
|
{
|
|
return totalram_pages() / 2;
|
|
}
|
|
|
|
static unsigned long shmem_default_max_inodes(void)
|
|
{
|
|
unsigned long nr_pages = totalram_pages();
|
|
|
|
return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
|
|
ULONG_MAX / BOGO_INODE_SIZE);
|
|
}
|
|
#endif
|
|
|
|
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
|
|
struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
|
|
struct vm_area_struct *vma, vm_fault_t *fault_type);
|
|
|
|
static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
|
|
{
|
|
return sb->s_fs_info;
|
|
}
|
|
|
|
/*
|
|
* shmem_file_setup pre-accounts the whole fixed size of a VM object,
|
|
* for shared memory and for shared anonymous (/dev/zero) mappings
|
|
* (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
|
|
* consistent with the pre-accounting of private mappings ...
|
|
*/
|
|
static inline int shmem_acct_size(unsigned long flags, loff_t size)
|
|
{
|
|
return (flags & VM_NORESERVE) ?
|
|
0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
|
|
}
|
|
|
|
static inline void shmem_unacct_size(unsigned long flags, loff_t size)
|
|
{
|
|
if (!(flags & VM_NORESERVE))
|
|
vm_unacct_memory(VM_ACCT(size));
|
|
}
|
|
|
|
static inline int shmem_reacct_size(unsigned long flags,
|
|
loff_t oldsize, loff_t newsize)
|
|
{
|
|
if (!(flags & VM_NORESERVE)) {
|
|
if (VM_ACCT(newsize) > VM_ACCT(oldsize))
|
|
return security_vm_enough_memory_mm(current->mm,
|
|
VM_ACCT(newsize) - VM_ACCT(oldsize));
|
|
else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
|
|
vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ... whereas tmpfs objects are accounted incrementally as
|
|
* pages are allocated, in order to allow large sparse files.
|
|
* shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
|
|
* so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
|
|
*/
|
|
static inline int shmem_acct_blocks(unsigned long flags, long pages)
|
|
{
|
|
if (!(flags & VM_NORESERVE))
|
|
return 0;
|
|
|
|
return security_vm_enough_memory_mm(current->mm,
|
|
pages * VM_ACCT(PAGE_SIZE));
|
|
}
|
|
|
|
static inline void shmem_unacct_blocks(unsigned long flags, long pages)
|
|
{
|
|
if (flags & VM_NORESERVE)
|
|
vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
|
|
}
|
|
|
|
static int shmem_inode_acct_blocks(struct inode *inode, long pages)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
int err = -ENOSPC;
|
|
|
|
if (shmem_acct_blocks(info->flags, pages))
|
|
return err;
|
|
|
|
might_sleep(); /* when quotas */
|
|
if (sbinfo->max_blocks) {
|
|
if (!percpu_counter_limited_add(&sbinfo->used_blocks,
|
|
sbinfo->max_blocks, pages))
|
|
goto unacct;
|
|
|
|
err = dquot_alloc_block_nodirty(inode, pages);
|
|
if (err) {
|
|
percpu_counter_sub(&sbinfo->used_blocks, pages);
|
|
goto unacct;
|
|
}
|
|
} else {
|
|
err = dquot_alloc_block_nodirty(inode, pages);
|
|
if (err)
|
|
goto unacct;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unacct:
|
|
shmem_unacct_blocks(info->flags, pages);
|
|
return err;
|
|
}
|
|
|
|
static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
|
|
might_sleep(); /* when quotas */
|
|
dquot_free_block_nodirty(inode, pages);
|
|
|
|
if (sbinfo->max_blocks)
|
|
percpu_counter_sub(&sbinfo->used_blocks, pages);
|
|
shmem_unacct_blocks(info->flags, pages);
|
|
}
|
|
|
|
static const struct super_operations shmem_ops;
|
|
static const struct address_space_operations shmem_aops;
|
|
static const struct file_operations shmem_file_operations;
|
|
static const struct inode_operations shmem_inode_operations;
|
|
static const struct inode_operations shmem_dir_inode_operations;
|
|
static const struct inode_operations shmem_special_inode_operations;
|
|
static const struct vm_operations_struct shmem_vm_ops;
|
|
static const struct vm_operations_struct shmem_anon_vm_ops;
|
|
static struct file_system_type shmem_fs_type;
|
|
|
|
bool shmem_mapping(struct address_space *mapping)
|
|
{
|
|
return mapping->a_ops == &shmem_aops;
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_mapping);
|
|
|
|
bool vma_is_anon_shmem(struct vm_area_struct *vma)
|
|
{
|
|
return vma->vm_ops == &shmem_anon_vm_ops;
|
|
}
|
|
|
|
bool vma_is_shmem(struct vm_area_struct *vma)
|
|
{
|
|
return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
|
|
}
|
|
|
|
static LIST_HEAD(shmem_swaplist);
|
|
static DEFINE_MUTEX(shmem_swaplist_mutex);
|
|
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
|
|
static int shmem_enable_quotas(struct super_block *sb,
|
|
unsigned short quota_types)
|
|
{
|
|
int type, err = 0;
|
|
|
|
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
|
|
for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
|
|
if (!(quota_types & (1 << type)))
|
|
continue;
|
|
err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
|
|
DQUOT_USAGE_ENABLED |
|
|
DQUOT_LIMITS_ENABLED);
|
|
if (err)
|
|
goto out_err;
|
|
}
|
|
return 0;
|
|
|
|
out_err:
|
|
pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
|
|
type, err);
|
|
for (type--; type >= 0; type--)
|
|
dquot_quota_off(sb, type);
|
|
return err;
|
|
}
|
|
|
|
static void shmem_disable_quotas(struct super_block *sb)
|
|
{
|
|
int type;
|
|
|
|
for (type = 0; type < SHMEM_MAXQUOTAS; type++)
|
|
dquot_quota_off(sb, type);
|
|
}
|
|
|
|
static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
|
|
{
|
|
return SHMEM_I(inode)->i_dquot;
|
|
}
|
|
#endif /* CONFIG_TMPFS_QUOTA */
|
|
|
|
/*
|
|
* shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
|
|
* produces a novel ino for the newly allocated inode.
|
|
*
|
|
* It may also be called when making a hard link to permit the space needed by
|
|
* each dentry. However, in that case, no new inode number is needed since that
|
|
* internally draws from another pool of inode numbers (currently global
|
|
* get_next_ino()). This case is indicated by passing NULL as inop.
|
|
*/
|
|
#define SHMEM_INO_BATCH 1024
|
|
static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
|
|
ino_t ino;
|
|
|
|
if (!(sb->s_flags & SB_KERNMOUNT)) {
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
if (sbinfo->max_inodes) {
|
|
if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
return -ENOSPC;
|
|
}
|
|
sbinfo->free_ispace -= BOGO_INODE_SIZE;
|
|
}
|
|
if (inop) {
|
|
ino = sbinfo->next_ino++;
|
|
if (unlikely(is_zero_ino(ino)))
|
|
ino = sbinfo->next_ino++;
|
|
if (unlikely(!sbinfo->full_inums &&
|
|
ino > UINT_MAX)) {
|
|
/*
|
|
* Emulate get_next_ino uint wraparound for
|
|
* compatibility
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT))
|
|
pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
|
|
__func__, MINOR(sb->s_dev));
|
|
sbinfo->next_ino = 1;
|
|
ino = sbinfo->next_ino++;
|
|
}
|
|
*inop = ino;
|
|
}
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
} else if (inop) {
|
|
/*
|
|
* __shmem_file_setup, one of our callers, is lock-free: it
|
|
* doesn't hold stat_lock in shmem_reserve_inode since
|
|
* max_inodes is always 0, and is called from potentially
|
|
* unknown contexts. As such, use a per-cpu batched allocator
|
|
* which doesn't require the per-sb stat_lock unless we are at
|
|
* the batch boundary.
|
|
*
|
|
* We don't need to worry about inode{32,64} since SB_KERNMOUNT
|
|
* shmem mounts are not exposed to userspace, so we don't need
|
|
* to worry about things like glibc compatibility.
|
|
*/
|
|
ino_t *next_ino;
|
|
|
|
next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
|
|
ino = *next_ino;
|
|
if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
ino = sbinfo->next_ino;
|
|
sbinfo->next_ino += SHMEM_INO_BATCH;
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
if (unlikely(is_zero_ino(ino)))
|
|
ino++;
|
|
}
|
|
*inop = ino;
|
|
*next_ino = ++ino;
|
|
put_cpu();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
|
|
if (sbinfo->max_inodes) {
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* shmem_recalc_inode - recalculate the block usage of an inode
|
|
* @inode: inode to recalc
|
|
* @alloced: the change in number of pages allocated to inode
|
|
* @swapped: the change in number of pages swapped from inode
|
|
*
|
|
* We have to calculate the free blocks since the mm can drop
|
|
* undirtied hole pages behind our back.
|
|
*
|
|
* But normally info->alloced == inode->i_mapping->nrpages + info->swapped
|
|
* So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
|
|
*/
|
|
static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
long freed;
|
|
|
|
spin_lock(&info->lock);
|
|
info->alloced += alloced;
|
|
info->swapped += swapped;
|
|
freed = info->alloced - info->swapped -
|
|
READ_ONCE(inode->i_mapping->nrpages);
|
|
/*
|
|
* Special case: whereas normally shmem_recalc_inode() is called
|
|
* after i_mapping->nrpages has already been adjusted (up or down),
|
|
* shmem_writepage() has to raise swapped before nrpages is lowered -
|
|
* to stop a racing shmem_recalc_inode() from thinking that a page has
|
|
* been freed. Compensate here, to avoid the need for a followup call.
|
|
*/
|
|
if (swapped > 0)
|
|
freed += swapped;
|
|
if (freed > 0)
|
|
info->alloced -= freed;
|
|
spin_unlock(&info->lock);
|
|
|
|
/* The quota case may block */
|
|
if (freed > 0)
|
|
shmem_inode_unacct_blocks(inode, freed);
|
|
}
|
|
|
|
bool shmem_charge(struct inode *inode, long pages)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
if (shmem_inode_acct_blocks(inode, pages))
|
|
return false;
|
|
|
|
/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
|
|
xa_lock_irq(&mapping->i_pages);
|
|
mapping->nrpages += pages;
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
|
|
shmem_recalc_inode(inode, pages, 0);
|
|
return true;
|
|
}
|
|
|
|
void shmem_uncharge(struct inode *inode, long pages)
|
|
{
|
|
/* pages argument is currently unused: keep it to help debugging */
|
|
/* nrpages adjustment done by __filemap_remove_folio() or caller */
|
|
|
|
shmem_recalc_inode(inode, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Replace item expected in xarray by a new item, while holding xa_lock.
|
|
*/
|
|
static int shmem_replace_entry(struct address_space *mapping,
|
|
pgoff_t index, void *expected, void *replacement)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, index);
|
|
void *item;
|
|
|
|
VM_BUG_ON(!expected);
|
|
VM_BUG_ON(!replacement);
|
|
item = xas_load(&xas);
|
|
if (item != expected)
|
|
return -ENOENT;
|
|
xas_store(&xas, replacement);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sometimes, before we decide whether to proceed or to fail, we must check
|
|
* that an entry was not already brought back from swap by a racing thread.
|
|
*
|
|
* Checking folio is not enough: by the time a swapcache folio is locked, it
|
|
* might be reused, and again be swapcache, using the same swap as before.
|
|
*/
|
|
static bool shmem_confirm_swap(struct address_space *mapping,
|
|
pgoff_t index, swp_entry_t swap)
|
|
{
|
|
return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
|
|
}
|
|
|
|
/*
|
|
* Definitions for "huge tmpfs": tmpfs mounted with the huge= option
|
|
*
|
|
* SHMEM_HUGE_NEVER:
|
|
* disables huge pages for the mount;
|
|
* SHMEM_HUGE_ALWAYS:
|
|
* enables huge pages for the mount;
|
|
* SHMEM_HUGE_WITHIN_SIZE:
|
|
* only allocate huge pages if the page will be fully within i_size,
|
|
* also respect fadvise()/madvise() hints;
|
|
* SHMEM_HUGE_ADVISE:
|
|
* only allocate huge pages if requested with fadvise()/madvise();
|
|
*/
|
|
|
|
#define SHMEM_HUGE_NEVER 0
|
|
#define SHMEM_HUGE_ALWAYS 1
|
|
#define SHMEM_HUGE_WITHIN_SIZE 2
|
|
#define SHMEM_HUGE_ADVISE 3
|
|
|
|
/*
|
|
* Special values.
|
|
* Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
|
|
*
|
|
* SHMEM_HUGE_DENY:
|
|
* disables huge on shm_mnt and all mounts, for emergency use;
|
|
* SHMEM_HUGE_FORCE:
|
|
* enables huge on shm_mnt and all mounts, w/o needing option, for testing;
|
|
*
|
|
*/
|
|
#define SHMEM_HUGE_DENY (-1)
|
|
#define SHMEM_HUGE_FORCE (-2)
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/* ifdef here to avoid bloating shmem.o when not necessary */
|
|
|
|
static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
|
|
|
|
static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
|
|
loff_t write_end, bool shmem_huge_force,
|
|
struct vm_area_struct *vma,
|
|
unsigned long vm_flags)
|
|
{
|
|
struct mm_struct *mm = vma ? vma->vm_mm : NULL;
|
|
loff_t i_size;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return false;
|
|
if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
|
|
return false;
|
|
if (shmem_huge == SHMEM_HUGE_DENY)
|
|
return false;
|
|
if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
|
|
return true;
|
|
|
|
switch (SHMEM_SB(inode->i_sb)->huge) {
|
|
case SHMEM_HUGE_ALWAYS:
|
|
return true;
|
|
case SHMEM_HUGE_WITHIN_SIZE:
|
|
index = round_up(index + 1, HPAGE_PMD_NR);
|
|
i_size = max(write_end, i_size_read(inode));
|
|
i_size = round_up(i_size, PAGE_SIZE);
|
|
if (i_size >> PAGE_SHIFT >= index)
|
|
return true;
|
|
fallthrough;
|
|
case SHMEM_HUGE_ADVISE:
|
|
if (mm && (vm_flags & VM_HUGEPAGE))
|
|
return true;
|
|
fallthrough;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
|
|
loff_t write_end, bool shmem_huge_force,
|
|
struct vm_area_struct *vma, unsigned long vm_flags)
|
|
{
|
|
if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
|
|
return false;
|
|
|
|
return __shmem_huge_global_enabled(inode, index, write_end,
|
|
shmem_huge_force, vma, vm_flags);
|
|
}
|
|
|
|
#if defined(CONFIG_SYSFS)
|
|
static int shmem_parse_huge(const char *str)
|
|
{
|
|
if (!strcmp(str, "never"))
|
|
return SHMEM_HUGE_NEVER;
|
|
if (!strcmp(str, "always"))
|
|
return SHMEM_HUGE_ALWAYS;
|
|
if (!strcmp(str, "within_size"))
|
|
return SHMEM_HUGE_WITHIN_SIZE;
|
|
if (!strcmp(str, "advise"))
|
|
return SHMEM_HUGE_ADVISE;
|
|
if (!strcmp(str, "deny"))
|
|
return SHMEM_HUGE_DENY;
|
|
if (!strcmp(str, "force"))
|
|
return SHMEM_HUGE_FORCE;
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
|
|
static const char *shmem_format_huge(int huge)
|
|
{
|
|
switch (huge) {
|
|
case SHMEM_HUGE_NEVER:
|
|
return "never";
|
|
case SHMEM_HUGE_ALWAYS:
|
|
return "always";
|
|
case SHMEM_HUGE_WITHIN_SIZE:
|
|
return "within_size";
|
|
case SHMEM_HUGE_ADVISE:
|
|
return "advise";
|
|
case SHMEM_HUGE_DENY:
|
|
return "deny";
|
|
case SHMEM_HUGE_FORCE:
|
|
return "force";
|
|
default:
|
|
VM_BUG_ON(1);
|
|
return "bad_val";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
|
|
struct shrink_control *sc, unsigned long nr_to_free)
|
|
{
|
|
LIST_HEAD(list), *pos, *next;
|
|
struct inode *inode;
|
|
struct shmem_inode_info *info;
|
|
struct folio *folio;
|
|
unsigned long batch = sc ? sc->nr_to_scan : 128;
|
|
unsigned long split = 0, freed = 0;
|
|
|
|
if (list_empty(&sbinfo->shrinklist))
|
|
return SHRINK_STOP;
|
|
|
|
spin_lock(&sbinfo->shrinklist_lock);
|
|
list_for_each_safe(pos, next, &sbinfo->shrinklist) {
|
|
info = list_entry(pos, struct shmem_inode_info, shrinklist);
|
|
|
|
/* pin the inode */
|
|
inode = igrab(&info->vfs_inode);
|
|
|
|
/* inode is about to be evicted */
|
|
if (!inode) {
|
|
list_del_init(&info->shrinklist);
|
|
goto next;
|
|
}
|
|
|
|
list_move(&info->shrinklist, &list);
|
|
next:
|
|
sbinfo->shrinklist_len--;
|
|
if (!--batch)
|
|
break;
|
|
}
|
|
spin_unlock(&sbinfo->shrinklist_lock);
|
|
|
|
list_for_each_safe(pos, next, &list) {
|
|
pgoff_t next, end;
|
|
loff_t i_size;
|
|
int ret;
|
|
|
|
info = list_entry(pos, struct shmem_inode_info, shrinklist);
|
|
inode = &info->vfs_inode;
|
|
|
|
if (nr_to_free && freed >= nr_to_free)
|
|
goto move_back;
|
|
|
|
i_size = i_size_read(inode);
|
|
folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
|
|
if (!folio || xa_is_value(folio))
|
|
goto drop;
|
|
|
|
/* No large folio at the end of the file: nothing to split */
|
|
if (!folio_test_large(folio)) {
|
|
folio_put(folio);
|
|
goto drop;
|
|
}
|
|
|
|
/* Check if there is anything to gain from splitting */
|
|
next = folio_next_index(folio);
|
|
end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
|
|
if (end <= folio->index || end >= next) {
|
|
folio_put(folio);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* Move the inode on the list back to shrinklist if we failed
|
|
* to lock the page at this time.
|
|
*
|
|
* Waiting for the lock may lead to deadlock in the
|
|
* reclaim path.
|
|
*/
|
|
if (!folio_trylock(folio)) {
|
|
folio_put(folio);
|
|
goto move_back;
|
|
}
|
|
|
|
ret = split_folio(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
/* If split failed move the inode on the list back to shrinklist */
|
|
if (ret)
|
|
goto move_back;
|
|
|
|
freed += next - end;
|
|
split++;
|
|
drop:
|
|
list_del_init(&info->shrinklist);
|
|
goto put;
|
|
move_back:
|
|
/*
|
|
* Make sure the inode is either on the global list or deleted
|
|
* from any local list before iput() since it could be deleted
|
|
* in another thread once we put the inode (then the local list
|
|
* is corrupted).
|
|
*/
|
|
spin_lock(&sbinfo->shrinklist_lock);
|
|
list_move(&info->shrinklist, &sbinfo->shrinklist);
|
|
sbinfo->shrinklist_len++;
|
|
spin_unlock(&sbinfo->shrinklist_lock);
|
|
put:
|
|
iput(inode);
|
|
}
|
|
|
|
return split;
|
|
}
|
|
|
|
static long shmem_unused_huge_scan(struct super_block *sb,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
|
|
|
|
if (!READ_ONCE(sbinfo->shrinklist_len))
|
|
return SHRINK_STOP;
|
|
|
|
return shmem_unused_huge_shrink(sbinfo, sc, 0);
|
|
}
|
|
|
|
static long shmem_unused_huge_count(struct super_block *sb,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
|
|
return READ_ONCE(sbinfo->shrinklist_len);
|
|
}
|
|
#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
#define shmem_huge SHMEM_HUGE_DENY
|
|
|
|
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
|
|
struct shrink_control *sc, unsigned long nr_to_free)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
|
|
loff_t write_end, bool shmem_huge_force,
|
|
struct vm_area_struct *vma, unsigned long vm_flags)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/*
|
|
* Somewhat like filemap_add_folio, but error if expected item has gone.
