linux-stable/include/linux/bpf.h
Daniel Borkmann 6fad274f06 bpf: Add MEM_WRITE attribute
Add a MEM_WRITE attribute for BPF helper functions which can be used in
bpf_func_proto to annotate an argument type in order to let the verifier
know that the helper writes into the memory passed as an argument. In
the past MEM_UNINIT has been (ab)used for this function, but the latter
merely tells the verifier that the passed memory can be uninitialized.

There have been bugs with overloading the latter but aside from that
there are also cases where the passed memory is read + written which
currently cannot be expressed, see also 4b3786a6c5 ("bpf: Zero former
ARG_PTR_TO_{LONG,INT} args in case of error").

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241021152809.33343-1-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-22 15:42:56 -07:00

3465 lines
108 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#ifndef _LINUX_BPF_H
#define _LINUX_BPF_H 1
#include <uapi/linux/bpf.h>
#include <uapi/linux/filter.h>
#include <linux/workqueue.h>
#include <linux/file.h>
#include <linux/percpu.h>
#include <linux/err.h>
#include <linux/rbtree_latch.h>
#include <linux/numa.h>
#include <linux/mm_types.h>
#include <linux/wait.h>
#include <linux/refcount.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/capability.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/percpu-refcount.h>
#include <linux/stddef.h>
#include <linux/bpfptr.h>
#include <linux/btf.h>
#include <linux/rcupdate_trace.h>
#include <linux/static_call.h>
#include <linux/memcontrol.h>
#include <linux/cfi.h>
struct bpf_verifier_env;
struct bpf_verifier_log;
struct perf_event;
struct bpf_prog;
struct bpf_prog_aux;
struct bpf_map;
struct bpf_arena;
struct sock;
struct seq_file;
struct btf;
struct btf_type;
struct exception_table_entry;
struct seq_operations;
struct bpf_iter_aux_info;
struct bpf_local_storage;
struct bpf_local_storage_map;
struct kobject;
struct mem_cgroup;
struct module;
struct bpf_func_state;
struct ftrace_ops;
struct cgroup;
struct bpf_token;
struct user_namespace;
struct super_block;
struct inode;
extern struct idr btf_idr;
extern spinlock_t btf_idr_lock;
extern struct kobject *btf_kobj;
extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
extern bool bpf_global_ma_set;
typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
typedef unsigned int (*bpf_func_t)(const void *,
const struct bpf_insn *);
struct bpf_iter_seq_info {
const struct seq_operations *seq_ops;
bpf_iter_init_seq_priv_t init_seq_private;
bpf_iter_fini_seq_priv_t fini_seq_private;
u32 seq_priv_size;
};
/* map is generic key/value storage optionally accessible by eBPF programs */
struct bpf_map_ops {
/* funcs callable from userspace (via syscall) */
int (*map_alloc_check)(union bpf_attr *attr);
struct bpf_map *(*map_alloc)(union bpf_attr *attr);
void (*map_release)(struct bpf_map *map, struct file *map_file);
void (*map_free)(struct bpf_map *map);
int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
void (*map_release_uref)(struct bpf_map *map);
void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr);
int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
void *value, u64 flags);
int (*map_lookup_and_delete_batch)(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
union bpf_attr __user *uattr);
/* funcs callable from userspace and from eBPF programs */
void *(*map_lookup_elem)(struct bpf_map *map, void *key);
long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
long (*map_delete_elem)(struct bpf_map *map, void *key);
long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
long (*map_pop_elem)(struct bpf_map *map, void *value);
long (*map_peek_elem)(struct bpf_map *map, void *value);
void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
/* funcs called by prog_array and perf_event_array map */
void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
int fd);
/* If need_defer is true, the implementation should guarantee that
* the to-be-put element is still alive before the bpf program, which
* may manipulate it, exists.
*/
void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
u32 (*map_fd_sys_lookup_elem)(void *ptr);
void (*map_seq_show_elem)(struct bpf_map *map, void *key,
struct seq_file *m);
int (*map_check_btf)(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type);
/* Prog poke tracking helpers. */
int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
struct bpf_prog *new);
/* Direct value access helpers. */
int (*map_direct_value_addr)(const struct bpf_map *map,
u64 *imm, u32 off);
int (*map_direct_value_meta)(const struct bpf_map *map,
u64 imm, u32 *off);
int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
struct poll_table_struct *pts);
unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
/* Functions called by bpf_local_storage maps */
int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
void *owner, u32 size);
void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
void *owner, u32 size);
struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
/* Misc helpers.*/
long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
/* map_meta_equal must be implemented for maps that can be
* used as an inner map. It is a runtime check to ensure
* an inner map can be inserted to an outer map.
*
* Some properties of the inner map has been used during the
* verification time. When inserting an inner map at the runtime,
* map_meta_equal has to ensure the inserting map has the same
* properties that the verifier has used earlier.