|
|
*/
|
|
static int shmem_add_to_page_cache(struct folio *folio,
|
|
struct address_space *mapping,
|
|
pgoff_t index, void *expected, gfp_t gfp)
|
|
{
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
|
|
long nr = folio_nr_pages(folio);
|
|
|
|
VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
|
|
|
|
folio_ref_add(folio, nr);
|
|
folio->mapping = mapping;
|
|
folio->index = index;
|
|
|
|
gfp &= GFP_RECLAIM_MASK;
|
|
folio_throttle_swaprate(folio, gfp);
|
|
|
|
do {
|
|
xas_lock_irq(&xas);
|
|
if (expected != xas_find_conflict(&xas)) {
|
|
xas_set_err(&xas, -EEXIST);
|
|
goto unlock;
|
|
}
|
|
if (expected && xas_find_conflict(&xas)) {
|
|
xas_set_err(&xas, -EEXIST);
|
|
goto unlock;
|
|
}
|
|
xas_store(&xas, folio);
|
|
if (xas_error(&xas))
|
|
goto unlock;
|
|
if (folio_test_pmd_mappable(folio))
|
|
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
|
|
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
|
|
__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
|
|
mapping->nrpages += nr;
|
|
unlock:
|
|
xas_unlock_irq(&xas);
|
|
} while (xas_nomem(&xas, gfp));
|
|
|
|
if (xas_error(&xas)) {
|
|
folio->mapping = NULL;
|
|
folio_ref_sub(folio, nr);
|
|
return xas_error(&xas);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Somewhat like filemap_remove_folio, but substitutes swap for @folio.
|
|
*/
|
|
static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
|
|
{
|
|
struct address_space *mapping = folio->mapping;
|
|
long nr = folio_nr_pages(folio);
|
|
int error;
|
|
|
|
xa_lock_irq(&mapping->i_pages);
|
|
error = shmem_replace_entry(mapping, folio->index, folio, radswap);
|
|
folio->mapping = NULL;
|
|
mapping->nrpages -= nr;
|
|
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
|
|
__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
folio_put_refs(folio, nr);
|
|
BUG_ON(error);
|
|
}
|
|
|
|
/*
|
|
* Remove swap entry from page cache, free the swap and its page cache. Returns
|
|
* the number of pages being freed. 0 means entry not found in XArray (0 pages
|
|
* being freed).
|
|
*/
|
|
static long shmem_free_swap(struct address_space *mapping,
|
|
pgoff_t index, void *radswap)
|
|
{
|
|
int order = xa_get_order(&mapping->i_pages, index);
|
|
void *old;
|
|
|
|
old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
|
|
if (old != radswap)
|
|
return 0;
|
|
free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
|
|
|
|
return 1 << order;
|
|
}
|
|
|
|
/*
|
|
* Determine (in bytes) how many of the shmem object's pages mapped by the
|
|
* given offsets are swapped out.
|
|
*
|
|
* This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
|
|
* as long as the inode doesn't go away and racy results are not a problem.
|
|
*/
|
|
unsigned long shmem_partial_swap_usage(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t end)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, start);
|
|
struct page *page;
|
|
unsigned long swapped = 0;
|
|
unsigned long max = end - 1;
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, page, max) {
|
|
if (xas_retry(&xas, page))
|
|
continue;
|
|
if (xa_is_value(page))
|
|
swapped += 1 << xas_get_order(&xas);
|
|
if (xas.xa_index == max)
|
|
break;
|
|
if (need_resched()) {
|
|
xas_pause(&xas);
|
|
cond_resched_rcu();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return swapped << PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Determine (in bytes) how many of the shmem object's pages mapped by the
|
|
* given vma is swapped out.
|
|
*
|
|
* This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
|
|
* as long as the inode doesn't go away and racy results are not a problem.
|
|
*/
|
|
unsigned long shmem_swap_usage(struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
unsigned long swapped;
|
|
|
|
/* Be careful as we don't hold info->lock */
|
|
swapped = READ_ONCE(info->swapped);
|
|
|
|
/*
|
|
* The easier cases are when the shmem object has nothing in swap, or
|
|
* the vma maps it whole. Then we can simply use the stats that we
|
|
* already track.
|
|
*/
|
|
if (!swapped)
|
|
return 0;
|
|
|
|
if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
|
|
return swapped << PAGE_SHIFT;
|
|
|
|
/* Here comes the more involved part */
|
|
return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
|
|
vma->vm_pgoff + vma_pages(vma));
|
|
}
|
|
|
|
/*
|
|
* SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
|
|
*/
|
|
void shmem_unlock_mapping(struct address_space *mapping)
|
|
{
|
|
struct folio_batch fbatch;
|
|
pgoff_t index = 0;
|
|
|
|
folio_batch_init(&fbatch);
|
|
/*
|
|
* Minor point, but we might as well stop if someone else SHM_LOCKs it.
|
|
*/
|
|
while (!mapping_unevictable(mapping) &&
|
|
filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
|
|
check_move_unevictable_folios(&fbatch);
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct folio *folio;
|
|
|
|
/*
|
|
* At first avoid shmem_get_folio(,,,SGP_READ): that fails
|
|
* beyond i_size, and reports fallocated folios as holes.
|
|
*/
|
|
folio = filemap_get_entry(inode->i_mapping, index);
|
|
if (!folio)
|
|
return folio;
|
|
if (!xa_is_value(folio)) {
|
|
folio_lock(folio);
|
|
if (folio->mapping == inode->i_mapping)
|
|
return folio;
|
|
/* The folio has been swapped out */
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
/*
|
|
* But read a folio back from swap if any of it is within i_size
|
|
* (although in some cases this is just a waste of time).
|
|
*/
|
|
folio = NULL;
|
|
shmem_get_folio(inode, index, 0, &folio, SGP_READ);
|
|
return folio;
|
|
}
|
|
|
|
/*
|
|
* Remove range of pages and swap entries from page cache, and free them.
|
|
* If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
|
|
*/
|
|
static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
|
|
bool unfalloc)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
pgoff_t end = (lend + 1) >> PAGE_SHIFT;
|
|
struct folio_batch fbatch;
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
struct folio *folio;
|
|
bool same_folio;
|
|
long nr_swaps_freed = 0;
|
|
pgoff_t index;
|
|
int i;
|
|
|
|
if (lend == -1)
|
|
end = -1; /* unsigned, so actually very big */
|
|
|
|
if (info->fallocend > start && info->fallocend <= end && !unfalloc)
|
|
info->fallocend = start;
|
|
|
|
folio_batch_init(&fbatch);
|
|
index = start;
|
|
while (index < end && find_lock_entries(mapping, &index, end - 1,
|
|
&fbatch, indices)) {
|
|
for (i = 0; i < folio_batch_count(&fbatch); i++) {
|
|
folio = fbatch.folios[i];
|
|
|
|
if (xa_is_value(folio)) {
|
|
if (unfalloc)
|
|
continue;
|
|
nr_swaps_freed += shmem_free_swap(mapping,
|
|
indices[i], folio);
|
|
continue;
|
|
}
|
|
|
|
if (!unfalloc || !folio_test_uptodate(folio))
|
|
truncate_inode_folio(mapping, folio);
|
|
folio_unlock(folio);
|
|
}
|
|
folio_batch_remove_exceptionals(&fbatch);
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* When undoing a failed fallocate, we want none of the partial folio
|
|
* zeroing and splitting below, but shall want to truncate the whole
|
|
* folio when !uptodate indicates that it was added by this fallocate,
|
|
* even when [lstart, lend] covers only a part of the folio.
|
|
*/
|
|
if (unfalloc)
|
|
goto whole_folios;
|
|
|
|
same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
|
|
folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
|
|
if (folio) {
|
|
same_folio = lend < folio_pos(folio) + folio_size(folio);
|
|
folio_mark_dirty(folio);
|
|
if (!truncate_inode_partial_folio(folio, lstart, lend)) {
|
|
start = folio_next_index(folio);
|
|
if (same_folio)
|
|
end = folio->index;
|
|
}
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
folio = NULL;
|
|
}
|
|
|
|
if (!same_folio)
|
|
folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
|
|
if (folio) {
|
|
folio_mark_dirty(folio);
|
|
if (!truncate_inode_partial_folio(folio, lstart, lend))
|
|
end = folio->index;
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
whole_folios:
|
|
|
|
index = start;
|
|
while (index < end) {
|
|
cond_resched();
|
|
|
|
if (!find_get_entries(mapping, &index, end - 1, &fbatch,
|
|
indices)) {
|
|
/* If all gone or hole-punch or unfalloc, we're done */
|
|
if (index == start || end != -1)
|
|
break;
|
|
/* But if truncating, restart to make sure all gone */
|
|
index = start;
|
|
continue;
|
|
}
|
|
for (i = 0; i < folio_batch_count(&fbatch); i++) {
|
|
folio = fbatch.folios[i];
|
|
|
|
if (xa_is_value(folio)) {
|
|
long swaps_freed;
|
|
|
|
if (unfalloc)
|
|
continue;
|
|
swaps_freed = shmem_free_swap(mapping, indices[i], folio);
|
|
if (!swaps_freed) {
|
|
/* Swap was replaced by page: retry */
|
|
index = indices[i];
|
|
break;
|
|
}
|
|
nr_swaps_freed += swaps_freed;
|
|
continue;
|
|
}
|
|
|
|
folio_lock(folio);
|
|
|
|
if (!unfalloc || !folio_test_uptodate(folio)) {
|
|
if (folio_mapping(folio) != mapping) {
|
|
/* Page was replaced by swap: retry */
|
|
folio_unlock(folio);
|
|
index = indices[i];
|
|
break;
|
|
}
|
|
VM_BUG_ON_FOLIO(folio_test_writeback(folio),
|
|
folio);
|
|
|
|
if (!folio_test_large(folio)) {
|
|
truncate_inode_folio(mapping, folio);
|
|
} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
|
|
/*
|
|
* If we split a page, reset the loop so
|
|
* that we pick up the new sub pages.
|
|
* Otherwise the THP was entirely
|
|
* dropped or the target range was
|
|
* zeroed, so just continue the loop as
|
|
* is.
|
|
*/
|
|
if (!folio_test_large(folio)) {
|
|
folio_unlock(folio);
|
|
index = start;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
folio_unlock(folio);
|
|
}
|
|
folio_batch_remove_exceptionals(&fbatch);
|
|
folio_batch_release(&fbatch);
|
|
}
|
|
|
|
shmem_recalc_inode(inode, 0, -nr_swaps_freed);
|
|
}
|
|
|
|
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
|
|
{
|
|
shmem_undo_range(inode, lstart, lend, false);
|
|
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
|
|
inode_inc_iversion(inode);
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_truncate_range);
|
|
|
|
static int shmem_getattr(struct mnt_idmap *idmap,
|
|
const struct path *path, struct kstat *stat,
|
|
u32 request_mask, unsigned int query_flags)
|
|
{
|
|
struct inode *inode = path->dentry->d_inode;
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
|
|
if (info->alloced - info->swapped != inode->i_mapping->nrpages)
|
|
shmem_recalc_inode(inode, 0, 0);
|
|
|
|
if (info->fsflags & FS_APPEND_FL)
|
|
stat->attributes |= STATX_ATTR_APPEND;
|
|
if (info->fsflags & FS_IMMUTABLE_FL)
|
|
stat->attributes |= STATX_ATTR_IMMUTABLE;
|
|
if (info->fsflags & FS_NODUMP_FL)
|
|
stat->attributes |= STATX_ATTR_NODUMP;
|
|
stat->attributes_mask |= (STATX_ATTR_APPEND |
|
|
STATX_ATTR_IMMUTABLE |
|
|
STATX_ATTR_NODUMP);
|
|
inode_lock_shared(inode);
|
|
generic_fillattr(idmap, request_mask, inode, stat);
|
|
inode_unlock_shared(inode);
|
|
|
|
if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
|
|
stat->blksize = HPAGE_PMD_SIZE;
|
|
|
|
if (request_mask & STATX_BTIME) {
|
|
stat->result_mask |= STATX_BTIME;
|
|
stat->btime.tv_sec = info->i_crtime.tv_sec;
|
|
stat->btime.tv_nsec = info->i_crtime.tv_nsec;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_setattr(struct mnt_idmap *idmap,
|
|
struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
int error;
|
|
bool update_mtime = false;
|
|
bool update_ctime = true;
|
|
|
|
error = setattr_prepare(idmap, dentry, attr);
|
|
if (error)
|
|
return error;
|
|
|
|
if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
|
|
if ((inode->i_mode ^ attr->ia_mode) & 0111) {
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
|
|
loff_t oldsize = inode->i_size;
|
|
loff_t newsize = attr->ia_size;
|
|
|
|
/* protected by i_rwsem */
|
|
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
|
|
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
|
|
return -EPERM;
|
|
|
|
if (newsize != oldsize) {
|
|
error = shmem_reacct_size(SHMEM_I(inode)->flags,
|
|
oldsize, newsize);
|
|
if (error)
|
|
return error;
|
|
i_size_write(inode, newsize);
|
|
update_mtime = true;
|
|
} else {
|
|
update_ctime = false;
|
|
}
|
|
if (newsize <= oldsize) {
|
|
loff_t holebegin = round_up(newsize, PAGE_SIZE);
|
|
if (oldsize > holebegin)
|
|
unmap_mapping_range(inode->i_mapping,
|
|
holebegin, 0, 1);
|
|
if (info->alloced)
|
|
shmem_truncate_range(inode,
|
|
newsize, (loff_t)-1);
|
|
/* unmap again to remove racily COWed private pages */
|
|
if (oldsize > holebegin)
|
|
unmap_mapping_range(inode->i_mapping,
|
|
holebegin, 0, 1);
|
|
}
|
|
}
|
|
|
|
if (is_quota_modification(idmap, inode, attr)) {
|
|
error = dquot_initialize(inode);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Transfer quota accounting */
|
|
if (i_uid_needs_update(idmap, attr, inode) ||
|
|
i_gid_needs_update(idmap, attr, inode)) {
|
|
error = dquot_transfer(idmap, inode, attr);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
setattr_copy(idmap, inode, attr);
|
|
if (attr->ia_valid & ATTR_MODE)
|
|
error = posix_acl_chmod(idmap, dentry, inode->i_mode);
|
|
if (!error && update_ctime) {
|
|
inode_set_ctime_current(inode);
|
|
if (update_mtime)
|
|
inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
|
|
inode_inc_iversion(inode);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void shmem_evict_inode(struct inode *inode)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
size_t freed = 0;
|
|
|
|
if (shmem_mapping(inode->i_mapping)) {
|
|
shmem_unacct_size(info->flags, inode->i_size);
|
|
inode->i_size = 0;
|
|
mapping_set_exiting(inode->i_mapping);
|
|
shmem_truncate_range(inode, 0, (loff_t)-1);
|
|
if (!list_empty(&info->shrinklist)) {
|
|
spin_lock(&sbinfo->shrinklist_lock);
|
|
if (!list_empty(&info->shrinklist)) {
|
|
list_del_init(&info->shrinklist);
|
|
sbinfo->shrinklist_len--;
|
|
}
|
|
spin_unlock(&sbinfo->shrinklist_lock);
|
|
}
|
|
while (!list_empty(&info->swaplist)) {
|
|
/* Wait while shmem_unuse() is scanning this inode... */
|
|
wait_var_event(&info->stop_eviction,
|
|
!atomic_read(&info->stop_eviction));
|
|
mutex_lock(&shmem_swaplist_mutex);
|
|
/* ...but beware of the race if we peeked too early */
|
|
if (!atomic_read(&info->stop_eviction))
|
|
list_del_init(&info->swaplist);
|
|
mutex_unlock(&shmem_swaplist_mutex);
|
|
}
|
|
}
|
|
|
|
simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
|
|
shmem_free_inode(inode->i_sb, freed);
|
|
WARN_ON(inode->i_blocks);
|
|
clear_inode(inode);
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
dquot_free_inode(inode);
|
|
dquot_drop(inode);
|
|
#endif
|
|
}
|
|
|
|
static int shmem_find_swap_entries(struct address_space *mapping,
|
|
pgoff_t start, struct folio_batch *fbatch,
|
|
pgoff_t *indices, unsigned int type)
|
|
{
|
|
XA_STATE(xas, &mapping->i_pages, start);
|
|
struct folio *folio;
|
|
swp_entry_t entry;
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, folio, ULONG_MAX) {
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
if (!xa_is_value(folio))
|
|
continue;
|
|
|
|
entry = radix_to_swp_entry(folio);
|
|
/*
|
|
* swapin error entries can be found in the mapping. But they're
|
|
* deliberately ignored here as we've done everything we can do.
|
|
*/
|
|
if (swp_type(entry) != type)
|
|
continue;
|
|
|
|
indices[folio_batch_count(fbatch)] = xas.xa_index;
|
|
if (!folio_batch_add(fbatch, folio))
|
|
break;
|
|
|
|
if (need_resched()) {
|
|
xas_pause(&xas);
|
|
cond_resched_rcu();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return xas.xa_index;
|
|
}
|
|
|
|
/*
|
|
* Move the swapped pages for an inode to page cache. Returns the count
|
|
* of pages swapped in, or the error in case of failure.
|
|
*/
|
|
static int shmem_unuse_swap_entries(struct inode *inode,
|
|
struct folio_batch *fbatch, pgoff_t *indices)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
int error = 0;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
for (i = 0; i < folio_batch_count(fbatch); i++) {
|
|
struct folio *folio = fbatch->folios[i];
|
|
|
|
if (!xa_is_value(folio))
|
|
continue;
|
|
error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
|
|
mapping_gfp_mask(mapping), NULL, NULL);
|
|
if (error == 0) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
ret++;
|
|
}
|
|
if (error == -ENOMEM)
|
|
break;
|
|
error = 0;
|
|
}
|
|
return error ? error : ret;
|
|
}
|
|
|
|
/*
|
|
* If swap found in inode, free it and move page from swapcache to filecache.
|
|
*/
|
|
static int shmem_unuse_inode(struct inode *inode, unsigned int type)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
pgoff_t start = 0;
|
|
struct folio_batch fbatch;
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
int ret = 0;
|
|
|
|
do {
|
|
folio_batch_init(&fbatch);
|
|
shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
|
|
if (folio_batch_count(&fbatch) == 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
start = indices[folio_batch_count(&fbatch) - 1];
|
|
} while (true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read all the shared memory data that resides in the swap
|
|
* device 'type' back into memory, so the swap device can be
|
|
* unused.
|
|
*/
|
|
int shmem_unuse(unsigned int type)
|
|
{
|
|
struct shmem_inode_info *info, *next;
|
|
int error = 0;
|
|
|
|
if (list_empty(&shmem_swaplist))
|
|
return 0;
|
|
|
|
mutex_lock(&shmem_swaplist_mutex);
|
|
list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
|
|
if (!info->swapped) {
|
|
list_del_init(&info->swaplist);
|
|
continue;
|
|
}
|
|
/*
|
|
* Drop the swaplist mutex while searching the inode for swap;
|
|
* but before doing so, make sure shmem_evict_inode() will not
|
|
* remove placeholder inode from swaplist, nor let it be freed
|
|
* (igrab() would protect from unlink, but not from unmount).
|
|
*/
|
|
atomic_inc(&info->stop_eviction);
|
|
mutex_unlock(&shmem_swaplist_mutex);
|
|
|
|
error = shmem_unuse_inode(&info->vfs_inode, type);
|
|
cond_resched();
|
|
|
|
mutex_lock(&shmem_swaplist_mutex);
|
|
next = list_next_entry(info, swaplist);
|
|
if (!info->swapped)
|
|
list_del_init(&info->swaplist);
|
|
if (atomic_dec_and_test(&info->stop_eviction))
|
|
wake_up_var(&info->stop_eviction);
|
|
if (error)
|
|
break;
|
|
}
|
|
mutex_unlock(&shmem_swaplist_mutex);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Move the page from the page cache to the swap cache.
|
|
*/
|
|
static int shmem_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct address_space *mapping = folio->mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
swp_entry_t swap;
|
|
pgoff_t index;
|
|
int nr_pages;
|
|
bool split = false;
|
|
|
|
/*
|
|
* Our capabilities prevent regular writeback or sync from ever calling
|
|
* shmem_writepage; but a stacking filesystem might use ->writepage of
|
|
* its underlying filesystem, in which case tmpfs should write out to
|
|
* swap only in response to memory pressure, and not for the writeback
|
|
* threads or sync.