*/
bool (*map_meta_equal)(const struct bpf_map *meta0,
const struct bpf_map *meta1);
int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee);
long (*map_for_each_callback)(struct bpf_map *map,
bpf_callback_t callback_fn,
void *callback_ctx, u64 flags);
u64 (*map_mem_usage)(const struct bpf_map *map);
/* BTF id of struct allocated by map_alloc */
int *map_btf_id;
/* bpf_iter info used to open a seq_file */
const struct bpf_iter_seq_info *iter_seq_info;
};
enum {
/* Support at most 11 fields in a BTF type */
BTF_FIELDS_MAX = 11,
};
enum btf_field_type {
BPF_SPIN_LOCK = (1 << 0),
BPF_TIMER = (1 << 1),
BPF_KPTR_UNREF = (1 << 2),
BPF_KPTR_REF = (1 << 3),
BPF_KPTR_PERCPU = (1 << 4),
BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
BPF_LIST_HEAD = (1 << 5),
BPF_LIST_NODE = (1 << 6),
BPF_RB_ROOT = (1 << 7),
BPF_RB_NODE = (1 << 8),
BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
BPF_REFCOUNT = (1 << 9),
BPF_WORKQUEUE = (1 << 10),
};
typedef void (*btf_dtor_kfunc_t)(void *);
struct btf_field_kptr {
struct btf *btf;
struct module *module;
/* dtor used if btf_is_kernel(btf), otherwise the type is
* program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
*/
btf_dtor_kfunc_t dtor;
u32 btf_id;
};
struct btf_field_graph_root {
struct btf *btf;
u32 value_btf_id;
u32 node_offset;
struct btf_record *value_rec;
};
struct btf_field {
u32 offset;
u32 size;
enum btf_field_type type;
union {
struct btf_field_kptr kptr;
struct btf_field_graph_root graph_root;
};
};
struct btf_record {
u32 cnt;
u32 field_mask;
int spin_lock_off;
int timer_off;
int wq_off;
int refcount_off;
struct btf_field fields[];
};
/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
struct bpf_rb_node_kern {
struct rb_node rb_node;
void *owner;
} __attribute__((aligned(8)));
/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
struct bpf_list_node_kern {
struct list_head list_head;
void *owner;
} __attribute__((aligned(8)));
struct bpf_map {
const struct bpf_map_ops *ops;
struct bpf_map *inner_map_meta;
#ifdef CONFIG_SECURITY
void *security;
#endif
enum bpf_map_type map_type;
u32 key_size;
u32 value_size;
u32 max_entries;
u64 map_extra; /* any per-map-type extra fields */
u32 map_flags;
u32 id;
struct btf_record *record;
int numa_node;
u32 btf_key_type_id;
u32 btf_value_type_id;
u32 btf_vmlinux_value_type_id;
struct btf *btf;
#ifdef CONFIG_MEMCG
struct obj_cgroup *objcg;
#endif
char name[BPF_OBJ_NAME_LEN];
struct mutex freeze_mutex;
atomic64_t refcnt;
atomic64_t usercnt;
/* rcu is used before freeing and work is only used during freeing */
union {
struct work_struct work;
struct rcu_head rcu;
};
atomic64_t writecnt;
/* 'Ownership' of program-containing map is claimed by the first program
* that is going to use this map or by the first program which FD is
* stored in the map to make sure that all callers and callees have the
* same prog type, JITed flag and xdp_has_frags flag.
*/
struct {
const struct btf_type *attach_func_proto;
spinlock_t lock;
enum bpf_prog_type type;
bool jited;
bool xdp_has_frags;
} owner;
bool bypass_spec_v1;
bool frozen; /* write-once; write-protected by freeze_mutex */
bool free_after_mult_rcu_gp;
bool free_after_rcu_gp;
atomic64_t sleepable_refcnt;
s64 __percpu *elem_count;
};
static inline const char *btf_field_type_name(enum btf_field_type type)
{
switch (type) {
case BPF_SPIN_LOCK:
return "bpf_spin_lock";
case BPF_TIMER:
return "bpf_timer";
case BPF_WORKQUEUE:
return "bpf_wq";
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
return "kptr";
case BPF_KPTR_PERCPU:
return "percpu_kptr";
case BPF_LIST_HEAD:
return "bpf_list_head";
case BPF_LIST_NODE:
return "bpf_list_node";
case BPF_RB_ROOT:
return "bpf_rb_root";
case BPF_RB_NODE:
return "bpf_rb_node";
case BPF_REFCOUNT:
return "bpf_refcount";
default:
WARN_ON_ONCE(1);
return "unknown";
}
}
static inline u32 btf_field_type_size(enum btf_field_type type)
{
switch (type) {
case BPF_SPIN_LOCK:
return sizeof(struct bpf_spin_lock);
case BPF_TIMER:
return sizeof(struct bpf_timer);
case BPF_WORKQUEUE:
return sizeof(struct bpf_wq);
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
return sizeof(u64);
case BPF_LIST_HEAD:
return sizeof(struct bpf_list_head);
case BPF_LIST_NODE:
return sizeof(struct bpf_list_node);
case BPF_RB_ROOT:
return sizeof(struct bpf_rb_root);
case BPF_RB_NODE:
return sizeof(struct bpf_rb_node);
case BPF_REFCOUNT:
return sizeof(struct bpf_refcount);
default:
WARN_ON_ONCE(1);
return 0;
}
}
static inline u32 btf_field_type_align(enum btf_field_type type)
{
switch (type) {
case BPF_SPIN_LOCK:
return __alignof__(struct bpf_spin_lock);
case BPF_TIMER:
return __alignof__(struct bpf_timer);
case BPF_WORKQUEUE:
return __alignof__(struct bpf_wq);
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
return __alignof__(u64);
case BPF_LIST_HEAD:
return __alignof__(struct bpf_list_head);
case BPF_LIST_NODE:
return __alignof__(struct bpf_list_node);
case BPF_RB_ROOT:
return __alignof__(struct bpf_rb_root);
case BPF_RB_NODE:
return __alignof__(struct bpf_rb_node);
case BPF_REFCOUNT:
return __alignof__(struct bpf_refcount);
default:
WARN_ON_ONCE(1);
return 0;
}
}
static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
{
memset(addr, 0, field->size);
switch (field->type) {
case BPF_REFCOUNT:
refcount_set((refcount_t *)addr, 1);
break;
case BPF_RB_NODE:
RB_CLEAR_NODE((struct rb_node *)addr);
break;
case BPF_LIST_HEAD:
case BPF_LIST_NODE:
INIT_LIST_HEAD((struct list_head *)addr);
break;
case BPF_RB_ROOT:
/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
case BPF_SPIN_LOCK:
case BPF_TIMER:
case BPF_WORKQUEUE:
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
break;
default:
WARN_ON_ONCE(1);
return;
}
}
static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
{
if (IS_ERR_OR_NULL(rec))
return false;
return rec->field_mask & type;
}
static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
{
int i;
if (IS_ERR_OR_NULL(rec))
return;
for (i = 0; i < rec->cnt; i++)
bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
}
/* 'dst' must be a temporary buffer and should not point to memory that is being
* used in parallel by a bpf program or bpf syscall, otherwise the access from
* the bpf program or bpf syscall may be corrupted by the reinitialization,
* leading to weird problems. Even 'dst' is newly-allocated from bpf memory
* allocator, it is still possible for 'dst' to be used in parallel by a bpf
* program or bpf syscall.