|
|
*/
|
|
if (WARN_ON_ONCE(!wbc->for_reclaim))
|
|
goto redirty;
|
|
|
|
if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
|
|
goto redirty;
|
|
|
|
if (!total_swap_pages)
|
|
goto redirty;
|
|
|
|
/*
|
|
* If CONFIG_THP_SWAP is not enabled, the large folio should be
|
|
* split when swapping.
|
|
*
|
|
* And shrinkage of pages beyond i_size does not split swap, so
|
|
* swapout of a large folio crossing i_size needs to split too
|
|
* (unless fallocate has been used to preallocate beyond EOF).
|
|
*/
|
|
if (folio_test_large(folio)) {
|
|
index = shmem_fallocend(inode,
|
|
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
|
|
if ((index > folio->index && index < folio_next_index(folio)) ||
|
|
!IS_ENABLED(CONFIG_THP_SWAP))
|
|
split = true;
|
|
}
|
|
|
|
if (split) {
|
|
try_split:
|
|
/* Ensure the subpages are still dirty */
|
|
folio_test_set_dirty(folio);
|
|
if (split_huge_page_to_list_to_order(page, wbc->list, 0))
|
|
goto redirty;
|
|
folio = page_folio(page);
|
|
folio_clear_dirty(folio);
|
|
}
|
|
|
|
index = folio->index;
|
|
nr_pages = folio_nr_pages(folio);
|
|
|
|
/*
|
|
* This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
|
|
* value into swapfile.c, the only way we can correctly account for a
|
|
* fallocated folio arriving here is now to initialize it and write it.
|
|
*
|
|
* That's okay for a folio already fallocated earlier, but if we have
|
|
* not yet completed the fallocation, then (a) we want to keep track
|
|
* of this folio in case we have to undo it, and (b) it may not be a
|
|
* good idea to continue anyway, once we're pushing into swap. So
|
|
* reactivate the folio, and let shmem_fallocate() quit when too many.
|
|
*/
|
|
if (!folio_test_uptodate(folio)) {
|
|
if (inode->i_private) {
|
|
struct shmem_falloc *shmem_falloc;
|
|
spin_lock(&inode->i_lock);
|
|
shmem_falloc = inode->i_private;
|
|
if (shmem_falloc &&
|
|
!shmem_falloc->waitq &&
|
|
index >= shmem_falloc->start &&
|
|
index < shmem_falloc->next)
|
|
shmem_falloc->nr_unswapped++;
|
|
else
|
|
shmem_falloc = NULL;
|
|
spin_unlock(&inode->i_lock);
|
|
if (shmem_falloc)
|
|
goto redirty;
|
|
}
|
|
folio_zero_range(folio, 0, folio_size(folio));
|
|
flush_dcache_folio(folio);
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
|
|
swap = folio_alloc_swap(folio);
|
|
if (!swap.val) {
|
|
if (nr_pages > 1)
|
|
goto try_split;
|
|
|
|
goto redirty;
|
|
}
|
|
|
|
/*
|
|
* Add inode to shmem_unuse()'s list of swapped-out inodes,
|
|
* if it's not already there. Do it now before the folio is
|
|
* moved to swap cache, when its pagelock no longer protects
|
|
* the inode from eviction. But don't unlock the mutex until
|
|
* we've incremented swapped, because shmem_unuse_inode() will
|
|
* prune a !swapped inode from the swaplist under this mutex.
|
|
*/
|
|
mutex_lock(&shmem_swaplist_mutex);
|
|
if (list_empty(&info->swaplist))
|
|
list_add(&info->swaplist, &shmem_swaplist);
|
|
|
|
if (add_to_swap_cache(folio, swap,
|
|
__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
|
|
NULL) == 0) {
|
|
shmem_recalc_inode(inode, 0, nr_pages);
|
|
swap_shmem_alloc(swap, nr_pages);
|
|
shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
|
|
|
|
mutex_unlock(&shmem_swaplist_mutex);
|
|
BUG_ON(folio_mapped(folio));
|
|
return swap_writepage(&folio->page, wbc);
|
|
}
|
|
|
|
mutex_unlock(&shmem_swaplist_mutex);
|
|
put_swap_folio(folio, swap);
|
|
redirty:
|
|
folio_mark_dirty(folio);
|
|
if (wbc->for_reclaim)
|
|
return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
|
|
folio_unlock(folio);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
|
|
static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
|
|
{
|
|
char buffer[64];
|
|
|
|
if (!mpol || mpol->mode == MPOL_DEFAULT)
|
|
return; /* show nothing */
|
|
|
|
mpol_to_str(buffer, sizeof(buffer), mpol);
|
|
|
|
seq_printf(seq, ",mpol=%s", buffer);
|
|
}
|
|
|
|
static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
|
|
{
|
|
struct mempolicy *mpol = NULL;
|
|
if (sbinfo->mpol) {
|
|
raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
|
|
mpol = sbinfo->mpol;
|
|
mpol_get(mpol);
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
return mpol;
|
|
}
|
|
#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
|
|
static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
|
|
{
|
|
}
|
|
static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_NUMA && CONFIG_TMPFS */
|
|
|
|
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
|
|
pgoff_t index, unsigned int order, pgoff_t *ilx);
|
|
|
|
static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
|
|
struct shmem_inode_info *info, pgoff_t index)
|
|
{
|
|
struct mempolicy *mpol;
|
|
pgoff_t ilx;
|
|
struct folio *folio;
|
|
|
|
mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
|
|
folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
|
|
mpol_cond_put(mpol);
|
|
|
|
return folio;
|
|
}
|
|
|
|
/*
|
|
* Make sure huge_gfp is always more limited than limit_gfp.
|
|
* Some of the flags set permissions, while others set limitations.
|
|
*/
|
|
static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
|
|
{
|
|
gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
|
|
gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
|
|
gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
|
|
gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
|
|
|
|
/* Allow allocations only from the originally specified zones. */
|
|
result |= zoneflags;
|
|
|
|
/*
|
|
* Minimize the result gfp by taking the union with the deny flags,
|
|
* and the intersection of the allow flags.
|
|
*/
|
|
result |= (limit_gfp & denyflags);
|
|
result |= (huge_gfp & limit_gfp) & allowflags;
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
unsigned long shmem_allowable_huge_orders(struct inode *inode,
|
|
struct vm_area_struct *vma, pgoff_t index,
|
|
loff_t write_end, bool shmem_huge_force)
|
|
{
|
|
unsigned long mask = READ_ONCE(huge_shmem_orders_always);
|
|
unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
|
|
unsigned long vm_flags = vma ? vma->vm_flags : 0;
|
|
bool global_huge;
|
|
loff_t i_size;
|
|
int order;
|
|
|
|
if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
|
|
return 0;
|
|
|
|
global_huge = shmem_huge_global_enabled(inode, index, write_end,
|
|
shmem_huge_force, vma, vm_flags);
|
|
if (!vma || !vma_is_anon_shmem(vma)) {
|
|
/*
|
|
* For tmpfs, we now only support PMD sized THP if huge page
|
|
* is enabled, otherwise fallback to order 0.
|
|
*/
|
|
return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
|
|
}
|
|
|
|
/*
|
|
* Following the 'deny' semantics of the top level, force the huge
|
|
* option off from all mounts.
|
|
*/
|
|
if (shmem_huge == SHMEM_HUGE_DENY)
|
|
return 0;
|
|
|
|
/*
|
|
* Only allow inherit orders if the top-level value is 'force', which
|
|
* means non-PMD sized THP can not override 'huge' mount option now.
|
|
*/
|
|
if (shmem_huge == SHMEM_HUGE_FORCE)
|
|
return READ_ONCE(huge_shmem_orders_inherit);
|
|
|
|
/* Allow mTHP that will be fully within i_size. */
|
|
order = highest_order(within_size_orders);
|
|
while (within_size_orders) {
|
|
index = round_up(index + 1, order);
|
|
i_size = round_up(i_size_read(inode), PAGE_SIZE);
|
|
if (i_size >> PAGE_SHIFT >= index) {
|
|
mask |= within_size_orders;
|
|
break;
|
|
}
|
|
|
|
order = next_order(&within_size_orders, order);
|
|
}
|
|
|
|
if (vm_flags & VM_HUGEPAGE)
|
|
mask |= READ_ONCE(huge_shmem_orders_madvise);
|
|
|
|
if (global_huge)
|
|
mask |= READ_ONCE(huge_shmem_orders_inherit);
|
|
|
|
return THP_ORDERS_ALL_FILE_DEFAULT & mask;
|
|
}
|
|
|
|
static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
|
|
struct address_space *mapping, pgoff_t index,
|
|
unsigned long orders)
|
|
{
|
|
struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
|
|
pgoff_t aligned_index;
|
|
unsigned long pages;
|
|
int order;
|
|
|
|
if (vma) {
|
|
orders = thp_vma_suitable_orders(vma, vmf->address, orders);
|
|
if (!orders)
|
|
return 0;
|
|
}
|
|
|
|
/* Find the highest order that can add into the page cache */
|
|
order = highest_order(orders);
|
|
while (orders) {
|
|
pages = 1UL << order;
|
|
aligned_index = round_down(index, pages);
|
|
/*
|
|
* Check for conflict before waiting on a huge allocation.
|
|
* Conflict might be that a huge page has just been allocated
|
|
* and added to page cache by a racing thread, or that there
|
|
* is already at least one small page in the huge extent.
|
|
* Be careful to retry when appropriate, but not forever!
|
|
* Elsewhere -EEXIST would be the right code, but not here.
|
|
*/
|
|
if (!xa_find(&mapping->i_pages, &aligned_index,
|
|
aligned_index + pages - 1, XA_PRESENT))
|
|
break;
|
|
order = next_order(&orders, order);
|
|
}
|
|
|
|
return orders;
|
|
}
|
|
#else
|
|
static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
|
|
struct address_space *mapping, pgoff_t index,
|
|
unsigned long orders)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
|
|
struct shmem_inode_info *info, pgoff_t index)
|
|
{
|
|
struct mempolicy *mpol;
|
|
pgoff_t ilx;
|
|
struct folio *folio;
|
|
|
|
mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
|
|
folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
|
|
mpol_cond_put(mpol);
|
|
|
|
return folio;
|
|
}
|
|
|
|
static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
|
|
gfp_t gfp, struct inode *inode, pgoff_t index,
|
|
struct mm_struct *fault_mm, unsigned long orders)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
unsigned long suitable_orders = 0;
|
|
struct folio *folio = NULL;
|
|
long pages;
|
|
int error, order;
|
|
|
|
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
|
|
orders = 0;
|
|
|
|
if (orders > 0) {
|
|
suitable_orders = shmem_suitable_orders(inode, vmf,
|
|
mapping, index, orders);
|
|
|
|
order = highest_order(suitable_orders);
|
|
while (suitable_orders) {
|
|
pages = 1UL << order;
|
|
index = round_down(index, pages);
|
|
folio = shmem_alloc_folio(gfp, order, info, index);
|
|
if (folio)
|
|
goto allocated;
|
|
|
|
if (pages == HPAGE_PMD_NR)
|
|
count_vm_event(THP_FILE_FALLBACK);
|
|
count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
|
|
order = next_order(&suitable_orders, order);
|
|
}
|
|
} else {
|
|
pages = 1;
|
|
folio = shmem_alloc_folio(gfp, 0, info, index);
|
|
}
|
|
if (!folio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
allocated:
|
|
__folio_set_locked(folio);
|
|
__folio_set_swapbacked(folio);
|
|
|
|
gfp &= GFP_RECLAIM_MASK;
|
|
error = mem_cgroup_charge(folio, fault_mm, gfp);
|
|
if (error) {
|
|
if (xa_find(&mapping->i_pages, &index,
|
|
index + pages - 1, XA_PRESENT)) {
|
|
error = -EEXIST;
|
|
} else if (pages > 1) {
|
|
if (pages == HPAGE_PMD_NR) {
|
|
count_vm_event(THP_FILE_FALLBACK);
|
|
count_vm_event(THP_FILE_FALLBACK_CHARGE);
|
|
}
|
|
count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
|
|
count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
|
|
}
|
|
goto unlock;
|
|
}
|
|
|
|
error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
|
|
if (error)
|
|
goto unlock;
|
|
|
|
error = shmem_inode_acct_blocks(inode, pages);
|
|
if (error) {
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
long freed;
|
|
/*
|
|
* Try to reclaim some space by splitting a few
|
|
* large folios beyond i_size on the filesystem.
|
|
*/
|
|
shmem_unused_huge_shrink(sbinfo, NULL, pages);
|
|
/*
|
|
* And do a shmem_recalc_inode() to account for freed pages:
|
|
* except our folio is there in cache, so not quite balanced.
|
|
*/
|
|
spin_lock(&info->lock);
|
|
freed = pages + info->alloced - info->swapped -
|
|
READ_ONCE(mapping->nrpages);
|
|
if (freed > 0)
|
|
info->alloced -= freed;
|
|
spin_unlock(&info->lock);
|
|
if (freed > 0)
|
|
shmem_inode_unacct_blocks(inode, freed);
|
|
error = shmem_inode_acct_blocks(inode, pages);
|
|
if (error) {
|
|
filemap_remove_folio(folio);
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
shmem_recalc_inode(inode, pages, 0);
|
|
folio_add_lru(folio);
|
|
return folio;
|
|
|
|
unlock:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
/*
|
|
* When a page is moved from swapcache to shmem filecache (either by the
|
|
* usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
|
|
* shmem_unuse_inode()), it may have been read in earlier from swap, in
|
|
* ignorance of the mapping it belongs to. If that mapping has special
|
|
* constraints (like the gma500 GEM driver, which requires RAM below 4GB),
|
|
* we may need to copy to a suitable page before moving to filecache.
|
|
*
|
|
* In a future release, this may well be extended to respect cpuset and
|
|
* NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
|
|
* but for now it is a simple matter of zone.
|
|
*/
|
|
static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
|
|
{
|
|
return folio_zonenum(folio) > gfp_zone(gfp);
|
|
}
|
|
|
|
static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
|
|
struct shmem_inode_info *info, pgoff_t index,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
struct folio *new, *old = *foliop;
|
|
swp_entry_t entry = old->swap;
|
|
struct address_space *swap_mapping = swap_address_space(entry);
|
|
pgoff_t swap_index = swap_cache_index(entry);
|
|
XA_STATE(xas, &swap_mapping->i_pages, swap_index);
|
|
int nr_pages = folio_nr_pages(old);
|
|
int error = 0, i;
|
|
|
|
/*
|
|
* We have arrived here because our zones are constrained, so don't
|
|
* limit chance of success by further cpuset and node constraints.
|
|
*/
|
|
gfp &= ~GFP_CONSTRAINT_MASK;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (nr_pages > 1) {
|
|
gfp_t huge_gfp = vma_thp_gfp_mask(vma);
|
|
|
|
gfp = limit_gfp_mask(huge_gfp, gfp);
|
|
}
|
|
#endif
|
|
|
|
new = shmem_alloc_folio(gfp, folio_order(old), info, index);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
folio_ref_add(new, nr_pages);
|
|
folio_copy(new, old);
|
|
flush_dcache_folio(new);
|
|
|
|
__folio_set_locked(new);
|
|
__folio_set_swapbacked(new);
|
|
folio_mark_uptodate(new);
|
|
new->swap = entry;
|
|
folio_set_swapcache(new);
|
|
|
|
/* Swap cache still stores N entries instead of a high-order entry */
|
|
xa_lock_irq(&swap_mapping->i_pages);
|
|
for (i = 0; i < nr_pages; i++) {
|
|
void *item = xas_load(&xas);
|
|
|
|
if (item != old) {
|
|
error = -ENOENT;
|
|
break;
|
|
}
|
|
|
|
xas_store(&xas, new);
|
|
xas_next(&xas);
|
|
}
|
|
if (!error) {
|
|
mem_cgroup_replace_folio(old, new);
|
|
__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
|
|
__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
|
|
__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
|
|
__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
|
|
}
|
|
xa_unlock_irq(&swap_mapping->i_pages);
|
|
|
|
if (unlikely(error)) {
|
|
/*
|
|
* Is this possible? I think not, now that our callers
|
|
* check both the swapcache flag and folio->private
|
|
* after getting the folio lock; but be defensive.
|
|
* Reverse old to newpage for clear and free.
|
|
*/
|
|
old = new;
|
|
} else {
|
|
folio_add_lru(new);
|
|
*foliop = new;
|
|
}
|
|
|
|
folio_clear_swapcache(old);
|
|
old->private = NULL;
|
|
|
|
folio_unlock(old);
|
|
/*
|
|
* The old folio are removed from swap cache, drop the 'nr_pages'
|
|
* reference, as well as one temporary reference getting from swap
|
|
* cache.
|
|
*/
|
|
folio_put_refs(old, nr_pages + 1);
|
|
return error;
|
|
}
|
|
|
|
static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
|
|
struct folio *folio, swp_entry_t swap)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
swp_entry_t swapin_error;
|
|
void *old;
|
|
int nr_pages;
|
|
|
|
swapin_error = make_poisoned_swp_entry();
|
|
old = xa_cmpxchg_irq(&mapping->i_pages, index,
|
|
swp_to_radix_entry(swap),
|
|
swp_to_radix_entry(swapin_error), 0);
|
|
if (old != swp_to_radix_entry(swap))
|
|
return;
|
|
|
|
nr_pages = folio_nr_pages(folio);
|
|
folio_wait_writeback(folio);
|
|
delete_from_swap_cache(folio);
|
|
/*
|
|
* Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
|
|
* won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
|
|
* in shmem_evict_inode().
|
|
*/
|
|
shmem_recalc_inode(inode, -nr_pages, -nr_pages);
|
|
swap_free_nr(swap, nr_pages);
|
|
}
|
|
|
|
static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
|
|
swp_entry_t swap, gfp_t gfp)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
|
|
void *alloced_shadow = NULL;
|
|
int alloced_order = 0, i;
|
|
|
|
/* Convert user data gfp flags to xarray node gfp flags */
|
|
gfp &= GFP_RECLAIM_MASK;
|
|
|
|
for (;;) {
|
|
int order = -1, split_order = 0;
|
|
void *old = NULL;
|
|
|
|
xas_lock_irq(&xas);
|
|
old = xas_load(&xas);
|
|
if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
|
|
xas_set_err(&xas, -EEXIST);
|
|
goto unlock;
|
|
}
|
|
|
|
order = xas_get_order(&xas);
|
|
|
|
/* Swap entry may have changed before we re-acquire the lock */
|
|
if (alloced_order &&
|
|
(old != alloced_shadow || order != alloced_order)) {
|
|
xas_destroy(&xas);
|
|
alloced_order = 0;
|
|
}
|
|
|
|
/* Try to split large swap entry in pagecache */
|
|
if (order > 0) {
|
|
if (!alloced_order) {
|
|
split_order = order;
|
|
goto unlock;
|
|
}
|
|
xas_split(&xas, old, order);
|
|
|
|
/*
|
|
* Re-set the swap entry after splitting, and the swap
|
|
* offset of the original large entry must be continuous.
|
|
*/
|
|
for (i = 0; i < 1 << order; i++) {
|
|
pgoff_t aligned_index = round_down(index, 1 << order);
|
|
swp_entry_t tmp;
|
|
|
|
tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
|
|
__xa_store(&mapping->i_pages, aligned_index + i,
|
|
swp_to_radix_entry(tmp), 0);
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
xas_unlock_irq(&xas);
|
|
|
|
/* split needed, alloc here and retry. */
|
|
if (split_order) {
|
|
xas_split_alloc(&xas, old, split_order, gfp);
|
|
if (xas_error(&xas))
|
|
goto error;
|
|
alloced_shadow = old;
|
|
alloced_order = split_order;
|
|
xas_reset(&xas);
|
|
continue;
|
|
}
|
|
|
|
if (!xas_nomem(&xas, gfp))
|
|
break;
|
|
}
|
|
|
|
error:
|
|
if (xas_error(&xas))
|
|
return xas_error(&xas);
|
|
|
|
return alloced_order;
|
|
}
|
|
|
|
/*
|
|
* Swap in the folio pointed to by *foliop.
|
|
* Caller has to make sure that *foliop contains a valid swapped folio.
|
|
* Returns 0 and the folio in foliop if success. On failure, returns the
|
|
* error code and NULL in *foliop.