*/
static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
{
bpf_obj_init(map->record, dst);
}
/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
* forced to use 'long' read/writes to try to atomically copy long counters.
* Best-effort only. No barriers here, since it _will_ race with concurrent
* updates from BPF programs. Called from bpf syscall and mostly used with
* size 8 or 16 bytes, so ask compiler to inline it.
*/
static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
{
const long *lsrc = src;
long *ldst = dst;
size /= sizeof(long);
while (size--)
data_race(*ldst++ = *lsrc++);
}
/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
static inline void bpf_obj_memcpy(struct btf_record *rec,
void *dst, void *src, u32 size,
bool long_memcpy)
{
u32 curr_off = 0;
int i;
if (IS_ERR_OR_NULL(rec)) {
if (long_memcpy)
bpf_long_memcpy(dst, src, round_up(size, 8));
else
memcpy(dst, src, size);
return;
}
for (i = 0; i < rec->cnt; i++) {
u32 next_off = rec->fields[i].offset;
u32 sz = next_off - curr_off;
memcpy(dst + curr_off, src + curr_off, sz);
curr_off += rec->fields[i].size + sz;
}
memcpy(dst + curr_off, src + curr_off, size - curr_off);
}
static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
{
bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
}
static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
{
bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
}
static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
{
u32 curr_off = 0;
int i;
if (IS_ERR_OR_NULL(rec)) {
memset(dst, 0, size);
return;
}
for (i = 0; i < rec->cnt; i++) {
u32 next_off = rec->fields[i].offset;
u32 sz = next_off - curr_off;
memset(dst + curr_off, 0, sz);
curr_off += rec->fields[i].size + sz;
}
memset(dst + curr_off, 0, size - curr_off);
}
static inline void zero_map_value(struct bpf_map *map, void *dst)
{
bpf_obj_memzero(map->record, dst, map->value_size);
}
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
bool lock_src);
void bpf_timer_cancel_and_free(void *timer);
void bpf_wq_cancel_and_free(void *timer);
void bpf_list_head_free(const struct btf_field *field, void *list_head,
struct bpf_spin_lock *spin_lock);
void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
struct bpf_spin_lock *spin_lock);
u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
struct bpf_offload_dev;
struct bpf_offloaded_map;
struct bpf_map_dev_ops {
int (*map_get_next_key)(struct bpf_offloaded_map *map,
void *key, void *next_key);
int (*map_lookup_elem)(struct bpf_offloaded_map *map,
void *key, void *value);
int (*map_update_elem)(struct bpf_offloaded_map *map,
void *key, void *value, u64 flags);
int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
};
struct bpf_offloaded_map {
struct bpf_map map;
struct net_device *netdev;
const struct bpf_map_dev_ops *dev_ops;
void *dev_priv;
struct list_head offloads;
};
static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
{
return container_of(map, struct bpf_offloaded_map, map);
}
static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
{
return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
}
static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
{
return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
map->ops->map_seq_show_elem;
}
int map_check_no_btf(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type);
bool bpf_map_meta_equal(const struct bpf_map *meta0,
const struct bpf_map *meta1);
extern const struct bpf_map_ops bpf_map_offload_ops;
/* bpf_type_flag contains a set of flags that are applicable to the values of
* arg_type, ret_type and reg_type. For example, a pointer value may be null,
* or a memory is read-only. We classify types into two categories: base types
* and extended types. Extended types are base types combined with a type flag.
*
* Currently there are no more than 32 base types in arg_type, ret_type and
* reg_types.
*/
#define BPF_BASE_TYPE_BITS 8
enum bpf_type_flag {
/* PTR may be NULL. */
PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
* compatible with both mutable and immutable memory.
*/
MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
/* MEM points to BPF ring buffer reservation. */
MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
/* MEM is in user address space. */
MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
* with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
* order to drop this tag, it must be passed into bpf_per_cpu_ptr()
* or bpf_this_cpu_ptr(), which will return the pointer corresponding
* to the specified cpu.
*/
MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
/* Indicates that the argument will be released. */
OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
* unreferenced and referenced kptr loaded from map value using a load
* instruction, so that they can only be dereferenced but not escape the
* BPF program into the kernel (i.e. cannot be passed as arguments to
* kfunc or bpf helpers).
*/
PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
/* MEM can be uninitialized. */
MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to memory local to the bpf program. */
DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to a kernel-produced ringbuf record. */
DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
/* Size is known at compile time. */
MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
/* MEM is of an allocated object of type in program BTF. This is used to
* tag PTR_TO_BTF_ID allocated using bpf_obj_new.
*/
MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
/* PTR was passed from the kernel in a trusted context, and may be
* passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
* Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
* PTR_UNTRUSTED refers to a kptr that was read directly from a map
* without invoking bpf_kptr_xchg(). What we really need to know is
* whether a pointer is safe to pass to a kfunc or BPF helper function.
* While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
* helpers, they do not cover all possible instances of unsafe
* pointers. For example, a pointer that was obtained from walking a
* struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
* fact that it may be NULL, invalid, etc. This is due to backwards
* compatibility requirements, as this was the behavior that was first
* introduced when kptrs were added. The behavior is now considered
* deprecated, and PTR_UNTRUSTED will eventually be removed.
*
* PTR_TRUSTED, on the other hand, is a pointer that the kernel
* guarantees to be valid and safe to pass to kfuncs and BPF helpers.
* For example, pointers passed to tracepoint arguments are considered
* PTR_TRUSTED, as are pointers that are passed to struct_ops
* callbacks. As alluded to above, pointers that are obtained from
* walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
* struct task_struct *task is PTR_TRUSTED, then accessing
* task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
* in a BPF register. Similarly, pointers passed to certain programs
* types such as kretprobes are not guaranteed to be valid, as they may
* for example contain an object that was recently freed.
*/
PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
* Currently only valid for linked-list and rbtree nodes. If the nodes
* have a bpf_refcount_field, they must be tagged MEM_RCU as well.
*/
NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to sk_buff */
DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
/* DYNPTR points to xdp_buff */
DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
/* Memory must be aligned on some architectures, used in combination with
* MEM_FIXED_SIZE.
*/
MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
/* MEM is being written to, often combined with MEM_UNINIT. Non-presence
* of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
* MEM_UNINIT means that memory needs to be initialized since it is also
* read.
*/
MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
__BPF_TYPE_FLAG_MAX,
__BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
};
#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
| DYNPTR_TYPE_XDP)
/* Max number of base types. */
#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
/* Max number of all types. */
#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
/* function argument constraints */
enum bpf_arg_type {
ARG_DONTCARE = 0, /* unused argument in helper function */
/* the following constraints used to prototype
* bpf_map_lookup/update/delete_elem() functions
*/
ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
/* Used to prototype bpf_memcmp() and other functions that access data
* on eBPF program stack
*/
ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
ARG_PTR_TO_ARENA,
ARG_CONST_SIZE, /* number of bytes accessed from memory */
ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
ARG_PTR_TO_CTX, /* pointer to context */
ARG_ANYTHING, /* any (initialized) argument is ok */
ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
ARG_PTR_TO_STACK, /* pointer to stack */
ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
__BPF_ARG_TYPE_MAX,
/* Extended arg_types. */
ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
/* Pointer to memory does not need to be initialized, since helper function
* fills all bytes or clears them in error case.
*/
ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
/* Pointer to valid memory of size known at compile time. */
ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
/* This must be the last entry. Its purpose is to ensure the enum is
* wide enough to hold the higher bits reserved for bpf_type_flag.
*/
__BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
};
static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
/* type of values returned from helper functions */
enum bpf_return_type {
RET_INTEGER, /* function returns integer */
RET_VOID, /* function doesn't return anything */
RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
RET_PTR_TO_MEM, /* returns a pointer to memory */
RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
__BPF_RET_TYPE_MAX,
/* Extended ret_types. */
RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
/* This must be the last entry. Its purpose is to ensure the enum is
* wide enough to hold the higher bits reserved for bpf_type_flag.
*/
__BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
};
static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
* to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
* instructions after verifying
*/
struct bpf_func_proto {
u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
bool gpl_only;
bool pkt_access;
bool might_sleep;
/* set to true if helper follows contract for llvm
* attribute bpf_fastcall:
* - void functions do not scratch r0
* - functions taking N arguments scratch only registers r1-rN
*/
bool allow_fastcall;
enum bpf_return_type ret_type;
union {
struct {
enum bpf_arg_type arg1_type;
enum bpf_arg_type arg2_type;
enum bpf_arg_type arg3_type;
enum bpf_arg_type arg4_type;
enum bpf_arg_type arg5_type;
};
enum bpf_arg_type arg_type[5];
};
union {
struct {
u32 *arg1_btf_id;
u32 *arg2_btf_id;
u32 *arg3_btf_id;
u32 *arg4_btf_id;
u32 *arg5_btf_id;
};
u32 *arg_btf_id[5];
struct {
size_t arg1_size;
size_t arg2_size;
size_t arg3_size;
size_t arg4_size;
size_t arg5_size;
};
size_t arg_size[5];
};
int *ret_btf_id; /* return value btf_id */
bool (*allowed)(const struct bpf_prog *prog);
};
/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
* the first argument to eBPF programs.
* For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
*/
struct bpf_context;
enum bpf_access_type {
BPF_READ = 1,
BPF_WRITE = 2
};
/* types of values stored in eBPF registers */
/* Pointer types represent:
* pointer
* pointer + imm
* pointer + (u16) var
* pointer + (u16) var + imm
* if (range > 0) then [ptr, ptr + range - off) is safe to access
* if (id > 0) means that some 'var' was added
* if (off > 0) means that 'imm' was added
*/
enum bpf_reg_type {
NOT_INIT = 0, /* nothing was written into register */
SCALAR_VALUE, /* reg doesn't contain a valid pointer */
PTR_TO_CTX, /* reg points to bpf_context */
CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
PTR_TO_MAP_VALUE, /* reg points to map element value */
PTR_TO_MAP_KEY, /* reg points to a map element key */
PTR_TO_STACK, /* reg == frame_pointer + offset */
PTR_TO_PACKET_META, /* skb->data - meta_len */
PTR_TO_PACKET, /* reg points to skb->data */
PTR_TO_PACKET_END, /* skb->data + headlen */
PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
PTR_TO_SOCKET, /* reg points to struct bpf_sock */
PTR_TO_SOCK_COMMON, /* reg points to sock_common */
PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
/* PTR_TO_BTF_ID points to a kernel struct that does not need
* to be null checked by the BPF program. This does not imply the
* pointer is _not_ null and in practice this can easily be a null
* pointer when reading pointer chains. The assumption is program
* context will handle null pointer dereference typically via fault
* handling. The verifier must keep this in mind and can make no
* assumptions about null or non-null when doing branch analysis.
* Further, when passed into helpers the helpers can not, without
* additional context, assume the value is non-null.
*/
PTR_TO_BTF_ID,
/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
* been checked for null. Used primarily to inform the verifier
* an explicit null check is required for this struct.
*/
PTR_TO_MEM, /* reg points to valid memory region */
PTR_TO_ARENA,
PTR_TO_BUF, /* reg points to a read/write buffer */
PTR_TO_FUNC, /* reg points to a bpf program function */
CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
__BPF_REG_TYPE_MAX,
/* Extended reg_types. */
PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
/* This must be the last entry. Its purpose is to ensure the enum is
* wide enough to hold the higher bits reserved for bpf_type_flag.