|
|
*/
|
|
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
|
|
struct folio **foliop, enum sgp_type sgp,
|
|
gfp_t gfp, struct vm_area_struct *vma,
|
|
vm_fault_t *fault_type)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct swap_info_struct *si;
|
|
struct folio *folio = NULL;
|
|
swp_entry_t swap;
|
|
int error, nr_pages;
|
|
|
|
VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
|
|
swap = radix_to_swp_entry(*foliop);
|
|
*foliop = NULL;
|
|
|
|
if (is_poisoned_swp_entry(swap))
|
|
return -EIO;
|
|
|
|
si = get_swap_device(swap);
|
|
if (!si) {
|
|
if (!shmem_confirm_swap(mapping, index, swap))
|
|
return -EEXIST;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Look it up and read it in.. */
|
|
folio = swap_cache_get_folio(swap, NULL, 0);
|
|
if (!folio) {
|
|
int split_order;
|
|
|
|
/* Or update major stats only when swapin succeeds?? */
|
|
if (fault_type) {
|
|
*fault_type |= VM_FAULT_MAJOR;
|
|
count_vm_event(PGMAJFAULT);
|
|
count_memcg_event_mm(fault_mm, PGMAJFAULT);
|
|
}
|
|
|
|
/*
|
|
* Now swap device can only swap in order 0 folio, then we
|
|
* should split the large swap entry stored in the pagecache
|
|
* if necessary.
|
|
*/
|
|
split_order = shmem_split_large_entry(inode, index, swap, gfp);
|
|
if (split_order < 0) {
|
|
error = split_order;
|
|
goto failed;
|
|
}
|
|
|
|
/*
|
|
* If the large swap entry has already been split, it is
|
|
* necessary to recalculate the new swap entry based on
|
|
* the old order alignment.
|
|
*/
|
|
if (split_order > 0) {
|
|
pgoff_t offset = index - round_down(index, 1 << split_order);
|
|
|
|
swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
|
|
}
|
|
|
|
/* Here we actually start the io */
|
|
folio = shmem_swapin_cluster(swap, gfp, info, index);
|
|
if (!folio) {
|
|
error = -ENOMEM;
|
|
goto failed;
|
|
}
|
|
}
|
|
|
|
/* We have to do this with folio locked to prevent races */
|
|
folio_lock(folio);
|
|
if (!folio_test_swapcache(folio) ||
|
|
folio->swap.val != swap.val ||
|
|
!shmem_confirm_swap(mapping, index, swap)) {
|
|
error = -EEXIST;
|
|
goto unlock;
|
|
}
|
|
if (!folio_test_uptodate(folio)) {
|
|
error = -EIO;
|
|
goto failed;
|
|
}
|
|
folio_wait_writeback(folio);
|
|
nr_pages = folio_nr_pages(folio);
|
|
|
|
/*
|
|
* Some architectures may have to restore extra metadata to the
|
|
* folio after reading from swap.
|
|
*/
|
|
arch_swap_restore(folio_swap(swap, folio), folio);
|
|
|
|
if (shmem_should_replace_folio(folio, gfp)) {
|
|
error = shmem_replace_folio(&folio, gfp, info, index, vma);
|
|
if (error)
|
|
goto failed;
|
|
}
|
|
|
|
error = shmem_add_to_page_cache(folio, mapping,
|
|
round_down(index, nr_pages),
|
|
swp_to_radix_entry(swap), gfp);
|
|
if (error)
|
|
goto failed;
|
|
|
|
shmem_recalc_inode(inode, 0, -nr_pages);
|
|
|
|
if (sgp == SGP_WRITE)
|
|
folio_mark_accessed(folio);
|
|
|
|
delete_from_swap_cache(folio);
|
|
folio_mark_dirty(folio);
|
|
swap_free_nr(swap, nr_pages);
|
|
put_swap_device(si);
|
|
|
|
*foliop = folio;
|
|
return 0;
|
|
failed:
|
|
if (!shmem_confirm_swap(mapping, index, swap))
|
|
error = -EEXIST;
|
|
if (error == -EIO)
|
|
shmem_set_folio_swapin_error(inode, index, folio, swap);
|
|
unlock:
|
|
if (folio) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
put_swap_device(si);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
|
|
*
|
|
* If we allocate a new one we do not mark it dirty. That's up to the
|
|
* vm. If we swap it in we mark it dirty since we also free the swap
|
|
* entry since a page cannot live in both the swap and page cache.
|
|
*
|
|
* vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
|
|
*/
|
|
static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
|
|
loff_t write_end, struct folio **foliop, enum sgp_type sgp,
|
|
gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
|
|
{
|
|
struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
|
|
struct mm_struct *fault_mm;
|
|
struct folio *folio;
|
|
int error;
|
|
bool alloced;
|
|
unsigned long orders = 0;
|
|
|
|
if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
|
|
return -EINVAL;
|
|
|
|
if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
|
|
return -EFBIG;
|
|
repeat:
|
|
if (sgp <= SGP_CACHE &&
|
|
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
alloced = false;
|
|
fault_mm = vma ? vma->vm_mm : NULL;
|
|
|
|
folio = filemap_get_entry(inode->i_mapping, index);
|
|
if (folio && vma && userfaultfd_minor(vma)) {
|
|
if (!xa_is_value(folio))
|
|
folio_put(folio);
|
|
*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
|
|
return 0;
|
|
}
|
|
|
|
if (xa_is_value(folio)) {
|
|
error = shmem_swapin_folio(inode, index, &folio,
|
|
sgp, gfp, vma, fault_type);
|
|
if (error == -EEXIST)
|
|
goto repeat;
|
|
|
|
*foliop = folio;
|
|
return error;
|
|
}
|
|
|
|
if (folio) {
|
|
folio_lock(folio);
|
|
|
|
/* Has the folio been truncated or swapped out? */
|
|
if (unlikely(folio->mapping != inode->i_mapping)) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
goto repeat;
|
|
}
|
|
if (sgp == SGP_WRITE)
|
|
folio_mark_accessed(folio);
|
|
if (folio_test_uptodate(folio))
|
|
goto out;
|
|
/* fallocated folio */
|
|
if (sgp != SGP_READ)
|
|
goto clear;
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
/*
|
|
* SGP_READ: succeed on hole, with NULL folio, letting caller zero.
|
|
* SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
|
|
*/
|
|
*foliop = NULL;
|
|
if (sgp == SGP_READ)
|
|
return 0;
|
|
if (sgp == SGP_NOALLOC)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Fast cache lookup and swap lookup did not find it: allocate.
|
|
*/
|
|
|
|
if (vma && userfaultfd_missing(vma)) {
|
|
*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
|
|
orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
|
|
if (orders > 0) {
|
|
gfp_t huge_gfp;
|
|
|
|
huge_gfp = vma_thp_gfp_mask(vma);
|
|
huge_gfp = limit_gfp_mask(huge_gfp, gfp);
|
|
folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
|
|
inode, index, fault_mm, orders);
|
|
if (!IS_ERR(folio)) {
|
|
if (folio_test_pmd_mappable(folio))
|
|
count_vm_event(THP_FILE_ALLOC);
|
|
count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
|
|
goto alloced;
|
|
}
|
|
if (PTR_ERR(folio) == -EEXIST)
|
|
goto repeat;
|
|
}
|
|
|
|
folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
|
|
if (IS_ERR(folio)) {
|
|
error = PTR_ERR(folio);
|
|
if (error == -EEXIST)
|
|
goto repeat;
|
|
folio = NULL;
|
|
goto unlock;
|
|
}
|
|
|
|
alloced:
|
|
alloced = true;
|
|
if (folio_test_large(folio) &&
|
|
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
|
|
folio_next_index(folio)) {
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
/*
|
|
* Part of the large folio is beyond i_size: subject
|
|
* to shrink under memory pressure.
|
|
*/
|
|
spin_lock(&sbinfo->shrinklist_lock);
|
|
/*
|
|
* _careful to defend against unlocked access to
|
|
* ->shrink_list in shmem_unused_huge_shrink()
|
|
*/
|
|
if (list_empty_careful(&info->shrinklist)) {
|
|
list_add_tail(&info->shrinklist,
|
|
&sbinfo->shrinklist);
|
|
sbinfo->shrinklist_len++;
|
|
}
|
|
spin_unlock(&sbinfo->shrinklist_lock);
|
|
}
|
|
|
|
if (sgp == SGP_WRITE)
|
|
folio_set_referenced(folio);
|
|
/*
|
|
* Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
|
|
*/
|
|
if (sgp == SGP_FALLOC)
|
|
sgp = SGP_WRITE;
|
|
clear:
|
|
/*
|
|
* Let SGP_WRITE caller clear ends if write does not fill folio;
|
|
* but SGP_FALLOC on a folio fallocated earlier must initialize
|
|
* it now, lest undo on failure cancel our earlier guarantee.
|
|
*/
|
|
if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
|
|
long i, n = folio_nr_pages(folio);
|
|
|
|
for (i = 0; i < n; i++)
|
|
clear_highpage(folio_page(folio, i));
|
|
flush_dcache_folio(folio);
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
|
|
/* Perhaps the file has been truncated since we checked */
|
|
if (sgp <= SGP_CACHE &&
|
|
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
|
|
error = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
out:
|
|
*foliop = folio;
|
|
return 0;
|
|
|
|
/*
|
|
* Error recovery.
|
|
*/
|
|
unlock:
|
|
if (alloced)
|
|
filemap_remove_folio(folio);
|
|
shmem_recalc_inode(inode, 0, 0);
|
|
if (folio) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* shmem_get_folio - find, and lock a shmem folio.
|
|
* @inode: inode to search
|
|
* @index: the page index.
|
|
* @write_end: end of a write, could extend inode size
|
|
* @foliop: pointer to the folio if found
|
|
* @sgp: SGP_* flags to control behavior
|
|
*
|
|
* Looks up the page cache entry at @inode & @index. If a folio is
|
|
* present, it is returned locked with an increased refcount.
|
|
*
|
|
* If the caller modifies data in the folio, it must call folio_mark_dirty()
|
|
* before unlocking the folio to ensure that the folio is not reclaimed.
|
|
* There is no need to reserve space before calling folio_mark_dirty().
|
|
*
|
|
* When no folio is found, the behavior depends on @sgp:
|
|
* - for SGP_READ, *@foliop is %NULL and 0 is returned
|
|
* - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
|
|
* - for all other flags a new folio is allocated, inserted into the
|
|
* page cache and returned locked in @foliop.
|
|
*
|
|
* Context: May sleep.
|
|
* Return: 0 if successful, else a negative error code.
|
|
*/
|
|
int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
|
|
struct folio **foliop, enum sgp_type sgp)
|
|
{
|
|
return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
|
|
mapping_gfp_mask(inode->i_mapping), NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_get_folio);
|
|
|
|
/*
|
|
* This is like autoremove_wake_function, but it removes the wait queue
|
|
* entry unconditionally - even if something else had already woken the
|
|
* target.
|
|
*/
|
|
static int synchronous_wake_function(wait_queue_entry_t *wait,
|
|
unsigned int mode, int sync, void *key)
|
|
{
|
|
int ret = default_wake_function(wait, mode, sync, key);
|
|
list_del_init(&wait->entry);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Trinity finds that probing a hole which tmpfs is punching can
|
|
* prevent the hole-punch from ever completing: which in turn
|
|
* locks writers out with its hold on i_rwsem. So refrain from
|
|
* faulting pages into the hole while it's being punched. Although
|
|
* shmem_undo_range() does remove the additions, it may be unable to
|
|
* keep up, as each new page needs its own unmap_mapping_range() call,
|
|
* and the i_mmap tree grows ever slower to scan if new vmas are added.
|
|
*
|
|
* It does not matter if we sometimes reach this check just before the
|
|
* hole-punch begins, so that one fault then races with the punch:
|
|
* we just need to make racing faults a rare case.
|
|
*
|
|
* The implementation below would be much simpler if we just used a
|
|
* standard mutex or completion: but we cannot take i_rwsem in fault,
|
|
* and bloating every shmem inode for this unlikely case would be sad.
|
|
*/
|
|
static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
|
|
{
|
|
struct shmem_falloc *shmem_falloc;
|
|
struct file *fpin = NULL;
|
|
vm_fault_t ret = 0;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
shmem_falloc = inode->i_private;
|
|
if (shmem_falloc &&
|
|
shmem_falloc->waitq &&
|
|
vmf->pgoff >= shmem_falloc->start &&
|
|
vmf->pgoff < shmem_falloc->next) {
|
|
wait_queue_head_t *shmem_falloc_waitq;
|
|
DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
|
|
|
|
ret = VM_FAULT_NOPAGE;
|
|
fpin = maybe_unlock_mmap_for_io(vmf, NULL);
|
|
shmem_falloc_waitq = shmem_falloc->waitq;
|
|
prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
spin_unlock(&inode->i_lock);
|
|
schedule();
|
|
|
|
/*
|
|
* shmem_falloc_waitq points into the shmem_fallocate()
|
|
* stack of the hole-punching task: shmem_falloc_waitq
|
|
* is usually invalid by the time we reach here, but
|
|
* finish_wait() does not dereference it in that case;
|
|
* though i_lock needed lest racing with wake_up_all().
|
|
*/
|
|
spin_lock(&inode->i_lock);
|
|
finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
|
|
}
|
|
spin_unlock(&inode->i_lock);
|
|
if (fpin) {
|
|
fput(fpin);
|
|
ret = VM_FAULT_RETRY;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static vm_fault_t shmem_fault(struct vm_fault *vmf)
|
|
{
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
|
|
struct folio *folio = NULL;
|
|
vm_fault_t ret = 0;
|
|
int err;
|
|
|
|
/*
|
|
* Trinity finds that probing a hole which tmpfs is punching can
|
|
* prevent the hole-punch from ever completing: noted in i_private.
|
|
*/
|
|
if (unlikely(inode->i_private)) {
|
|
ret = shmem_falloc_wait(vmf, inode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
WARN_ON_ONCE(vmf->page != NULL);
|
|
err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
|
|
gfp, vmf, &ret);
|
|
if (err)
|
|
return vmf_error(err);
|
|
if (folio) {
|
|
vmf->page = folio_file_page(folio, vmf->pgoff);
|
|
ret |= VM_FAULT_LOCKED;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
unsigned long shmem_get_unmapped_area(struct file *file,
|
|
unsigned long uaddr, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long offset;
|
|
unsigned long inflated_len;
|
|
unsigned long inflated_addr;
|
|
unsigned long inflated_offset;
|
|
unsigned long hpage_size;
|
|
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
|
|
flags);
|
|
|
|
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
|
|
return addr;
|
|
if (IS_ERR_VALUE(addr))
|
|
return addr;
|
|
if (addr & ~PAGE_MASK)
|
|
return addr;
|
|
if (addr > TASK_SIZE - len)
|
|
return addr;
|
|
|
|
if (shmem_huge == SHMEM_HUGE_DENY)
|
|
return addr;
|
|
if (flags & MAP_FIXED)
|
|
return addr;
|
|
/*
|
|
* Our priority is to support MAP_SHARED mapped hugely;
|
|
* and support MAP_PRIVATE mapped hugely too, until it is COWed.
|
|
* But if caller specified an address hint and we allocated area there
|
|
* successfully, respect that as before.
|
|
*/
|
|
if (uaddr == addr)
|
|
return addr;
|
|
|
|
hpage_size = HPAGE_PMD_SIZE;
|
|
if (shmem_huge != SHMEM_HUGE_FORCE) {
|
|
struct super_block *sb;
|
|
unsigned long __maybe_unused hpage_orders;
|
|
int order = 0;
|
|
|
|
if (file) {
|
|
VM_BUG_ON(file->f_op != &shmem_file_operations);
|
|
sb = file_inode(file)->i_sb;
|
|
} else {
|
|
/*
|
|
* Called directly from mm/mmap.c, or drivers/char/mem.c
|
|
* for "/dev/zero", to create a shared anonymous object.
|
|
*/
|
|
if (IS_ERR(shm_mnt))
|
|
return addr;
|
|
sb = shm_mnt->mnt_sb;
|
|
|
|
/*
|
|
* Find the highest mTHP order used for anonymous shmem to
|
|
* provide a suitable alignment address.
|
|
*/
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
hpage_orders = READ_ONCE(huge_shmem_orders_always);
|
|
hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
|
|
hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
|
|
if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
|
|
hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
|
|
|
|
if (hpage_orders > 0) {
|
|
order = highest_order(hpage_orders);
|
|
hpage_size = PAGE_SIZE << order;
|
|
}
|
|
#endif
|
|
}
|
|
if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
|
|
return addr;
|
|
}
|
|
|
|
if (len < hpage_size)
|
|
return addr;
|
|
|
|
offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
|
|
if (offset && offset + len < 2 * hpage_size)
|
|
return addr;
|
|
if ((addr & (hpage_size - 1)) == offset)
|
|
return addr;
|
|
|
|
inflated_len = len + hpage_size - PAGE_SIZE;
|
|
if (inflated_len > TASK_SIZE)
|
|
return addr;
|
|
if (inflated_len < len)
|
|
return addr;
|
|
|
|
inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
|
|
inflated_len, 0, flags);
|
|
if (IS_ERR_VALUE(inflated_addr))
|
|
return addr;
|
|
if (inflated_addr & ~PAGE_MASK)
|
|
return addr;
|
|
|
|
inflated_offset = inflated_addr & (hpage_size - 1);
|
|
inflated_addr += offset - inflated_offset;
|
|
if (inflated_offset > offset)
|
|
inflated_addr += hpage_size;
|
|
|
|
if (inflated_addr > TASK_SIZE - len)
|
|
return addr;
|
|
return inflated_addr;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
|
|
{
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
|
|
}
|
|
|
|
static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
|
|
unsigned long addr, pgoff_t *ilx)
|
|
{
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
pgoff_t index;
|
|
|
|
/*
|
|
* Bias interleave by inode number to distribute better across nodes;
|
|
* but this interface is independent of which page order is used, so
|
|
* supplies only that bias, letting caller apply the offset (adjusted
|
|
* by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
|
|
*/
|
|
*ilx = inode->i_ino;
|
|
index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
|
|
}
|
|
|
|
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
|
|
pgoff_t index, unsigned int order, pgoff_t *ilx)
|
|
{
|
|
struct mempolicy *mpol;
|
|
|
|
/* Bias interleave by inode number to distribute better across nodes */
|
|
*ilx = info->vfs_inode.i_ino + (index >> order);
|
|
|
|
mpol = mpol_shared_policy_lookup(&info->policy, index);
|
|
return mpol ? mpol : get_task_policy(current);
|
|
}
|
|
#else
|
|
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
|
|
pgoff_t index, unsigned int order, pgoff_t *ilx)
|
|
{
|
|
*ilx = 0;
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
int retval = -ENOMEM;
|
|
|
|
/*
|
|
* What serializes the accesses to info->flags?
|
|
* ipc_lock_object() when called from shmctl_do_lock(),
|
|
* no serialization needed when called from shm_destroy().
|
|
*/
|
|
if (lock && !(info->flags & VM_LOCKED)) {
|
|
if (!user_shm_lock(inode->i_size, ucounts))
|
|
goto out_nomem;
|
|
info->flags |= VM_LOCKED;
|
|
mapping_set_unevictable(file->f_mapping);
|
|
}
|
|
if (!lock && (info->flags & VM_LOCKED) && ucounts) {
|
|
user_shm_unlock(inode->i_size, ucounts);
|
|
info->flags &= ~VM_LOCKED;
|
|
mapping_clear_unevictable(file->f_mapping);
|
|
}
|
|
retval = 0;
|
|
|
|
out_nomem:
|
|
return retval;
|
|
}
|
|
|
|
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
int ret;
|
|
|
|
ret = seal_check_write(info->seals, vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
file_accessed(file);
|
|
/* This is anonymous shared memory if it is unlinked at the time of mmap */
|
|
if (inode->i_nlink)
|
|
vma->vm_ops = &shmem_vm_ops;
|
|
else
|
|
vma->vm_ops = &shmem_anon_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_file_open(struct inode *inode, struct file *file)
|
|
{
|
|
file->f_mode |= FMODE_CAN_ODIRECT;
|
|
return generic_file_open(inode, file);
|
|
}
|
|
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
|
|
|
|
/*
|
|
* chattr's fsflags are unrelated to extended attributes,
|
|
* but tmpfs has chosen to enable them under the same config option.