*/
__BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
};
static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
/* The information passed from prog-specific *_is_valid_access
* back to the verifier.
*/
struct bpf_insn_access_aux {
enum bpf_reg_type reg_type;
bool is_ldsx;
union {
int ctx_field_size;
struct {
struct btf *btf;
u32 btf_id;
};
};
struct bpf_verifier_log *log; /* for verbose logs */
bool is_retval; /* is accessing function return value ? */
};
static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
{
aux->ctx_field_size = size;
}
static bool bpf_is_ldimm64(const struct bpf_insn *insn)
{
return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
}
static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
{
return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
}
struct bpf_prog_ops {
int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
};
struct bpf_reg_state;
struct bpf_verifier_ops {
/* return eBPF function prototype for verification */
const struct bpf_func_proto *
(*get_func_proto)(enum bpf_func_id func_id,
const struct bpf_prog *prog);
/* return true if 'size' wide access at offset 'off' within bpf_context
* with 'type' (read or write) is allowed
*/
bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info);
int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
const struct bpf_prog *prog);
int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
s16 ctx_stack_off);
int (*gen_ld_abs)(const struct bpf_insn *orig,
struct bpf_insn *insn_buf);
u32 (*convert_ctx_access)(enum bpf_access_type type,
const struct bpf_insn *src,
struct bpf_insn *dst,
struct bpf_prog *prog, u32 *target_size);
int (*btf_struct_access)(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off, int size);
};
struct bpf_prog_offload_ops {
/* verifier basic callbacks */
int (*insn_hook)(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx);
int (*finalize)(struct bpf_verifier_env *env);
/* verifier optimization callbacks (called after .finalize) */
int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
struct bpf_insn *insn);
int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
/* program management callbacks */
int (*prepare)(struct bpf_prog *prog);
int (*translate)(struct bpf_prog *prog);
void (*destroy)(struct bpf_prog *prog);
};
struct bpf_prog_offload {
struct bpf_prog *prog;
struct net_device *netdev;
struct bpf_offload_dev *offdev;
void *dev_priv;
struct list_head offloads;
bool dev_state;
bool opt_failed;
void *jited_image;
u32 jited_len;
};
enum bpf_cgroup_storage_type {
BPF_CGROUP_STORAGE_SHARED,
BPF_CGROUP_STORAGE_PERCPU,
__BPF_CGROUP_STORAGE_MAX
};
#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
/* The longest tracepoint has 12 args.
* See include/trace/bpf_probe.h
*/
#define MAX_BPF_FUNC_ARGS 12
/* The maximum number of arguments passed through registers
* a single function may have.
*/
#define MAX_BPF_FUNC_REG_ARGS 5
/* The argument is a structure. */
#define BTF_FMODEL_STRUCT_ARG BIT(0)
/* The argument is signed. */
#define BTF_FMODEL_SIGNED_ARG BIT(1)
struct btf_func_model {
u8 ret_size;
u8 ret_flags;
u8 nr_args;
u8 arg_size[MAX_BPF_FUNC_ARGS];
u8 arg_flags[MAX_BPF_FUNC_ARGS];
};
/* Restore arguments before returning from trampoline to let original function
* continue executing. This flag is used for fentry progs when there are no
* fexit progs.
*/
#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
/* Call original function after fentry progs, but before fexit progs.
* Makes sense for fentry/fexit, normal calls and indirect calls.
*/
#define BPF_TRAMP_F_CALL_ORIG BIT(1)
/* Skip current frame and return to parent. Makes sense for fentry/fexit
* programs only. Should not be used with normal calls and indirect calls.
*/
#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
/* Store IP address of the caller on the trampoline stack,
* so it's available for trampoline's programs.
*/
#define BPF_TRAMP_F_IP_ARG BIT(3)
/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
/* Get original function from stack instead of from provided direct address.
* Makes sense for trampolines with fexit or fmod_ret programs.
*/
#define BPF_TRAMP_F_ORIG_STACK BIT(5)
/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
* e.g., a live patch. This flag is set and cleared by ftrace call backs,
*/
#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
/* Indicate that current trampoline is in a tail call context. Then, it has to
* cache and restore tail_call_cnt to avoid infinite tail call loop.
*/
#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
/*
* Indicate the trampoline should be suitable to receive indirect calls;
* without this indirectly calling the generated code can result in #UD/#CP,
* depending on the CFI options.
*
* Used by bpf_struct_ops.
*
* Incompatible with FENTRY usage, overloads @func_addr argument.
*/
#define BPF_TRAMP_F_INDIRECT BIT(8)
/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
* bytes on x86.
*/
enum {
#if defined(__s390x__)
BPF_MAX_TRAMP_LINKS = 27,
#else
BPF_MAX_TRAMP_LINKS = 38,
#endif
};
struct bpf_tramp_links {
struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
int nr_links;
};
struct bpf_tramp_run_ctx;
/* Different use cases for BPF trampoline:
* 1. replace nop at the function entry (kprobe equivalent)
* flags = BPF_TRAMP_F_RESTORE_REGS
* fentry = a set of programs to run before returning from trampoline
*
* 2. replace nop at the function entry (kprobe + kretprobe equivalent)
* flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
* orig_call = fentry_ip + MCOUNT_INSN_SIZE
* fentry = a set of program to run before calling original function
* fexit = a set of program to run after original function
*
* 3. replace direct call instruction anywhere in the function body
* or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
* With flags = 0
* fentry = a set of programs to run before returning from trampoline
* With flags = BPF_TRAMP_F_CALL_ORIG
* orig_call = original callback addr or direct function addr
* fentry = a set of program to run before calling original function
* fexit = a set of program to run after original function
*/
struct bpf_tramp_image;
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
const struct btf_func_model *m, u32 flags,
struct bpf_tramp_links *tlinks,
void *func_addr);
void *arch_alloc_bpf_trampoline(unsigned int size);
void arch_free_bpf_trampoline(void *image, unsigned int size);
int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
struct bpf_tramp_links *tlinks, void *func_addr);
u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
struct bpf_tramp_run_ctx *run_ctx);
void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
struct bpf_tramp_run_ctx *run_ctx);
void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
struct bpf_tramp_run_ctx *run_ctx);
typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
struct bpf_tramp_run_ctx *run_ctx);
bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
struct bpf_ksym {
unsigned long start;
unsigned long end;
char name[KSYM_NAME_LEN];
struct list_head lnode;
struct latch_tree_node tnode;
bool prog;
};
enum bpf_tramp_prog_type {
BPF_TRAMP_FENTRY,
BPF_TRAMP_FEXIT,
BPF_TRAMP_MODIFY_RETURN,
BPF_TRAMP_MAX,
BPF_TRAMP_REPLACE, /* more than MAX */
};
struct bpf_tramp_image {
void *image;
int size;
struct bpf_ksym ksym;
struct percpu_ref pcref;
void *ip_after_call;
void *ip_epilogue;
union {
struct rcu_head rcu;
struct work_struct work;
};
};
struct bpf_trampoline {
/* hlist for trampoline_table */
struct hlist_node hlist;
struct ftrace_ops *fops;
/* serializes access to fields of this trampoline */
struct mutex mutex;
refcount_t refcnt;
u32 flags;
u64 key;
struct {
struct btf_func_model model;
void *addr;
bool ftrace_managed;
} func;
/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
* program by replacing one of its functions. func.addr is the address
* of the function it replaced.
*/
struct bpf_prog *extension_prog;
/* list of BPF programs using this trampoline */
struct hlist_head progs_hlist[BPF_TRAMP_MAX];
/* Number of attached programs. A counter per kind. */
int progs_cnt[BPF_TRAMP_MAX];
/* Executable image of trampoline */
struct bpf_tramp_image *cur_image;
};
struct bpf_attach_target_info {
struct btf_func_model fmodel;
long tgt_addr;
struct module *tgt_mod;
const char *tgt_name;
const struct btf_type *tgt_type;
};
#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
struct bpf_dispatcher_prog {
struct bpf_prog *prog;
refcount_t users;
};
struct bpf_dispatcher {
/* dispatcher mutex */
struct mutex mutex;
void *func;
struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
int num_progs;
void *image;
void *rw_image;
u32 image_off;
struct bpf_ksym ksym;
#ifdef CONFIG_HAVE_STATIC_CALL
struct static_call_key *sc_key;
void *sc_tramp;
#endif
};
#ifndef __bpfcall
#define __bpfcall __nocfi
#endif
static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
const void *ctx,
const struct bpf_insn *insnsi,
bpf_func_t bpf_func)
{
return bpf_func(ctx, insnsi);
}
/* the implementation of the opaque uapi struct bpf_dynptr */
struct bpf_dynptr_kern {
void *data;
/* Size represents the number of usable bytes of dynptr data.
* If for example the offset is at 4 for a local dynptr whose data is
* of type u64, the number of usable bytes is 4.
*
* The upper 8 bits are reserved. It is as follows:
* Bits 0 - 23 = size
* Bits 24 - 30 = dynptr type
* Bit 31 = whether dynptr is read-only
*/
u32 size;
u32 offset;
} __aligned(8);
enum bpf_dynptr_type {
BPF_DYNPTR_TYPE_INVALID,
/* Points to memory that is local to the bpf program */
BPF_DYNPTR_TYPE_LOCAL,
/* Underlying data is a ringbuf record */
BPF_DYNPTR_TYPE_RINGBUF,
/* Underlying data is a sk_buff */
BPF_DYNPTR_TYPE_SKB,
/* Underlying data is a xdp_buff */
BPF_DYNPTR_TYPE_XDP,
};
int bpf_dynptr_check_size(u32 size);
u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
#ifdef CONFIG_BPF_JIT
int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
struct bpf_trampoline *bpf_trampoline_get(u64 key,
struct bpf_attach_target_info *tgt_info);
void bpf_trampoline_put(struct bpf_trampoline *tr);
int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
/*
* When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
* indirection with a direct call to the bpf program. If the architecture does
* not have STATIC_CALL, avoid a double-indirection.