|
|
*/
|
|
static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
|
|
{
|
|
unsigned int i_flags = 0;
|
|
|
|
if (fsflags & FS_NOATIME_FL)
|
|
i_flags |= S_NOATIME;
|
|
if (fsflags & FS_APPEND_FL)
|
|
i_flags |= S_APPEND;
|
|
if (fsflags & FS_IMMUTABLE_FL)
|
|
i_flags |= S_IMMUTABLE;
|
|
/*
|
|
* But FS_NODUMP_FL does not require any action in i_flags.
|
|
*/
|
|
inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
|
|
}
|
|
#else
|
|
static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
|
|
{
|
|
}
|
|
#define shmem_initxattrs NULL
|
|
#endif
|
|
|
|
static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
|
|
{
|
|
return &SHMEM_I(inode)->dir_offsets;
|
|
}
|
|
|
|
static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
|
|
struct super_block *sb,
|
|
struct inode *dir, umode_t mode,
|
|
dev_t dev, unsigned long flags)
|
|
{
|
|
struct inode *inode;
|
|
struct shmem_inode_info *info;
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
|
|
ino_t ino;
|
|
int err;
|
|
|
|
err = shmem_reserve_inode(sb, &ino);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
inode = new_inode(sb);
|
|
if (!inode) {
|
|
shmem_free_inode(sb, 0);
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
inode->i_ino = ino;
|
|
inode_init_owner(idmap, inode, dir, mode);
|
|
inode->i_blocks = 0;
|
|
simple_inode_init_ts(inode);
|
|
inode->i_generation = get_random_u32();
|
|
info = SHMEM_I(inode);
|
|
memset(info, 0, (char *)inode - (char *)info);
|
|
spin_lock_init(&info->lock);
|
|
atomic_set(&info->stop_eviction, 0);
|
|
info->seals = F_SEAL_SEAL;
|
|
info->flags = flags & VM_NORESERVE;
|
|
info->i_crtime = inode_get_mtime(inode);
|
|
info->fsflags = (dir == NULL) ? 0 :
|
|
SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
|
|
if (info->fsflags)
|
|
shmem_set_inode_flags(inode, info->fsflags);
|
|
INIT_LIST_HEAD(&info->shrinklist);
|
|
INIT_LIST_HEAD(&info->swaplist);
|
|
simple_xattrs_init(&info->xattrs);
|
|
cache_no_acl(inode);
|
|
if (sbinfo->noswap)
|
|
mapping_set_unevictable(inode->i_mapping);
|
|
mapping_set_large_folios(inode->i_mapping);
|
|
|
|
switch (mode & S_IFMT) {
|
|
default:
|
|
inode->i_op = &shmem_special_inode_operations;
|
|
init_special_inode(inode, mode, dev);
|
|
break;
|
|
case S_IFREG:
|
|
inode->i_mapping->a_ops = &shmem_aops;
|
|
inode->i_op = &shmem_inode_operations;
|
|
inode->i_fop = &shmem_file_operations;
|
|
mpol_shared_policy_init(&info->policy,
|
|
shmem_get_sbmpol(sbinfo));
|
|
break;
|
|
case S_IFDIR:
|
|
inc_nlink(inode);
|
|
/* Some things misbehave if size == 0 on a directory */
|
|
inode->i_size = 2 * BOGO_DIRENT_SIZE;
|
|
inode->i_op = &shmem_dir_inode_operations;
|
|
inode->i_fop = &simple_offset_dir_operations;
|
|
simple_offset_init(shmem_get_offset_ctx(inode));
|
|
break;
|
|
case S_IFLNK:
|
|
/*
|
|
* Must not load anything in the rbtree,
|
|
* mpol_free_shared_policy will not be called.
|
|
*/
|
|
mpol_shared_policy_init(&info->policy, NULL);
|
|
break;
|
|
}
|
|
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
return inode;
|
|
}
|
|
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
|
|
struct super_block *sb, struct inode *dir,
|
|
umode_t mode, dev_t dev, unsigned long flags)
|
|
{
|
|
int err;
|
|
struct inode *inode;
|
|
|
|
inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
err = dquot_initialize(inode);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = dquot_alloc_inode(inode);
|
|
if (err) {
|
|
dquot_drop(inode);
|
|
goto errout;
|
|
}
|
|
return inode;
|
|
|
|
errout:
|
|
inode->i_flags |= S_NOQUOTA;
|
|
iput(inode);
|
|
return ERR_PTR(err);
|
|
}
|
|
#else
|
|
static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
|
|
struct super_block *sb, struct inode *dir,
|
|
umode_t mode, dev_t dev, unsigned long flags)
|
|
{
|
|
return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
|
|
}
|
|
#endif /* CONFIG_TMPFS_QUOTA */
|
|
|
|
#ifdef CONFIG_USERFAULTFD
|
|
int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
|
|
struct vm_area_struct *dst_vma,
|
|
unsigned long dst_addr,
|
|
unsigned long src_addr,
|
|
uffd_flags_t flags,
|
|
struct folio **foliop)
|
|
{
|
|
struct inode *inode = file_inode(dst_vma->vm_file);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
gfp_t gfp = mapping_gfp_mask(mapping);
|
|
pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
|
|
void *page_kaddr;
|
|
struct folio *folio;
|
|
int ret;
|
|
pgoff_t max_off;
|
|
|
|
if (shmem_inode_acct_blocks(inode, 1)) {
|
|
/*
|
|
* We may have got a page, returned -ENOENT triggering a retry,
|
|
* and now we find ourselves with -ENOMEM. Release the page, to
|
|
* avoid a BUG_ON in our caller.
|
|
*/
|
|
if (unlikely(*foliop)) {
|
|
folio_put(*foliop);
|
|
*foliop = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!*foliop) {
|
|
ret = -ENOMEM;
|
|
folio = shmem_alloc_folio(gfp, 0, info, pgoff);
|
|
if (!folio)
|
|
goto out_unacct_blocks;
|
|
|
|
if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
|
|
page_kaddr = kmap_local_folio(folio, 0);
|
|
/*
|
|
* The read mmap_lock is held here. Despite the
|
|
* mmap_lock being read recursive a deadlock is still
|
|
* possible if a writer has taken a lock. For example:
|
|
*
|
|
* process A thread 1 takes read lock on own mmap_lock
|
|
* process A thread 2 calls mmap, blocks taking write lock
|
|
* process B thread 1 takes page fault, read lock on own mmap lock
|
|
* process B thread 2 calls mmap, blocks taking write lock
|
|
* process A thread 1 blocks taking read lock on process B
|
|
* process B thread 1 blocks taking read lock on process A
|
|
*
|
|
* Disable page faults to prevent potential deadlock
|
|
* and retry the copy outside the mmap_lock.
|
|
*/
|
|
pagefault_disable();
|
|
ret = copy_from_user(page_kaddr,
|
|
(const void __user *)src_addr,
|
|
PAGE_SIZE);
|
|
pagefault_enable();
|
|
kunmap_local(page_kaddr);
|
|
|
|
/* fallback to copy_from_user outside mmap_lock */
|
|
if (unlikely(ret)) {
|
|
*foliop = folio;
|
|
ret = -ENOENT;
|
|
/* don't free the page */
|
|
goto out_unacct_blocks;
|
|
}
|
|
|
|
flush_dcache_folio(folio);
|
|
} else { /* ZEROPAGE */
|
|
clear_user_highpage(&folio->page, dst_addr);
|
|
}
|
|
} else {
|
|
folio = *foliop;
|
|
VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
|
|
*foliop = NULL;
|
|
}
|
|
|
|
VM_BUG_ON(folio_test_locked(folio));
|
|
VM_BUG_ON(folio_test_swapbacked(folio));
|
|
__folio_set_locked(folio);
|
|
__folio_set_swapbacked(folio);
|
|
__folio_mark_uptodate(folio);
|
|
|
|
ret = -EFAULT;
|
|
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
|
|
if (unlikely(pgoff >= max_off))
|
|
goto out_release;
|
|
|
|
ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
|
|
if (ret)
|
|
goto out_release;
|
|
ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
|
|
if (ret)
|
|
goto out_release;
|
|
|
|
ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
|
|
&folio->page, true, flags);
|
|
if (ret)
|
|
goto out_delete_from_cache;
|
|
|
|
shmem_recalc_inode(inode, 1, 0);
|
|
folio_unlock(folio);
|
|
return 0;
|
|
out_delete_from_cache:
|
|
filemap_remove_folio(folio);
|
|
out_release:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
out_unacct_blocks:
|
|
shmem_inode_unacct_blocks(inode, 1);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_USERFAULTFD */
|
|
|
|
#ifdef CONFIG_TMPFS
|
|
static const struct inode_operations shmem_symlink_inode_operations;
|
|
static const struct inode_operations shmem_short_symlink_operations;
|
|
|
|
static int
|
|
shmem_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len,
|
|
struct folio **foliop, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
pgoff_t index = pos >> PAGE_SHIFT;
|
|
struct folio *folio;
|
|
int ret = 0;
|
|
|
|
/* i_rwsem is held by caller */
|
|
if (unlikely(info->seals & (F_SEAL_GROW |
|
|
F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
|
|
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
|
|
return -EPERM;
|
|
if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (folio_test_hwpoison(folio) ||
|
|
(folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return -EIO;
|
|
}
|
|
|
|
*foliop = folio;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
shmem_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct folio *folio, void *fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (pos + copied > inode->i_size)
|
|
i_size_write(inode, pos + copied);
|
|
|
|
if (!folio_test_uptodate(folio)) {
|
|
if (copied < folio_size(folio)) {
|
|
size_t from = offset_in_folio(folio, pos);
|
|
folio_zero_segments(folio, 0, from,
|
|
from + copied, folio_size(folio));
|
|
}
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
folio_mark_dirty(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
return copied;
|
|
}
|
|
|
|
static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
pgoff_t index;
|
|
unsigned long offset;
|
|
int error = 0;
|
|
ssize_t retval = 0;
|
|
loff_t *ppos = &iocb->ki_pos;
|
|
|
|
index = *ppos >> PAGE_SHIFT;
|
|
offset = *ppos & ~PAGE_MASK;
|
|
|
|
for (;;) {
|
|
struct folio *folio = NULL;
|
|
struct page *page = NULL;
|
|
pgoff_t end_index;
|
|
unsigned long nr, ret;
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
end_index = i_size >> PAGE_SHIFT;
|
|
if (index > end_index)
|
|
break;
|
|
if (index == end_index) {
|
|
nr = i_size & ~PAGE_MASK;
|
|
if (nr <= offset)
|
|
break;
|
|
}
|
|
|
|
error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
|
|
if (error) {
|
|
if (error == -EINVAL)
|
|
error = 0;
|
|
break;
|
|
}
|
|
if (folio) {
|
|
folio_unlock(folio);
|
|
|
|
page = folio_file_page(folio, index);
|
|
if (PageHWPoison(page)) {
|
|
folio_put(folio);
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We must evaluate after, since reads (unlike writes)
|
|
* are called without i_rwsem protection against truncate
|
|
*/
|
|
nr = PAGE_SIZE;
|
|
i_size = i_size_read(inode);
|
|
end_index = i_size >> PAGE_SHIFT;
|
|
if (index == end_index) {
|
|
nr = i_size & ~PAGE_MASK;
|
|
if (nr <= offset) {
|
|
if (folio)
|
|
folio_put(folio);
|
|
break;
|
|
}
|
|
}
|
|
nr -= offset;
|
|
|
|
if (folio) {
|
|
/*
|
|
* If users can be writing to this page using arbitrary
|
|
* virtual addresses, take care about potential aliasing
|
|
* before reading the page on the kernel side.
|
|
*/
|
|
if (mapping_writably_mapped(mapping))
|
|
flush_dcache_page(page);
|
|
/*
|
|
* Mark the page accessed if we read the beginning.
|
|
*/
|
|
if (!offset)
|
|
folio_mark_accessed(folio);
|
|
/*
|
|
* Ok, we have the page, and it's up-to-date, so
|
|
* now we can copy it to user space...
|
|
*/
|
|
ret = copy_page_to_iter(page, offset, nr, to);
|
|
folio_put(folio);
|
|
|
|
} else if (user_backed_iter(to)) {
|
|
/*
|
|
* Copy to user tends to be so well optimized, but
|
|
* clear_user() not so much, that it is noticeably
|
|
* faster to copy the zero page instead of clearing.
|
|
*/
|
|
ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
|
|
} else {
|
|
/*
|
|
* But submitting the same page twice in a row to
|
|
* splice() - or others? - can result in confusion:
|
|
* so don't attempt that optimization on pipes etc.
|
|
*/
|
|
ret = iov_iter_zero(nr, to);
|
|
}
|
|
|
|
retval += ret;
|
|
offset += ret;
|
|
index += offset >> PAGE_SHIFT;
|
|
offset &= ~PAGE_MASK;
|
|
|
|
if (!iov_iter_count(to))
|
|
break;
|
|
if (ret < nr) {
|
|
error = -EFAULT;
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
|
|
file_accessed(file);
|
|
return retval ? retval : error;
|
|
}
|
|
|
|
static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
ssize_t ret;
|
|
|
|
inode_lock(inode);
|
|
ret = generic_write_checks(iocb, from);
|
|
if (ret <= 0)
|
|
goto unlock;
|
|
ret = file_remove_privs(file);
|
|
if (ret)
|
|
goto unlock;
|
|
ret = file_update_time(file);
|
|
if (ret)
|
|
goto unlock;
|
|
ret = generic_perform_write(iocb, from);
|
|
unlock:
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
}
|
|
|
|
static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static const struct pipe_buf_operations zero_pipe_buf_ops = {
|
|
.release = zero_pipe_buf_release,
|
|
.try_steal = zero_pipe_buf_try_steal,
|
|
.get = zero_pipe_buf_get,
|
|
};
|
|
|
|
static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
|
|
loff_t fpos, size_t size)
|
|
{
|
|
size_t offset = fpos & ~PAGE_MASK;
|
|
|
|
size = min_t(size_t, size, PAGE_SIZE - offset);
|
|
|
|
if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
|
|
struct pipe_buffer *buf = pipe_head_buf(pipe);
|
|
|
|
*buf = (struct pipe_buffer) {
|
|
.ops = &zero_pipe_buf_ops,
|
|
.page = ZERO_PAGE(0),
|
|
.offset = offset,
|
|
.len = size,
|
|
};
|
|
pipe->head++;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
struct inode *inode = file_inode(in);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct folio *folio = NULL;
|
|
size_t total_spliced = 0, used, npages, n, part;
|
|
loff_t isize;
|
|
int error = 0;
|
|
|
|
/* Work out how much data we can actually add into the pipe */
|
|
used = pipe_occupancy(pipe->head, pipe->tail);
|
|
npages = max_t(ssize_t, pipe->max_usage - used, 0);
|
|
len = min_t(size_t, len, npages * PAGE_SIZE);
|
|
|
|
do {
|
|
if (*ppos >= i_size_read(inode))
|
|
break;
|
|
|
|
error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
|
|
SGP_READ);
|
|
if (error) {
|
|
if (error == -EINVAL)
|
|
error = 0;
|
|
break;
|
|
}
|
|
if (folio) {
|
|
folio_unlock(folio);
|
|
|
|
if (folio_test_hwpoison(folio) ||
|
|
(folio_test_large(folio) &&
|
|
folio_test_has_hwpoisoned(folio))) {
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* i_size must be checked after we know the pages are Uptodate.
|
|
*
|
|
* Checking i_size after the check allows us to calculate
|
|
* the correct value for "nr", which means the zero-filled
|
|
* part of the page is not copied back to userspace (unless
|
|
* another truncate extends the file - this is desired though).
|
|
*/
|
|
isize = i_size_read(inode);
|
|
if (unlikely(*ppos >= isize))
|
|
break;
|
|
part = min_t(loff_t, isize - *ppos, len);
|
|
|
|
if (folio) {
|
|
/*
|
|
* If users can be writing to this page using arbitrary
|
|
* virtual addresses, take care about potential aliasing
|
|
* before reading the page on the kernel side.
|
|
*/
|
|
if (mapping_writably_mapped(mapping))
|
|
flush_dcache_folio(folio);
|
|
folio_mark_accessed(folio);
|
|
/*
|
|
* Ok, we have the page, and it's up-to-date, so we can
|
|
* now splice it into the pipe.
|
|
*/
|
|
n = splice_folio_into_pipe(pipe, folio, *ppos, part);
|
|
folio_put(folio);
|
|
folio = NULL;
|
|
} else {
|
|
n = splice_zeropage_into_pipe(pipe, *ppos, part);
|
|
}
|
|
|
|
if (!n)
|
|
break;
|
|
len -= n;
|
|
total_spliced += n;
|
|
*ppos += n;
|
|
in->f_ra.prev_pos = *ppos;
|
|
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
|
|
break;
|
|
|
|
cond_resched();
|
|
} while (len);
|
|
|
|
if (folio)
|
|
folio_put(folio);
|
|
|
|
file_accessed(in);
|
|
return total_spliced ? total_spliced : error;
|
|
}
|
|
|
|
static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (whence != SEEK_DATA && whence != SEEK_HOLE)
|
|
return generic_file_llseek_size(file, offset, whence,
|
|
MAX_LFS_FILESIZE, i_size_read(inode));
|
|
if (offset < 0)
|
|
return -ENXIO;
|
|
|
|
inode_lock(inode);
|
|
/* We're holding i_rwsem so we can access i_size directly */
|
|
offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
|
|
if (offset >= 0)
|
|
offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
|
|
inode_unlock(inode);
|
|
return offset;
|
|
}
|
|
|
|
static long shmem_fallocate(struct file *file, int mode, loff_t offset,
|
|
loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_falloc shmem_falloc;
|
|
pgoff_t start, index, end, undo_fallocend;
|
|
int error;
|
|
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return -EOPNOTSUPP;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE) {
|
|
struct address_space *mapping = file->f_mapping;
|
|
loff_t unmap_start = round_up(offset, PAGE_SIZE);
|
|
loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
|
|
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
|
|
|
|
/* protected by i_rwsem */
|
|
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
shmem_falloc.waitq = &shmem_falloc_waitq;
|
|
shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
|
|
shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_private = &shmem_falloc;
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
if ((u64)unmap_end > (u64)unmap_start)
|
|
unmap_mapping_range(mapping, unmap_start,
|
|
1 + unmap_end - unmap_start, 0);
|
|
shmem_truncate_range(inode, offset, offset + len - 1);
|
|
/* No need to unmap again: hole-punching leaves COWed pages */
|
|
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_private = NULL;
|
|
wake_up_all(&shmem_falloc_waitq);
|
|
WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
|
|
spin_unlock(&inode->i_lock);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
|
|
error = inode_newsize_ok(inode, offset + len);
|
|
if (error)
|
|
goto out;
|
|
|
|
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
start = offset >> PAGE_SHIFT;
|
|
end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
/* Try to avoid a swapstorm if len is impossible to satisfy */
|
|
if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
|
|
error = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
shmem_falloc.waitq = NULL;
|
|
shmem_falloc.start = start;
|
|
shmem_falloc.next = start;
|
|
shmem_falloc.nr_falloced = 0;
|
|
shmem_falloc.nr_unswapped = 0;
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_private = &shmem_falloc;
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
/*
|
|
* info->fallocend is only relevant when huge pages might be
|
|
* involved: to prevent split_huge_page() freeing fallocated
|
|
* pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
|
|
*/
|
|
undo_fallocend = info->fallocend;
|
|
if (info->fallocend < end)
|
|
info->fallocend = end;
|
|
|
|
for (index = start; index < end; ) {
|
|
struct folio *folio;
|
|
|
|
/*
|
|
* Check for fatal signal so that we abort early in OOM
|
|
* situations. We don't want to abort in case of non-fatal
|
|
* signals as large fallocate can take noticeable time and
|
|
* e.g. periodic timers may result in fallocate constantly
|
|
* restarting.