*/
#ifdef CONFIG_HAVE_STATIC_CALL
#define __BPF_DISPATCHER_SC_INIT(_name) \
.sc_key = &STATIC_CALL_KEY(_name), \
.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
#define __BPF_DISPATCHER_SC(name) \
DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
#define __BPF_DISPATCHER_CALL(name) \
static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
#define __BPF_DISPATCHER_UPDATE(_d, _new) \
__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
#else
#define __BPF_DISPATCHER_SC_INIT(name)
#define __BPF_DISPATCHER_SC(name)
#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
#define __BPF_DISPATCHER_UPDATE(_d, _new)
#endif
#define BPF_DISPATCHER_INIT(_name) { \
.mutex = __MUTEX_INITIALIZER(_name.mutex), \
.func = &_name##_func, \
.progs = {}, \
.num_progs = 0, \
.image = NULL, \
.image_off = 0, \
.ksym = { \
.name = #_name, \
.lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
}, \
__BPF_DISPATCHER_SC_INIT(_name##_call) \
}
#define DEFINE_BPF_DISPATCHER(name) \
__BPF_DISPATCHER_SC(name); \
noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
const void *ctx, \
const struct bpf_insn *insnsi, \
bpf_func_t bpf_func) \
{ \
return __BPF_DISPATCHER_CALL(name); \
} \
EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
struct bpf_dispatcher bpf_dispatcher_##name = \
BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
#define DECLARE_BPF_DISPATCHER(name) \
unsigned int bpf_dispatcher_##name##_func( \
const void *ctx, \
const struct bpf_insn *insnsi, \
bpf_func_t bpf_func); \
extern struct bpf_dispatcher bpf_dispatcher_##name;
#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
struct bpf_prog *to);
/* Called only from JIT-enabled code, so there's no need for stubs. */
void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
void bpf_image_ksym_del(struct bpf_ksym *ksym);
void bpf_ksym_add(struct bpf_ksym *ksym);
void bpf_ksym_del(struct bpf_ksym *ksym);
int bpf_jit_charge_modmem(u32 size);
void bpf_jit_uncharge_modmem(u32 size);
bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
#else
static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
struct bpf_trampoline *tr)
{
return -ENOTSUPP;
}
static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
struct bpf_trampoline *tr)
{
return -ENOTSUPP;
}
static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
struct bpf_attach_target_info *tgt_info)
{
return NULL;
}
static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
#define DEFINE_BPF_DISPATCHER(name)
#define DECLARE_BPF_DISPATCHER(name)
#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
#define BPF_DISPATCHER_PTR(name) NULL
static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
struct bpf_prog *from,
struct bpf_prog *to) {}
static inline bool is_bpf_image_address(unsigned long address)
{
return false;
}
static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
{
return false;
}
#endif
struct bpf_func_info_aux {
u16 linkage;
bool unreliable;
bool called : 1;
bool verified : 1;
};
enum bpf_jit_poke_reason {
BPF_POKE_REASON_TAIL_CALL,
};
/* Descriptor of pokes pointing /into/ the JITed image. */
struct bpf_jit_poke_descriptor {
void *tailcall_target;
void *tailcall_bypass;
void *bypass_addr;
void *aux;
union {
struct {
struct bpf_map *map;
u32 key;
} tail_call;
};
bool tailcall_target_stable;
u8 adj_off;
u16 reason;
u32 insn_idx;
};
/* reg_type info for ctx arguments */
struct bpf_ctx_arg_aux {
u32 offset;
enum bpf_reg_type reg_type;
struct btf *btf;
u32 btf_id;
};
struct btf_mod_pair {
struct btf *btf;
struct module *module;
};
struct bpf_kfunc_desc_tab;
struct bpf_prog_aux {
atomic64_t refcnt;
u32 used_map_cnt;
u32 used_btf_cnt;
u32 max_ctx_offset;
u32 max_pkt_offset;
u32 max_tp_access;
u32 stack_depth;
u32 id;
u32 func_cnt; /* used by non-func prog as the number of func progs */
u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
u32 attach_btf_id; /* in-kernel BTF type id to attach to */
u32 ctx_arg_info_size;
u32 max_rdonly_access;
u32 max_rdwr_access;
struct btf *attach_btf;
const struct bpf_ctx_arg_aux *ctx_arg_info;
struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
struct bpf_prog *dst_prog;
struct bpf_trampoline *dst_trampoline;
enum bpf_prog_type saved_dst_prog_type;
enum bpf_attach_type saved_dst_attach_type;
bool verifier_zext; /* Zero extensions has been inserted by verifier. */
bool dev_bound; /* Program is bound to the netdev. */
bool offload_requested; /* Program is bound and offloaded to the netdev. */
bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
bool attach_tracing_prog; /* true if tracing another tracing program */
bool func_proto_unreliable;
bool tail_call_reachable;
bool xdp_has_frags;
bool exception_cb;
bool exception_boundary;
struct bpf_arena *arena;
/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
const struct btf_type *attach_func_proto;
/* function name for valid attach_btf_id */
const char *attach_func_name;
struct bpf_prog **func;
void *jit_data; /* JIT specific data. arch dependent */
struct bpf_jit_poke_descriptor *poke_tab;
struct bpf_kfunc_desc_tab *kfunc_tab;
struct bpf_kfunc_btf_tab *kfunc_btf_tab;
u32 size_poke_tab;
#ifdef CONFIG_FINEIBT
struct bpf_ksym ksym_prefix;
#endif
struct bpf_ksym ksym;
const struct bpf_prog_ops *ops;
struct bpf_map **used_maps;
struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
struct btf_mod_pair *used_btfs;
struct bpf_prog *prog;
struct user_struct *user;
u64 load_time; /* ns since boottime */
u32 verified_insns;
int cgroup_atype; /* enum cgroup_bpf_attach_type */
struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
char name[BPF_OBJ_NAME_LEN];
u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
#ifdef CONFIG_SECURITY
void *security;
#endif
struct bpf_token *token;
struct bpf_prog_offload *offload;
struct btf *btf;
struct bpf_func_info *func_info;
struct bpf_func_info_aux *func_info_aux;
/* bpf_line_info loaded from userspace. linfo->insn_off
* has the xlated insn offset.
* Both the main and sub prog share the same linfo.
* The subprog can access its first linfo by
* using the linfo_idx.
*/
struct bpf_line_info *linfo;
/* jited_linfo is the jited addr of the linfo. It has a
* one to one mapping to linfo:
* jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
* Both the main and sub prog share the same jited_linfo.
* The subprog can access its first jited_linfo by
* using the linfo_idx.
*/
void **jited_linfo;
u32 func_info_cnt;
u32 nr_linfo;
/* subprog can use linfo_idx to access its first linfo and
* jited_linfo.