|
|
*/
|
|
if (fatal_signal_pending(current))
|
|
error = -EINTR;
|
|
else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
|
|
error = -ENOMEM;
|
|
else
|
|
error = shmem_get_folio(inode, index, offset + len,
|
|
&folio, SGP_FALLOC);
|
|
if (error) {
|
|
info->fallocend = undo_fallocend;
|
|
/* Remove the !uptodate folios we added */
|
|
if (index > start) {
|
|
shmem_undo_range(inode,
|
|
(loff_t)start << PAGE_SHIFT,
|
|
((loff_t)index << PAGE_SHIFT) - 1, true);
|
|
}
|
|
goto undone;
|
|
}
|
|
|
|
/*
|
|
* Here is a more important optimization than it appears:
|
|
* a second SGP_FALLOC on the same large folio will clear it,
|
|
* making it uptodate and un-undoable if we fail later.
|
|
*/
|
|
index = folio_next_index(folio);
|
|
/* Beware 32-bit wraparound */
|
|
if (!index)
|
|
index--;
|
|
|
|
/*
|
|
* Inform shmem_writepage() how far we have reached.
|
|
* No need for lock or barrier: we have the page lock.
|
|
*/
|
|
if (!folio_test_uptodate(folio))
|
|
shmem_falloc.nr_falloced += index - shmem_falloc.next;
|
|
shmem_falloc.next = index;
|
|
|
|
/*
|
|
* If !uptodate, leave it that way so that freeable folios
|
|
* can be recognized if we need to rollback on error later.
|
|
* But mark it dirty so that memory pressure will swap rather
|
|
* than free the folios we are allocating (and SGP_CACHE folios
|
|
* might still be clean: we now need to mark those dirty too).
|
|
*/
|
|
folio_mark_dirty(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
cond_resched();
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
|
|
i_size_write(inode, offset + len);
|
|
undone:
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_private = NULL;
|
|
spin_unlock(&inode->i_lock);
|
|
out:
|
|
if (!error)
|
|
file_modified(file);
|
|
inode_unlock(inode);
|
|
return error;
|
|
}
|
|
|
|
static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
|
|
|
|
buf->f_type = TMPFS_MAGIC;
|
|
buf->f_bsize = PAGE_SIZE;
|
|
buf->f_namelen = NAME_MAX;
|
|
if (sbinfo->max_blocks) {
|
|
buf->f_blocks = sbinfo->max_blocks;
|
|
buf->f_bavail =
|
|
buf->f_bfree = sbinfo->max_blocks -
|
|
percpu_counter_sum(&sbinfo->used_blocks);
|
|
}
|
|
if (sbinfo->max_inodes) {
|
|
buf->f_files = sbinfo->max_inodes;
|
|
buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
|
|
}
|
|
/* else leave those fields 0 like simple_statfs */
|
|
|
|
buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* File creation. Allocate an inode, and we're done..
|
|
*/
|
|
static int
|
|
shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode, dev_t dev)
|
|
{
|
|
struct inode *inode;
|
|
int error;
|
|
|
|
inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
|
|
error = simple_acl_create(dir, inode);
|
|
if (error)
|
|
goto out_iput;
|
|
error = security_inode_init_security(inode, dir, &dentry->d_name,
|
|
shmem_initxattrs, NULL);
|
|
if (error && error != -EOPNOTSUPP)
|
|
goto out_iput;
|
|
|
|
error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
|
|
if (error)
|
|
goto out_iput;
|
|
|
|
dir->i_size += BOGO_DIRENT_SIZE;
|
|
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
|
|
inode_inc_iversion(dir);
|
|
d_instantiate(dentry, inode);
|
|
dget(dentry); /* Extra count - pin the dentry in core */
|
|
return error;
|
|
|
|
out_iput:
|
|
iput(inode);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct file *file, umode_t mode)
|
|
{
|
|
struct inode *inode;
|
|
int error;
|
|
|
|
inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
|
|
if (IS_ERR(inode)) {
|
|
error = PTR_ERR(inode);
|
|
goto err_out;
|
|
}
|
|
error = security_inode_init_security(inode, dir, NULL,
|
|
shmem_initxattrs, NULL);
|
|
if (error && error != -EOPNOTSUPP)
|
|
goto out_iput;
|
|
error = simple_acl_create(dir, inode);
|
|
if (error)
|
|
goto out_iput;
|
|
d_tmpfile(file, inode);
|
|
|
|
err_out:
|
|
return finish_open_simple(file, error);
|
|
out_iput:
|
|
iput(inode);
|
|
return error;
|
|
}
|
|
|
|
static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode)
|
|
{
|
|
int error;
|
|
|
|
error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
|
|
if (error)
|
|
return error;
|
|
inc_nlink(dir);
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode, bool excl)
|
|
{
|
|
return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
|
|
}
|
|
|
|
/*
|
|
* Link a file..
|
|
*/
|
|
static int shmem_link(struct dentry *old_dentry, struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(old_dentry);
|
|
int ret = 0;
|
|
|
|
/*
|
|
* No ordinary (disk based) filesystem counts links as inodes;
|
|
* but each new link needs a new dentry, pinning lowmem, and
|
|
* tmpfs dentries cannot be pruned until they are unlinked.
|
|
* But if an O_TMPFILE file is linked into the tmpfs, the
|
|
* first link must skip that, to get the accounting right.
|
|
*/
|
|
if (inode->i_nlink) {
|
|
ret = shmem_reserve_inode(inode->i_sb, NULL);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
|
|
if (ret) {
|
|
if (inode->i_nlink)
|
|
shmem_free_inode(inode->i_sb, 0);
|
|
goto out;
|
|
}
|
|
|
|
dir->i_size += BOGO_DIRENT_SIZE;
|
|
inode_set_mtime_to_ts(dir,
|
|
inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
|
|
inode_inc_iversion(dir);
|
|
inc_nlink(inode);
|
|
ihold(inode); /* New dentry reference */
|
|
dget(dentry); /* Extra pinning count for the created dentry */
|
|
d_instantiate(dentry, inode);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int shmem_unlink(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
|
|
shmem_free_inode(inode->i_sb, 0);
|
|
|
|
simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
|
|
|
|
dir->i_size -= BOGO_DIRENT_SIZE;
|
|
inode_set_mtime_to_ts(dir,
|
|
inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
|
|
inode_inc_iversion(dir);
|
|
drop_nlink(inode);
|
|
dput(dentry); /* Undo the count from "create" - does all the work */
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
if (!simple_offset_empty(dentry))
|
|
return -ENOTEMPTY;
|
|
|
|
drop_nlink(d_inode(dentry));
|
|
drop_nlink(dir);
|
|
return shmem_unlink(dir, dentry);
|
|
}
|
|
|
|
static int shmem_whiteout(struct mnt_idmap *idmap,
|
|
struct inode *old_dir, struct dentry *old_dentry)
|
|
{
|
|
struct dentry *whiteout;
|
|
int error;
|
|
|
|
whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
|
|
if (!whiteout)
|
|
return -ENOMEM;
|
|
|
|
error = shmem_mknod(idmap, old_dir, whiteout,
|
|
S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
|
|
dput(whiteout);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Cheat and hash the whiteout while the old dentry is still in
|
|
* place, instead of playing games with FS_RENAME_DOES_D_MOVE.
|
|
*
|
|
* d_lookup() will consistently find one of them at this point,
|
|
* not sure which one, but that isn't even important.
|
|
*/
|
|
d_rehash(whiteout);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The VFS layer already does all the dentry stuff for rename,
|
|
* we just have to decrement the usage count for the target if
|
|
* it exists so that the VFS layer correctly free's it when it
|
|
* gets overwritten.
|
|
*/
|
|
static int shmem_rename2(struct mnt_idmap *idmap,
|
|
struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *inode = d_inode(old_dentry);
|
|
int they_are_dirs = S_ISDIR(inode->i_mode);
|
|
int error;
|
|
|
|
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
|
|
return -EINVAL;
|
|
|
|
if (flags & RENAME_EXCHANGE)
|
|
return simple_offset_rename_exchange(old_dir, old_dentry,
|
|
new_dir, new_dentry);
|
|
|
|
if (!simple_offset_empty(new_dentry))
|
|
return -ENOTEMPTY;
|
|
|
|
if (flags & RENAME_WHITEOUT) {
|
|
error = shmem_whiteout(idmap, old_dir, old_dentry);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
|
|
if (error)
|
|
return error;
|
|
|
|
if (d_really_is_positive(new_dentry)) {
|
|
(void) shmem_unlink(new_dir, new_dentry);
|
|
if (they_are_dirs) {
|
|
drop_nlink(d_inode(new_dentry));
|
|
drop_nlink(old_dir);
|
|
}
|
|
} else if (they_are_dirs) {
|
|
drop_nlink(old_dir);
|
|
inc_nlink(new_dir);
|
|
}
|
|
|
|
old_dir->i_size -= BOGO_DIRENT_SIZE;
|
|
new_dir->i_size += BOGO_DIRENT_SIZE;
|
|
simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
|
|
inode_inc_iversion(old_dir);
|
|
inode_inc_iversion(new_dir);
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, const char *symname)
|
|
{
|
|
int error;
|
|
int len;
|
|
struct inode *inode;
|
|
struct folio *folio;
|
|
|
|
len = strlen(symname) + 1;
|
|
if (len > PAGE_SIZE)
|
|
return -ENAMETOOLONG;
|
|
|
|
inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
|
|
VM_NORESERVE);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
|
|
error = security_inode_init_security(inode, dir, &dentry->d_name,
|
|
shmem_initxattrs, NULL);
|
|
if (error && error != -EOPNOTSUPP)
|
|
goto out_iput;
|
|
|
|
error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
|
|
if (error)
|
|
goto out_iput;
|
|
|
|
inode->i_size = len-1;
|
|
if (len <= SHORT_SYMLINK_LEN) {
|
|
inode->i_link = kmemdup(symname, len, GFP_KERNEL);
|
|
if (!inode->i_link) {
|
|
error = -ENOMEM;
|
|
goto out_remove_offset;
|
|
}
|
|
inode->i_op = &shmem_short_symlink_operations;
|
|
} else {
|
|
inode_nohighmem(inode);
|
|
inode->i_mapping->a_ops = &shmem_aops;
|
|
error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
|
|
if (error)
|
|
goto out_remove_offset;
|
|
inode->i_op = &shmem_symlink_inode_operations;
|
|
memcpy(folio_address(folio), symname, len);
|
|
folio_mark_uptodate(folio);
|
|
folio_mark_dirty(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
dir->i_size += BOGO_DIRENT_SIZE;
|
|
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
|
|
inode_inc_iversion(dir);
|
|
d_instantiate(dentry, inode);
|
|
dget(dentry);
|
|
return 0;
|
|
|
|
out_remove_offset:
|
|
simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
|
|
out_iput:
|
|
iput(inode);
|
|
return error;
|
|
}
|
|
|
|
static void shmem_put_link(void *arg)
|
|
{
|
|
folio_mark_accessed(arg);
|
|
folio_put(arg);
|
|
}
|
|
|
|
static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
|
|
struct delayed_call *done)
|
|
{
|
|
struct folio *folio = NULL;
|
|
int error;
|
|
|
|
if (!dentry) {
|
|
folio = filemap_get_folio(inode->i_mapping, 0);
|
|
if (IS_ERR(folio))
|
|
return ERR_PTR(-ECHILD);
|
|
if (PageHWPoison(folio_page(folio, 0)) ||
|
|
!folio_test_uptodate(folio)) {
|
|
folio_put(folio);
|
|
return ERR_PTR(-ECHILD);
|
|
}
|
|
} else {
|
|
error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
|
|
if (error)
|
|
return ERR_PTR(error);
|
|
if (!folio)
|
|
return ERR_PTR(-ECHILD);
|
|
if (PageHWPoison(folio_page(folio, 0))) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return ERR_PTR(-ECHILD);
|
|
}
|
|
folio_unlock(folio);
|
|
}
|
|
set_delayed_call(done, shmem_put_link, folio);
|
|
return folio_address(folio);
|
|
}
|
|
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
|
|
static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
|
|
|
|
fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_fileattr_set(struct mnt_idmap *idmap,
|
|
struct dentry *dentry, struct fileattr *fa)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
|
|
if (fileattr_has_fsx(fa))
|
|
return -EOPNOTSUPP;
|
|
if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
|
|
return -EOPNOTSUPP;
|
|
|
|
info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
|
|
(fa->flags & SHMEM_FL_USER_MODIFIABLE);
|
|
|
|
shmem_set_inode_flags(inode, info->fsflags);
|
|
inode_set_ctime_current(inode);
|
|
inode_inc_iversion(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Superblocks without xattr inode operations may get some security.* xattr
|
|
* support from the LSM "for free". As soon as we have any other xattrs
|
|
* like ACLs, we also need to implement the security.* handlers at
|
|
* filesystem level, though.
|
|
*/
|
|
|
|
/*
|
|
* Callback for security_inode_init_security() for acquiring xattrs.
|
|
*/
|
|
static int shmem_initxattrs(struct inode *inode,
|
|
const struct xattr *xattr_array, void *fs_info)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
const struct xattr *xattr;
|
|
struct simple_xattr *new_xattr;
|
|
size_t ispace = 0;
|
|
size_t len;
|
|
|
|
if (sbinfo->max_inodes) {
|
|
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
|
|
ispace += simple_xattr_space(xattr->name,
|
|
xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
|
|
}
|
|
if (ispace) {
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
if (sbinfo->free_ispace < ispace)
|
|
ispace = 0;
|
|
else
|
|
sbinfo->free_ispace -= ispace;
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
if (!ispace)
|
|
return -ENOSPC;
|
|
}
|
|
}
|
|
|
|
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
|
|
new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
|
|
if (!new_xattr)
|
|
break;
|
|
|
|
len = strlen(xattr->name) + 1;
|
|
new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!new_xattr->name) {
|
|
kvfree(new_xattr);
|
|
break;
|
|
}
|
|
|
|
memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
|
|
XATTR_SECURITY_PREFIX_LEN);
|
|
memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
|
|
xattr->name, len);
|
|
|
|
simple_xattr_add(&info->xattrs, new_xattr);
|
|
}
|
|
|
|
if (xattr->name != NULL) {
|
|
if (ispace) {
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
sbinfo->free_ispace += ispace;
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
simple_xattrs_free(&info->xattrs, NULL);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int shmem_xattr_handler_get(const struct xattr_handler *handler,
|
|
struct dentry *unused, struct inode *inode,
|
|
const char *name, void *buffer, size_t size)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
|
|
name = xattr_full_name(handler, name);
|
|
return simple_xattr_get(&info->xattrs, name, buffer, size);
|
|
}
|
|
|
|
static int shmem_xattr_handler_set(const struct xattr_handler *handler,
|
|
struct mnt_idmap *idmap,
|
|
struct dentry *unused, struct inode *inode,
|
|
const char *name, const void *value,
|
|
size_t size, int flags)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(inode);
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
|
|
struct simple_xattr *old_xattr;
|
|
size_t ispace = 0;
|
|
|
|
name = xattr_full_name(handler, name);
|
|
if (value && sbinfo->max_inodes) {
|
|
ispace = simple_xattr_space(name, size);
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
if (sbinfo->free_ispace < ispace)
|
|
ispace = 0;
|
|
else
|
|
sbinfo->free_ispace -= ispace;
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
if (!ispace)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
|
|
if (!IS_ERR(old_xattr)) {
|
|
ispace = 0;
|
|
if (old_xattr && sbinfo->max_inodes)
|
|
ispace = simple_xattr_space(old_xattr->name,
|
|
old_xattr->size);
|
|
simple_xattr_free(old_xattr);
|
|
old_xattr = NULL;
|
|
inode_set_ctime_current(inode);
|
|
inode_inc_iversion(inode);
|
|
}
|
|
if (ispace) {
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
sbinfo->free_ispace += ispace;
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
return PTR_ERR(old_xattr);
|
|
}
|
|
|
|
static const struct xattr_handler shmem_security_xattr_handler = {
|
|
.prefix = XATTR_SECURITY_PREFIX,
|
|
.get = shmem_xattr_handler_get,
|
|
.set = shmem_xattr_handler_set,
|
|
};
|
|
|
|
static const struct xattr_handler shmem_trusted_xattr_handler = {
|
|
.prefix = XATTR_TRUSTED_PREFIX,
|
|
.get = shmem_xattr_handler_get,
|
|
.set = shmem_xattr_handler_set,
|
|
};
|
|
|
|
static const struct xattr_handler shmem_user_xattr_handler = {
|
|
.prefix = XATTR_USER_PREFIX,
|
|
.get = shmem_xattr_handler_get,
|
|
.set = shmem_xattr_handler_set,
|
|
};
|
|
|
|
static const struct xattr_handler * const shmem_xattr_handlers[] = {
|
|
&shmem_security_xattr_handler,
|
|
&shmem_trusted_xattr_handler,
|
|
&shmem_user_xattr_handler,
|
|
NULL
|
|
};
|
|
|
|
static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
|
|
{
|
|
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
|
|
return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
|
|
}
|
|
#endif /* CONFIG_TMPFS_XATTR */
|
|
|
|
static const struct inode_operations shmem_short_symlink_operations = {
|
|
.getattr = shmem_getattr,
|
|
.setattr = shmem_setattr,
|
|
.get_link = simple_get_link,
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
.listxattr = shmem_listxattr,
|
|
#endif
|
|
};
|
|
|
|
static const struct inode_operations shmem_symlink_inode_operations = {
|
|
.getattr = shmem_getattr,
|
|
.setattr = shmem_setattr,
|
|
.get_link = shmem_get_link,
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
.listxattr = shmem_listxattr,
|
|
#endif
|
|
};
|
|
|
|
static struct dentry *shmem_get_parent(struct dentry *child)
|
|
{
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
|
|
static int shmem_match(struct inode *ino, void *vfh)
|
|
{
|
|
__u32 *fh = vfh;
|
|
__u64 inum = fh[2];
|
|
inum = (inum << 32) | fh[1];
|
|
return ino->i_ino == inum && fh[0] == ino->i_generation;
|
|
}
|
|
|
|
/* Find any alias of inode, but prefer a hashed alias */
|
|
static struct dentry *shmem_find_alias(struct inode *inode)
|
|
{
|
|
struct dentry *alias = d_find_alias(inode);
|
|
|
|
return alias ?: d_find_any_alias(inode);
|
|
}
|
|
|
|
static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
|
|
struct fid *fid, int fh_len, int fh_type)
|
|
{
|
|
struct inode *inode;
|
|
struct dentry *dentry = NULL;
|
|
u64 inum;
|
|
|
|
if (fh_len < 3)
|
|
return NULL;
|
|
|
|
inum = fid->raw[2];
|
|
inum = (inum << 32) | fid->raw[1];
|
|
|
|
inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
|
|
shmem_match, fid->raw);
|
|
if (inode) {
|
|
dentry = shmem_find_alias(inode);
|
|
iput(inode);
|
|
}
|
|
|
|
return dentry;
|
|
}
|
|
|
|
static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
|
|
struct inode *parent)
|
|
{
|
|
if (*len < 3) {
|
|
*len = 3;
|
|
return FILEID_INVALID;
|
|
}
|
|
|
|
if (inode_unhashed(inode)) {
|
|
/* Unfortunately insert_inode_hash is not idempotent,
|
|
* so as we hash inodes here rather than at creation
|
|
* time, we need a lock to ensure we only try
|
|
* to do it once
|
|
*/
|
|
static DEFINE_SPINLOCK(lock);
|
|
spin_lock(&lock);
|
|
if (inode_unhashed(inode))
|
|
__insert_inode_hash(inode,
|
|
inode->i_ino + inode->i_generation);
|
|
spin_unlock(&lock);
|
|
}
|
|
|
|
fh[0] = inode->i_generation;
|
|
fh[1] = inode->i_ino;
|
|
fh[2] = ((__u64)inode->i_ino) >> 32;
|
|
|
|
*len = 3;
|
|
return 1;
|
|
}
|
|
|
|
static const struct export_operations shmem_export_ops = {
|
|
.get_parent = shmem_get_parent,
|
|
.encode_fh = shmem_encode_fh,
|
|
.fh_to_dentry = shmem_fh_to_dentry,
|
|
};
|
|
|
|
enum shmem_param {
|
|
Opt_gid,
|
|
Opt_huge,
|
|
Opt_mode,
|
|
Opt_mpol,
|
|
Opt_nr_blocks,
|
|
Opt_nr_inodes,
|
|
Opt_size,
|
|
Opt_uid,
|
|
Opt_inode32,
|
|
Opt_inode64,
|
|
Opt_noswap,
|
|
Opt_quota,
|
|
Opt_usrquota,
|
|
Opt_grpquota,
|
|
Opt_usrquota_block_hardlimit,
|
|
Opt_usrquota_inode_hardlimit,
|
|
Opt_grpquota_block_hardlimit,
|
|
Opt_grpquota_inode_hardlimit,
|
|
};
|
|
|
|
static const struct constant_table shmem_param_enums_huge[] = {
|
|
{"never", SHMEM_HUGE_NEVER },
|
|
{"always", SHMEM_HUGE_ALWAYS },
|
|
{"within_size", SHMEM_HUGE_WITHIN_SIZE },
|
|
{"advise", SHMEM_HUGE_ADVISE },
|
|
{}
|
|
};
|
|
|
|
const struct fs_parameter_spec shmem_fs_parameters[] = {
|
|
fsparam_gid ("gid", Opt_gid),
|
|
fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
|
|
fsparam_u32oct("mode", Opt_mode),
|
|
fsparam_string("mpol", Opt_mpol),
|
|
fsparam_string("nr_blocks", Opt_nr_blocks),
|
|
fsparam_string("nr_inodes", Opt_nr_inodes),
|
|
fsparam_string("size", Opt_size),
|
|
fsparam_uid ("uid", Opt_uid),
|
|
fsparam_flag ("inode32", Opt_inode32),
|
|
fsparam_flag ("inode64", Opt_inode64),
|
|
fsparam_flag ("noswap", Opt_noswap),
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
fsparam_flag ("quota", Opt_quota),
|
|
fsparam_flag ("usrquota", Opt_usrquota),
|
|
fsparam_flag ("grpquota", Opt_grpquota),
|
|
fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
|
|
fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
|
|
fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
|
|
fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
|
|
#endif
|
|
{}
|
|
};
|
|
|
|
static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
|
|
{
|
|
struct shmem_options *ctx = fc->fs_private;
|
|
struct fs_parse_result result;
|
|
unsigned long long size;
|
|
char *rest;
|
|
int opt;
|
|
kuid_t kuid;
|
|
kgid_t kgid;
|
|
|
|
opt = fs_parse(fc, shmem_fs_parameters, param, &result);
|
|
if (opt < 0)
|
|
return opt;
|
|
|
|
switch (opt) {
|
|
case Opt_size:
|
|
size = memparse(param->string, &rest);
|
|
if (*rest == '%') {
|
|
size <<= PAGE_SHIFT;
|
|
size *= totalram_pages();
|
|
do_div(size, 100);
|
|
rest++;
|
|
}
|
|
if (*rest)
|
|
goto bad_value;
|
|
ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
|
|
ctx->seen |= SHMEM_SEEN_BLOCKS;
|
|
break;
|
|
case Opt_nr_blocks:
|
|
ctx->blocks = memparse(param->string, &rest);
|
|
if (*rest || ctx->blocks > LONG_MAX)
|
|
goto bad_value;
|
|
ctx->seen |= SHMEM_SEEN_BLOCKS;
|
|
break;
|
|
case Opt_nr_inodes:
|
|
ctx->inodes = memparse(param->string, &rest);
|
|
if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
|
|
goto bad_value;
|
|
ctx->seen |= SHMEM_SEEN_INODES;
|
|
break;
|
|
case Opt_mode:
|
|
ctx->mode = result.uint_32 & 07777;
|
|
break;
|
|
case Opt_uid:
|
|
kuid = result.uid;
|
|
|
|
/*
|
|
* The requested uid must be representable in the
|
|
* filesystem's idmapping.
|
|
*/
|
|
if (!kuid_has_mapping(fc->user_ns, kuid))
|
|
goto bad_value;
|
|
|
|
ctx->uid = kuid;
|
|
break;
|
|
case Opt_gid:
|
|
kgid = result.gid;
|
|
|
|
/*
|
|
* The requested gid must be representable in the
|
|
* filesystem's idmapping.
|
|
*/
|
|
if (!kgid_has_mapping(fc->user_ns, kgid))
|
|
goto bad_value;
|
|
|
|
ctx->gid = kgid;
|
|
break;
|
|
case Opt_huge:
|
|
ctx->huge = result.uint_32;
|
|
if (ctx->huge != SHMEM_HUGE_NEVER &&
|
|
!(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
|
|
has_transparent_hugepage()))
|
|
goto unsupported_parameter;
|
|
ctx->seen |= SHMEM_SEEN_HUGE;
|
|
break;
|
|
case Opt_mpol:
|
|
if (IS_ENABLED(CONFIG_NUMA)) {
|
|
mpol_put(ctx->mpol);
|
|
ctx->mpol = NULL;
|
|
if (mpol_parse_str(param->string, &ctx->mpol))
|
|
goto bad_value;
|
|
break;
|
|
}
|
|
goto unsupported_parameter;
|
|
case Opt_inode32:
|
|
ctx->full_inums = false;
|
|
ctx->seen |= SHMEM_SEEN_INUMS;
|
|
break;
|
|
case Opt_inode64:
|
|
if (sizeof(ino_t) < 8) {
|
|
return invalfc(fc,
|
|
"Cannot use inode64 with <64bit inums in kernel\n");
|
|
}
|
|
ctx->full_inums = true;
|
|
ctx->seen |= SHMEM_SEEN_INUMS;
|
|
break;
|
|
case Opt_noswap:
|
|
if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
|
|
return invalfc(fc,
|
|
"Turning off swap in unprivileged tmpfs mounts unsupported");
|
|
}
|
|
ctx->noswap = true;
|
|
ctx->seen |= SHMEM_SEEN_NOSWAP;
|
|
break;
|
|
case Opt_quota:
|
|
if (fc->user_ns != &init_user_ns)
|
|
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
|
|
ctx->seen |= SHMEM_SEEN_QUOTA;
|
|
ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
|
|
break;
|
|
case Opt_usrquota:
|
|
if (fc->user_ns != &init_user_ns)
|
|
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
|
|
ctx->seen |= SHMEM_SEEN_QUOTA;
|
|
ctx->quota_types |= QTYPE_MASK_USR;
|
|
break;
|
|
case Opt_grpquota:
|
|
if (fc->user_ns != &init_user_ns)
|
|
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
|
|
ctx->seen |= SHMEM_SEEN_QUOTA;
|
|
ctx->quota_types |= QTYPE_MASK_GRP;
|
|
break;
|
|
case Opt_usrquota_block_hardlimit:
|
|
size = memparse(param->string, &rest);
|
|
if (*rest || !size)
|
|
goto bad_value;
|
|
if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
|
|
return invalfc(fc,
|
|
"User quota block hardlimit too large.");
|
|
ctx->qlimits.usrquota_bhardlimit = size;
|
|
break;
|
|
case Opt_grpquota_block_hardlimit:
|
|
size = memparse(param->string, &rest);
|
|
if (*rest || !size)
|
|
goto bad_value;
|
|
if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
|
|
return invalfc(fc,
|
|
"Group quota block hardlimit too large.");
|
|
ctx->qlimits.grpquota_bhardlimit = size;
|
|
break;
|
|
case Opt_usrquota_inode_hardlimit:
|
|
size = memparse(param->string, &rest);
|
|
if (*rest || !size)
|
|
goto bad_value;
|
|
if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
|
|
return invalfc(fc,
|
|
"User quota inode hardlimit too large.");
|
|
ctx->qlimits.usrquota_ihardlimit = size;
|
|
break;
|
|
case Opt_grpquota_inode_hardlimit:
|
|
size = memparse(param->string, &rest);
|
|
if (*rest || !size)
|
|
goto bad_value;
|
|
if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
|
|
return invalfc(fc,
|
|
"Group quota inode hardlimit too large.");
|
|
ctx->qlimits.grpquota_ihardlimit = size;
|
|
break;
|
|
}
|
|
return 0;
|
|
|
|
unsupported_parameter:
|
|
return invalfc(fc, "Unsupported parameter '%s'", param->key);
|
|
bad_value:
|
|
return invalfc(fc, "Bad value for '%s'", param->key);
|
|
}
|
|
|
|
static int shmem_parse_options(struct fs_context *fc, void *data)
|
|
{
|
|
char *options = data;
|
|
|
|
if (options) {
|
|
int err = security_sb_eat_lsm_opts(options, &fc->security);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
while (options != NULL) {
|
|
char *this_char = options;
|
|
for (;;) {
|
|
/*
|
|
* NUL-terminate this option: unfortunately,
|
|
* mount options form a comma-separated list,
|
|
* but mpol's nodelist may also contain commas.
|
|
*/
|
|
options = strchr(options, ',');
|
|
if (options == NULL)
|
|
break;
|
|
options++;
|
|
if (!isdigit(*options)) {
|
|
options[-1] = '\0';
|
|
break;
|
|
}
|
|
}
|
|
if (*this_char) {
|
|
char *value = strchr(this_char, '=');
|
|
size_t len = 0;
|
|
int err;
|
|
|
|
if (value) {
|
|
*value++ = '\0';
|
|
len = strlen(value);
|
|
}
|
|
err = vfs_parse_fs_string(fc, this_char, value, len);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reconfigure a shmem filesystem.
|
|
*/
|
|
static int shmem_reconfigure(struct fs_context *fc)
|
|
{
|
|
struct shmem_options *ctx = fc->fs_private;
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
|
|
unsigned long used_isp;
|
|
struct mempolicy *mpol = NULL;
|
|
const char *err;
|
|
|
|
raw_spin_lock(&sbinfo->stat_lock);
|
|
used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
|
|
|
|
if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
|
|
if (!sbinfo->max_blocks) {
|
|
err = "Cannot retroactively limit size";
|
|
goto out;
|
|
}
|
|
if (percpu_counter_compare(&sbinfo->used_blocks,
|
|
ctx->blocks) > 0) {
|
|
err = "Too small a size for current use";
|
|
goto out;
|
|
}
|
|
}
|
|
if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
|
|
if (!sbinfo->max_inodes) {
|
|
err = "Cannot retroactively limit inodes";
|
|
goto out;
|
|
}
|
|
if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
|
|
err = "Too few inodes for current use";
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
|
|
sbinfo->next_ino > UINT_MAX) {
|
|
err = "Current inum too high to switch to 32-bit inums";
|
|
goto out;
|
|
}
|
|
if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
|
|
err = "Cannot disable swap on remount";
|
|
goto out;
|
|
}
|
|
if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
|
|
err = "Cannot enable swap on remount if it was disabled on first mount";
|
|
goto out;
|
|
}
|
|
|
|
if (ctx->seen & SHMEM_SEEN_QUOTA &&
|
|
!sb_any_quota_loaded(fc->root->d_sb)) {
|
|
err = "Cannot enable quota on remount";
|
|
goto out;
|
|
}
|
|
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
#define CHANGED_LIMIT(name) \
|
|
(ctx->qlimits.name## hardlimit && \
|
|
(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
|
|
|
|
if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
|
|
CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
|
|
err = "Cannot change global quota limit on remount";
|
|
goto out;
|
|
}
|
|
#endif /* CONFIG_TMPFS_QUOTA */
|
|
|
|
if (ctx->seen & SHMEM_SEEN_HUGE)
|
|
sbinfo->huge = ctx->huge;
|
|
if (ctx->seen & SHMEM_SEEN_INUMS)
|
|
sbinfo->full_inums = ctx->full_inums;
|
|
if (ctx->seen & SHMEM_SEEN_BLOCKS)
|
|
sbinfo->max_blocks = ctx->blocks;
|
|
if (ctx->seen & SHMEM_SEEN_INODES) {
|
|
sbinfo->max_inodes = ctx->inodes;
|
|
sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
|
|
}
|
|
|
|
/*
|
|
* Preserve previous mempolicy unless mpol remount option was specified.
|
|
*/
|
|
if (ctx->mpol) {
|
|
mpol = sbinfo->mpol;
|
|
sbinfo->mpol = ctx->mpol; /* transfers initial ref */
|
|
ctx->mpol = NULL;
|
|
}
|
|
|
|
if (ctx->noswap)
|
|
sbinfo->noswap = true;
|
|
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
mpol_put(mpol);
|
|
return 0;
|
|
out:
|
|
raw_spin_unlock(&sbinfo->stat_lock);
|
|
return invalfc(fc, "%s", err);
|
|
}
|
|
|
|
static int shmem_show_options(struct seq_file *seq, struct dentry *root)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
|
|
struct mempolicy *mpol;
|
|
|
|
if (sbinfo->max_blocks != shmem_default_max_blocks())
|
|
seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
|
|
if (sbinfo->max_inodes != shmem_default_max_inodes())
|
|
seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
|
|
if (sbinfo->mode != (0777 | S_ISVTX))
|
|
seq_printf(seq, ",mode=%03ho", sbinfo->mode);
|
|
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
|
|
seq_printf(seq, ",uid=%u",
|
|
from_kuid_munged(&init_user_ns, sbinfo->uid));
|
|
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
|
|
seq_printf(seq, ",gid=%u",
|
|
from_kgid_munged(&init_user_ns, sbinfo->gid));
|
|
|
|
/*
|
|
* Showing inode{64,32} might be useful even if it's the system default,
|
|
* since then people don't have to resort to checking both here and
|
|
* /proc/config.gz to confirm 64-bit inums were successfully applied
|
|
* (which may not even exist if IKCONFIG_PROC isn't enabled).
|
|
*
|
|
* We hide it when inode64 isn't the default and we are using 32-bit
|
|
* inodes, since that probably just means the feature isn't even under
|
|
* consideration.
|
|
*
|
|
* As such:
|
|
*
|
|
* +-----------------+-----------------+
|
|
* | TMPFS_INODE64=y | TMPFS_INODE64=n |
|
|
* +------------------+-----------------+-----------------+
|
|
* | full_inums=true | show | show |
|
|
* | full_inums=false | show | hide |
|
|
* +------------------+-----------------+-----------------+
|
|
*
|
|
*/
|
|
if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
|
|
seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
|
|
if (sbinfo->huge)
|
|
seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
|
|
#endif
|
|
mpol = shmem_get_sbmpol(sbinfo);
|
|
shmem_show_mpol(seq, mpol);
|
|
mpol_put(mpol);
|
|
if (sbinfo->noswap)
|
|
seq_printf(seq, ",noswap");
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
if (sb_has_quota_active(root->d_sb, USRQUOTA))
|
|
seq_printf(seq, ",usrquota");
|
|
if (sb_has_quota_active(root->d_sb, GRPQUOTA))
|
|
seq_printf(seq, ",grpquota");
|
|
if (sbinfo->qlimits.usrquota_bhardlimit)
|
|
seq_printf(seq, ",usrquota_block_hardlimit=%lld",
|
|
sbinfo->qlimits.usrquota_bhardlimit);
|
|
if (sbinfo->qlimits.grpquota_bhardlimit)
|
|
seq_printf(seq, ",grpquota_block_hardlimit=%lld",
|
|
sbinfo->qlimits.grpquota_bhardlimit);
|
|
if (sbinfo->qlimits.usrquota_ihardlimit)
|
|
seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
|
|
sbinfo->qlimits.usrquota_ihardlimit);
|
|
if (sbinfo->qlimits.grpquota_ihardlimit)
|
|
seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
|
|
sbinfo->qlimits.grpquota_ihardlimit);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_TMPFS */
|
|
|
|
static void shmem_put_super(struct super_block *sb)
|
|
{
|
|
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
|
|
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
shmem_disable_quotas(sb);
|
|
#endif
|
|
free_percpu(sbinfo->ino_batch);
|
|
percpu_counter_destroy(&sbinfo->used_blocks);
|
|
mpol_put(sbinfo->mpol);
|
|
kfree(sbinfo);
|
|
sb->s_fs_info = NULL;
|
|
}
|
|
|
|
static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
|
|
{
|
|
struct shmem_options *ctx = fc->fs_private;
|
|
struct inode *inode;
|
|
struct shmem_sb_info *sbinfo;
|
|
int error = -ENOMEM;
|
|
|
|
/* Round up to L1_CACHE_BYTES to resist false sharing */
|
|
sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
|
|
L1_CACHE_BYTES), GFP_KERNEL);
|
|
if (!sbinfo)
|
|
return error;
|
|
|
|
sb->s_fs_info = sbinfo;
|
|
|
|
#ifdef CONFIG_TMPFS
|
|
/*
|
|
* Per default we only allow half of the physical ram per
|
|
* tmpfs instance, limiting inodes to one per page of lowmem;
|
|
* but the internal instance is left unlimited.
|
|
*/
|
|
if (!(sb->s_flags & SB_KERNMOUNT)) {
|
|
if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
|
|
ctx->blocks = shmem_default_max_blocks();
|
|
if (!(ctx->seen & SHMEM_SEEN_INODES))
|
|
ctx->inodes = shmem_default_max_inodes();
|
|
if (!(ctx->seen & SHMEM_SEEN_INUMS))
|
|
ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
|
|
sbinfo->noswap = ctx->noswap;
|
|
} else {
|
|
sb->s_flags |= SB_NOUSER;
|
|
}
|
|
sb->s_export_op = &shmem_export_ops;
|
|
sb->s_flags |= SB_NOSEC | SB_I_VERSION;
|
|
#else
|
|
sb->s_flags |= SB_NOUSER;
|
|
#endif
|
|
sbinfo->max_blocks = ctx->blocks;
|
|
sbinfo->max_inodes = ctx->inodes;
|
|
sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
|
|
if (sb->s_flags & SB_KERNMOUNT) {
|
|
sbinfo->ino_batch = alloc_percpu(ino_t);
|
|
if (!sbinfo->ino_batch)
|
|
goto failed;
|
|
}
|
|
sbinfo->uid = ctx->uid;
|
|
sbinfo->gid = ctx->gid;
|
|
sbinfo->full_inums = ctx->full_inums;
|
|
sbinfo->mode = ctx->mode;
|
|
sbinfo->huge = ctx->huge;
|
|
sbinfo->mpol = ctx->mpol;
|
|
ctx->mpol = NULL;
|
|
|
|
raw_spin_lock_init(&sbinfo->stat_lock);
|
|
if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
|
|
goto failed;
|
|
spin_lock_init(&sbinfo->shrinklist_lock);
|
|
INIT_LIST_HEAD(&sbinfo->shrinklist);
|
|
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
sb->s_blocksize = PAGE_SIZE;
|
|
sb->s_blocksize_bits = PAGE_SHIFT;
|
|
sb->s_magic = TMPFS_MAGIC;
|
|
sb->s_op = &shmem_ops;
|
|
sb->s_time_gran = 1;
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
sb->s_xattr = shmem_xattr_handlers;
|
|
#endif
|
|
#ifdef CONFIG_TMPFS_POSIX_ACL
|
|
sb->s_flags |= SB_POSIXACL;
|
|
#endif
|
|
uuid_t uuid;
|
|
uuid_gen(&uuid);
|
|
super_set_uuid(sb, uuid.b, sizeof(uuid));
|
|
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
if (ctx->seen & SHMEM_SEEN_QUOTA) {
|
|
sb->dq_op = &shmem_quota_operations;
|
|
sb->s_qcop = &dquot_quotactl_sysfile_ops;
|
|
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
|
|
|
|
/* Copy the default limits from ctx into sbinfo */
|
|
memcpy(&sbinfo->qlimits, &ctx->qlimits,
|
|
sizeof(struct shmem_quota_limits));
|
|
|
|
if (shmem_enable_quotas(sb, ctx->quota_types))
|
|
goto failed;
|
|
}
|
|
#endif /* CONFIG_TMPFS_QUOTA */
|
|
|
|
inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
|
|
S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
|
|
if (IS_ERR(inode)) {
|
|
error = PTR_ERR(inode);
|
|
goto failed;
|
|
}
|
|
inode->i_uid = sbinfo->uid;
|
|
inode->i_gid = sbinfo->gid;
|
|
sb->s_root = d_make_root(inode);
|
|
if (!sb->s_root)
|
|
goto failed;
|
|
return 0;
|
|
|
|
failed:
|
|
shmem_put_super(sb);
|
|
return error;
|
|
}
|
|
|
|
static int shmem_get_tree(struct fs_context *fc)
|
|
{
|
|
return get_tree_nodev(fc, shmem_fill_super);
|
|
}
|
|
|
|
static void shmem_free_fc(struct fs_context *fc)
|
|
{
|
|
struct shmem_options *ctx = fc->fs_private;
|
|
|
|
if (ctx) {
|
|
mpol_put(ctx->mpol);
|
|
kfree(ctx);
|
|
}
|
|
}
|
|
|
|
static const struct fs_context_operations shmem_fs_context_ops = {
|
|
.free = shmem_free_fc,
|
|
.get_tree = shmem_get_tree,
|
|
#ifdef CONFIG_TMPFS
|
|
.parse_monolithic = shmem_parse_options,
|
|
.parse_param = shmem_parse_one,
|
|
.reconfigure = shmem_reconfigure,
|
|
#endif
|
|
};
|
|
|
|
static struct kmem_cache *shmem_inode_cachep __ro_after_init;
|
|
|
|
static struct inode *shmem_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct shmem_inode_info *info;
|
|
info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
|
|
if (!info)
|
|
return NULL;
|
|
return &info->vfs_inode;
|
|
}
|
|
|
|
static void shmem_free_in_core_inode(struct inode *inode)
|
|
{
|
|
if (S_ISLNK(inode->i_mode))
|
|
kfree(inode->i_link);
|
|
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
|
|
}
|
|
|
|
static void shmem_destroy_inode(struct inode *inode)
|
|
{
|
|
if (S_ISREG(inode->i_mode))
|
|
mpol_free_shared_policy(&SHMEM_I(inode)->policy);
|
|
if (S_ISDIR(inode->i_mode))
|
|
simple_offset_destroy(shmem_get_offset_ctx(inode));
|
|
}
|
|
|
|
static void shmem_init_inode(void *foo)
|
|
{
|
|
struct shmem_inode_info *info = foo;
|
|
inode_init_once(&info->vfs_inode);
|
|
}
|
|
|
|
static void __init shmem_init_inodecache(void)
|
|
{
|
|
shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
|
|
sizeof(struct shmem_inode_info),
|
|
0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
|
|
}
|
|
|
|
static void __init shmem_destroy_inodecache(void)
|
|
{
|
|
kmem_cache_destroy(shmem_inode_cachep);
|
|
}
|
|
|
|
/* Keep the page in page cache instead of truncating it */
|
|
static int shmem_error_remove_folio(struct address_space *mapping,
|
|
struct folio *folio)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct address_space_operations shmem_aops = {
|
|
.writepage = shmem_writepage,
|
|
.dirty_folio = noop_dirty_folio,
|
|
#ifdef CONFIG_TMPFS
|
|
.write_begin = shmem_write_begin,
|
|
.write_end = shmem_write_end,
|
|
#endif
|
|
#ifdef CONFIG_MIGRATION
|
|
.migrate_folio = migrate_folio,
|
|
#endif
|
|
.error_remove_folio = shmem_error_remove_folio,
|
|
};
|
|
|
|
static const struct file_operations shmem_file_operations = {
|
|
.mmap = shmem_mmap,
|
|
.open = shmem_file_open,
|
|
.get_unmapped_area = shmem_get_unmapped_area,
|
|
#ifdef CONFIG_TMPFS
|
|
.llseek = shmem_file_llseek,
|
|
.read_iter = shmem_file_read_iter,
|
|
.write_iter = shmem_file_write_iter,
|
|
.fsync = noop_fsync,
|
|
.splice_read = shmem_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
.fallocate = shmem_fallocate,
|
|
#endif
|
|
};
|
|
|
|
static const struct inode_operations shmem_inode_operations = {
|
|
.getattr = shmem_getattr,
|
|
.setattr = shmem_setattr,
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
.listxattr = shmem_listxattr,
|
|
.set_acl = simple_set_acl,
|
|
.fileattr_get = shmem_fileattr_get,
|
|
.fileattr_set = shmem_fileattr_set,
|
|
#endif
|
|
};
|
|
|
|
static const struct inode_operations shmem_dir_inode_operations = {
|
|
#ifdef CONFIG_TMPFS
|
|
.getattr = shmem_getattr,
|
|
.create = shmem_create,
|
|
.lookup = simple_lookup,
|
|
.link = shmem_link,
|
|
.unlink = shmem_unlink,
|
|
.symlink = shmem_symlink,
|
|
.mkdir = shmem_mkdir,
|
|
.rmdir = shmem_rmdir,
|
|
.mknod = shmem_mknod,
|
|
.rename = shmem_rename2,
|
|
.tmpfile = shmem_tmpfile,
|
|
.get_offset_ctx = shmem_get_offset_ctx,
|
|
#endif
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
.listxattr = shmem_listxattr,
|
|
.fileattr_get = shmem_fileattr_get,
|
|
.fileattr_set = shmem_fileattr_set,
|
|
#endif
|
|
#ifdef CONFIG_TMPFS_POSIX_ACL
|
|
.setattr = shmem_setattr,
|
|
.set_acl = simple_set_acl,
|
|
#endif
|
|
};
|
|
|
|
static const struct inode_operations shmem_special_inode_operations = {
|
|
.getattr = shmem_getattr,
|
|
#ifdef CONFIG_TMPFS_XATTR
|
|
.listxattr = shmem_listxattr,
|
|
#endif
|
|
#ifdef CONFIG_TMPFS_POSIX_ACL
|
|
.setattr = shmem_setattr,
|
|
.set_acl = simple_set_acl,
|
|
#endif
|
|
};
|
|
|
|
static const struct super_operations shmem_ops = {
|
|
.alloc_inode = shmem_alloc_inode,
|
|
.free_inode = shmem_free_in_core_inode,
|
|
.destroy_inode = shmem_destroy_inode,
|
|
#ifdef CONFIG_TMPFS
|
|
.statfs = shmem_statfs,
|
|
.show_options = shmem_show_options,
|
|
#endif
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
.get_dquots = shmem_get_dquots,
|
|
#endif
|
|
.evict_inode = shmem_evict_inode,
|
|
.drop_inode = generic_delete_inode,
|
|
.put_super = shmem_put_super,
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
.nr_cached_objects = shmem_unused_huge_count,
|
|
.free_cached_objects = shmem_unused_huge_scan,
|
|
#endif
|
|
};
|
|
|
|
static const struct vm_operations_struct shmem_vm_ops = {
|
|
.fault = shmem_fault,
|
|
.map_pages = filemap_map_pages,
|
|
#ifdef CONFIG_NUMA
|
|
.set_policy = shmem_set_policy,
|
|
.get_policy = shmem_get_policy,
|
|
#endif
|
|
};
|
|
|
|
static const struct vm_operations_struct shmem_anon_vm_ops = {
|
|
.fault = shmem_fault,
|
|
.map_pages = filemap_map_pages,
|
|
#ifdef CONFIG_NUMA
|
|
.set_policy = shmem_set_policy,
|
|
.get_policy = shmem_get_policy,
|
|
#endif
|
|
};
|
|
|
|
int shmem_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct shmem_options *ctx;
|
|
|
|
ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
ctx->mode = 0777 | S_ISVTX;
|
|
ctx->uid = current_fsuid();
|
|
ctx->gid = current_fsgid();
|
|
|
|
fc->fs_private = ctx;
|
|
fc->ops = &shmem_fs_context_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type shmem_fs_type = {
|
|
.owner = THIS_MODULE,
|
|
.name = "tmpfs",
|
|
.init_fs_context = shmem_init_fs_context,
|
|
#ifdef CONFIG_TMPFS
|
|
.parameters = shmem_fs_parameters,
|
|
#endif
|
|
.kill_sb = kill_litter_super,
|
|
.fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
|
|
};
|
|
|
|
void __init shmem_init(void)
|
|
{
|
|
int error;
|
|
|
|
shmem_init_inodecache();
|
|
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
register_quota_format(&shmem_quota_format);
|
|
#endif
|
|
|
|
error = register_filesystem(&shmem_fs_type);
|
|
if (error) {
|
|
pr_err("Could not register tmpfs\n");
|
|
goto out2;
|
|
}
|
|
|
|
shm_mnt = kern_mount(&shmem_fs_type);
|
|
if (IS_ERR(shm_mnt)) {
|
|
error = PTR_ERR(shm_mnt);
|
|
pr_err("Could not kern_mount tmpfs\n");
|
|
goto out1;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
|
|
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
|
|
else
|
|
shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
|
|
|
|
/*
|
|
* Default to setting PMD-sized THP to inherit the global setting and
|
|
* disable all other multi-size THPs.
|
|
*/
|
|
huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
|
|
#endif
|
|
return;
|
|
|
|
out1:
|
|
unregister_filesystem(&shmem_fs_type);
|
|
out2:
|
|
#ifdef CONFIG_TMPFS_QUOTA
|
|
unregister_quota_format(&shmem_quota_format);
|
|
#endif
|
|
shmem_destroy_inodecache();
|
|
shm_mnt = ERR_PTR(error);
|
|
}
|
|
|
|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
|
|
static ssize_t shmem_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
static const int values[] = {
|
|
SHMEM_HUGE_ALWAYS,
|
|
SHMEM_HUGE_WITHIN_SIZE,
|
|
SHMEM_HUGE_ADVISE,
|
|
SHMEM_HUGE_NEVER,
|
|
SHMEM_HUGE_DENY,
|
|
SHMEM_HUGE_FORCE,
|
|
};
|
|
int len = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(values); i++) {
|
|
len += sysfs_emit_at(buf, len,
|
|
shmem_huge == values[i] ? "%s[%s]" : "%s%s",
|
|
i ? " " : "", shmem_format_huge(values[i]));
|
|
}
|
|
len += sysfs_emit_at(buf, len, "\n");
|
|
|
|
return len;
|
|
}
|
|
|
|
static ssize_t shmem_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
char tmp[16];
|
|
int huge;
|
|
|
|
if (count + 1 > sizeof(tmp))
|
|
return -EINVAL;
|
|
memcpy(tmp, buf, count);
|
|
tmp[count] = '\0';
|
|
if (count && tmp[count - 1] == '\n')
|
|
tmp[count - 1] = '\0';
|
|
|
|
huge = shmem_parse_huge(tmp);
|
|
if (huge == -EINVAL)
|
|
return -EINVAL;
|
|
if (!has_transparent_hugepage() &&
|
|
huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
|
|
return -EINVAL;
|
|
|
|
/* Do not override huge allocation policy with non-PMD sized mTHP */
|
|
if (huge == SHMEM_HUGE_FORCE &&
|
|
huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
|
|
return -EINVAL;
|
|
|
|
shmem_huge = huge;
|
|
if (shmem_huge > SHMEM_HUGE_DENY)
|
|
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
|
|
return count;
|
|
}
|
|
|
|
struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
|
|
static DEFINE_SPINLOCK(huge_shmem_orders_lock);
|
|
|
|
static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
int order = to_thpsize(kobj)->order;
|
|
const char *output;
|
|
|
|
if (test_bit(order, &huge_shmem_orders_always))
|
|
output = "[always] inherit within_size advise never";
|
|
else if (test_bit(order, &huge_shmem_orders_inherit))
|
|
output = "always [inherit] within_size advise never";
|
|
else if (test_bit(order, &huge_shmem_orders_within_size))
|
|
output = "always inherit [within_size] advise never";
|
|
else if (test_bit(order, &huge_shmem_orders_madvise))
|
|
output = "always inherit within_size [advise] never";
|
|
else
|
|
output = "always inherit within_size advise [never]";
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int order = to_thpsize(kobj)->order;
|
|
ssize_t ret = count;
|
|
|
|
if (sysfs_streq(buf, "always")) {
|
|
spin_lock(&huge_shmem_orders_lock);
|
|
clear_bit(order, &huge_shmem_orders_inherit);
|
|
clear_bit(order, &huge_shmem_orders_madvise);
|
|
clear_bit(order, &huge_shmem_orders_within_size);
|
|
set_bit(order, &huge_shmem_orders_always);
|
|
spin_unlock(&huge_shmem_orders_lock);
|
|
} else if (sysfs_streq(buf, "inherit")) {
|
|
/* Do not override huge allocation policy with non-PMD sized mTHP */
|
|
if (shmem_huge == SHMEM_HUGE_FORCE &&
|
|
order != HPAGE_PMD_ORDER)
|
|
return -EINVAL;
|
|
|
|
spin_lock(&huge_shmem_orders_lock);
|
|
clear_bit(order, &huge_shmem_orders_always);
|
|
clear_bit(order, &huge_shmem_orders_madvise);
|
|
clear_bit(order, &huge_shmem_orders_within_size);
|
|
set_bit(order, &huge_shmem_orders_inherit);
|
|
spin_unlock(&huge_shmem_orders_lock);
|
|
} else if (sysfs_streq(buf, "within_size")) {
|
|
spin_lock(&huge_shmem_orders_lock);
|
|
clear_bit(order, &huge_shmem_orders_always);
|
|
clear_bit(order, &huge_shmem_orders_inherit);
|
|
clear_bit(order, &huge_shmem_orders_madvise);
|
|
set_bit(order, &huge_shmem_orders_within_size);
|
|
spin_unlock(&huge_shmem_orders_lock);
|
|
} else if (sysfs_streq(buf, "advise")) {
|
|
spin_lock(&huge_shmem_orders_lock);
|
|
clear_bit(order, &huge_shmem_orders_always);
|
|
clear_bit(order, &huge_shmem_orders_inherit);
|
|
clear_bit(order, &huge_shmem_orders_within_size);
|
|
set_bit(order, &huge_shmem_orders_madvise);
|
|
spin_unlock(&huge_shmem_orders_lock);
|
|
} else if (sysfs_streq(buf, "never")) {
|
|
spin_lock(&huge_shmem_orders_lock);
|
|
clear_bit(order, &huge_shmem_orders_always);
|
|
clear_bit(order, &huge_shmem_orders_inherit);
|
|
clear_bit(order, &huge_shmem_orders_within_size);
|
|
clear_bit(order, &huge_shmem_orders_madvise);
|
|
spin_unlock(&huge_shmem_orders_lock);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct kobj_attribute thpsize_shmem_enabled_attr =
|
|
__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
|
|
|
|
#else /* !CONFIG_SHMEM */
|
|
|
|
/*
|
|
* tiny-shmem: simple shmemfs and tmpfs using ramfs code
|
|
*
|
|
* This is intended for small system where the benefits of the full
|
|
* shmem code (swap-backed and resource-limited) are outweighed by
|
|
* their complexity. On systems without swap this code should be
|
|
* effectively equivalent, but much lighter weight.
|
|
*/
|
|
|
|
static struct file_system_type shmem_fs_type = {
|
|
.name = "tmpfs",
|
|
.init_fs_context = ramfs_init_fs_context,
|
|
.parameters = ramfs_fs_parameters,
|
|
.kill_sb = ramfs_kill_sb,
|
|
.fs_flags = FS_USERNS_MOUNT,
|
|
};
|
|
|
|
void __init shmem_init(void)
|
|
{
|
|
BUG_ON(register_filesystem(&shmem_fs_type) != 0);
|
|
|
|
shm_mnt = kern_mount(&shmem_fs_type);
|
|
BUG_ON(IS_ERR(shm_mnt));
|
|
}
|
|
|
|
int shmem_unuse(unsigned int type)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void shmem_unlock_mapping(struct address_space *mapping)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
unsigned long shmem_get_unmapped_area(struct file *file,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
|
|
}
|
|
#endif
|
|
|
|
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
|
|
{
|
|
truncate_inode_pages_range(inode->i_mapping, lstart, lend);
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_truncate_range);
|
|
|
|
#define shmem_vm_ops generic_file_vm_ops
|
|
#define shmem_anon_vm_ops generic_file_vm_ops
|
|
#define shmem_file_operations ramfs_file_operations
|
|
#define shmem_acct_size(flags, size) 0
|
|
#define shmem_unacct_size(flags, size) do {} while (0)
|
|
|
|
static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
|
|
struct super_block *sb, struct inode *dir,
|
|
umode_t mode, dev_t dev, unsigned long flags)
|
|
{
|
|
struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
|
|
return inode ? inode : ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
#endif /* CONFIG_SHMEM */
|
|
|
|
/* common code */
|
|
|
|
static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
|
|
loff_t size, unsigned long flags, unsigned int i_flags)
|
|
{
|
|
struct inode *inode;
|
|
struct file *res;
|
|
|
|
if (IS_ERR(mnt))
|
|
return ERR_CAST(mnt);
|
|
|
|
if (size < 0 || size > MAX_LFS_FILESIZE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (shmem_acct_size(flags, size))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (is_idmapped_mnt(mnt))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
|
|
S_IFREG | S_IRWXUGO, 0, flags);
|
|
if (IS_ERR(inode)) {
|
|
shmem_unacct_size(flags, size);
|
|
return ERR_CAST(inode);
|
|
}
|
|
inode->i_flags |= i_flags;
|
|
inode->i_size = size;
|
|
clear_nlink(inode); /* It is unlinked */
|
|
res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
|
|
if (!IS_ERR(res))
|
|
res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
|
|
&shmem_file_operations);
|
|
if (IS_ERR(res))
|
|
iput(inode);
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
|
|
* kernel internal. There will be NO LSM permission checks against the
|
|
* underlying inode. So users of this interface must do LSM checks at a
|
|
* higher layer. The users are the big_key and shm implementations. LSM
|
|
* checks are provided at the key or shm level rather than the inode.
|
|
* @name: name for dentry (to be seen in /proc/<pid>/maps
|
|
* @size: size to be set for the file
|
|
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
|
|
*/
|
|
struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
|
|
{
|
|
return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
|
|
|
|
/**
|
|
* shmem_file_setup - get an unlinked file living in tmpfs
|
|
* @name: name for dentry (to be seen in /proc/<pid>/maps
|
|
* @size: size to be set for the file
|
|
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
|
|
*/
|
|
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
|
|
{
|
|
return __shmem_file_setup(shm_mnt, name, size, flags, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_file_setup);
|
|
|
|
/**
|
|
* shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
|
|
* @mnt: the tmpfs mount where the file will be created
|
|
* @name: name for dentry (to be seen in /proc/<pid>/maps
|
|
* @size: size to be set for the file
|
|
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
|
|
*/
|
|
struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
|
|
loff_t size, unsigned long flags)
|
|
{
|
|
return __shmem_file_setup(mnt, name, size, flags, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
|
|
|
|
/**
|
|
* shmem_zero_setup - setup a shared anonymous mapping
|
|
* @vma: the vma to be mmapped is prepared by do_mmap
|
|
*/
|
|
int shmem_zero_setup(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file;
|
|
loff_t size = vma->vm_end - vma->vm_start;
|
|
|
|
/*
|
|
* Cloning a new file under mmap_lock leads to a lock ordering conflict
|
|
* between XFS directory reading and selinux: since this file is only
|
|
* accessible to the user through its mapping, use S_PRIVATE flag to
|
|
* bypass file security, in the same way as shmem_kernel_file_setup().
|
|
*/
|
|
file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
|
|
if (IS_ERR(file))
|
|
return PTR_ERR(file);
|
|
|
|
if (vma->vm_file)
|
|
fput(vma->vm_file);
|
|
vma->vm_file = file;
|
|
vma->vm_ops = &shmem_anon_vm_ops;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
|
|
* @mapping: the folio's address_space
|
|
* @index: the folio index
|
|
* @gfp: the page allocator flags to use if allocating
|
|
*
|
|
* This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
|
|
* with any new page allocations done using the specified allocation flags.
|
|
* But read_cache_page_gfp() uses the ->read_folio() method: which does not
|
|
* suit tmpfs, since it may have pages in swapcache, and needs to find those
|
|
* for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
|
|
*
|
|
* i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
|
|
* with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
|
|
*/
|
|
struct folio *shmem_read_folio_gfp(struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp)
|
|
{
|
|
#ifdef CONFIG_SHMEM
|
|
struct inode *inode = mapping->host;
|
|
struct folio *folio;
|
|
int error;
|
|
|
|
error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
|
|
gfp, NULL, NULL);
|
|
if (error)
|
|
return ERR_PTR(error);
|
|
|
|
folio_unlock(folio);
|
|
return folio;
|
|
#else
|
|
/*
|
|
* The tiny !SHMEM case uses ramfs without swap
|
|
*/
|
|
return mapping_read_folio_gfp(mapping, index, gfp);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
|
|
|
|
struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp)
|
|
{
|
|
struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
|
|
struct page *page;
|
|
|
|
if (IS_ERR(folio))
|
|
return &folio->page;
|
|
|
|
page = folio_file_page(folio, index);
|
|
if (PageHWPoison(page)) {
|
|
folio_put(folio);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
|