* main prog always has linfo_idx == 0
*/
u32 linfo_idx;
struct module *mod;
u32 num_exentries;
struct exception_table_entry *extable;
union {
struct work_struct work;
struct rcu_head rcu;
};
};
struct bpf_prog {
u16 pages; /* Number of allocated pages */
u16 jited:1, /* Is our filter JIT'ed? */
jit_requested:1,/* archs need to JIT the prog */
gpl_compatible:1, /* Is filter GPL compatible? */
cb_access:1, /* Is control block accessed? */
dst_needed:1, /* Do we need dst entry? */
blinding_requested:1, /* needs constant blinding */
blinded:1, /* Was blinded */
is_func:1, /* program is a bpf function */
kprobe_override:1, /* Do we override a kprobe? */
has_callchain_buf:1, /* callchain buffer allocated? */
enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
call_get_func_ip:1, /* Do we call get_func_ip() */
tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
sleepable:1; /* BPF program is sleepable */
enum bpf_prog_type type; /* Type of BPF program */
enum bpf_attach_type expected_attach_type; /* For some prog types */
u32 len; /* Number of filter blocks */
u32 jited_len; /* Size of jited insns in bytes */
u8 tag[BPF_TAG_SIZE];
struct bpf_prog_stats __percpu *stats;
int __percpu *active;
unsigned int (*bpf_func)(const void *ctx,
const struct bpf_insn *insn);
struct bpf_prog_aux *aux; /* Auxiliary fields */
struct sock_fprog_kern *orig_prog; /* Original BPF program */
/* Instructions for interpreter */
union {
DECLARE_FLEX_ARRAY(struct sock_filter, insns);
DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
};
};
struct bpf_array_aux {
/* Programs with direct jumps into programs part of this array. */
struct list_head poke_progs;
struct bpf_map *map;
struct mutex poke_mutex;
struct work_struct work;
};
struct bpf_link {
atomic64_t refcnt;
u32 id;
enum bpf_link_type type;
const struct bpf_link_ops *ops;
struct bpf_prog *prog;
/* rcu is used before freeing, work can be used to schedule that
* RCU-based freeing before that, so they never overlap
*/
union {
struct rcu_head rcu;
struct work_struct work;
};
};
struct bpf_link_ops {
void (*release)(struct bpf_link *link);
/* deallocate link resources callback, called without RCU grace period
* waiting
*/
void (*dealloc)(struct bpf_link *link);
/* deallocate link resources callback, called after RCU grace period;
* if underlying BPF program is sleepable we go through tasks trace
* RCU GP and then "classic" RCU GP
*/
void (*dealloc_deferred)(struct bpf_link *link);
int (*detach)(struct bpf_link *link);
int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
struct bpf_prog *old_prog);
void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
int (*fill_link_info)(const struct bpf_link *link,
struct bpf_link_info *info);
int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
struct bpf_map *old_map);
__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
};
struct bpf_tramp_link {
struct bpf_link link;
struct hlist_node tramp_hlist;
u64 cookie;
};
struct bpf_shim_tramp_link {
struct bpf_tramp_link link;
struct bpf_trampoline *trampoline;
};
struct bpf_tracing_link {
struct bpf_tramp_link link;
enum bpf_attach_type attach_type;
struct bpf_trampoline *trampoline;
struct bpf_prog *tgt_prog;
};
struct bpf_raw_tp_link {
struct bpf_link link;
struct bpf_raw_event_map *btp;
u64 cookie;
};
struct bpf_link_primer {
struct bpf_link *link;
struct file *file;
int fd;
u32 id;
};
struct bpf_mount_opts {
kuid_t uid;
kgid_t gid;
umode_t mode;
/* BPF token-related delegation options */
u64 delegate_cmds;
u64 delegate_maps;
u64 delegate_progs;
u64 delegate_attachs;
};
struct bpf_token {
struct work_struct work;
atomic64_t refcnt;
struct user_namespace *userns;
u64 allowed_cmds;
u64 allowed_maps;
u64 allowed_progs;
u64 allowed_attachs;
#ifdef CONFIG_SECURITY
void *security;
#endif
};
struct bpf_struct_ops_value;
struct btf_member;
#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
/**
* struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
* define a BPF_MAP_TYPE_STRUCT_OPS map type composed
* of BPF_PROG_TYPE_STRUCT_OPS progs.
* @verifier_ops: A structure of callbacks that are invoked by the verifier
* when determining whether the struct_ops progs in the
* struct_ops map are valid.
* @init: A callback that is invoked a single time, and before any other
* callback, to initialize the structure. A nonzero return value means
* the subsystem could not be initialized.
* @check_member: When defined, a callback invoked by the verifier to allow
* the subsystem to determine if an entry in the struct_ops map
* is valid. A nonzero return value means that the map is
* invalid and should be rejected by the verifier.
* @init_member: A callback that is invoked for each member of the struct_ops
* map to allow the subsystem to initialize the member. A nonzero
* value means the member could not be initialized. This callback
* is exclusive with the @type, @type_id, @value_type, and
* @value_id fields.
* @reg: A callback that is invoked when the struct_ops map has been
* initialized and is being attached to. Zero means the struct_ops map
* has been successfully registered and is live. A nonzero return value
* means the struct_ops map could not be registered.
* @unreg: A callback that is invoked when the struct_ops map should be
* unregistered.
* @update: A callback that is invoked when the live struct_ops map is being
* updated to contain new values. This callback is only invoked when
* the struct_ops map is loaded with BPF_F_LINK. If not defined, the
* it is assumed that the struct_ops map cannot be updated.
* @validate: A callback that is invoked after all of the members have been
* initialized. This callback should perform static checks on the
* map, meaning that it should either fail or succeed
* deterministically. A struct_ops map that has been validated may
* not necessarily succeed in being registered if the call to @reg
* fails. For example, a valid struct_ops map may be loaded, but
* then fail to be registered due to there being another active
* struct_ops map on the system in the subsystem already. For this
* reason, if this callback is not defined, the check is skipped as
* the struct_ops map will have final verification performed in
* @reg.
* @type: BTF type.
* @value_type: Value type.
* @name: The name of the struct bpf_struct_ops object.
* @func_models: Func models
* @type_id: BTF type id.
* @value_id: BTF value id.
*/
struct bpf_struct_ops {
const struct bpf_verifier_ops *verifier_ops;
int (*init)(struct btf *btf);
int (*check_member)(const struct btf_type *t,
const struct btf_member *member,
const struct bpf_prog *prog);
int (*init_member)(const struct btf_type *t,
const struct btf_member *member,
void *kdata, const void *udata);
int (*reg)(void *kdata, struct bpf_link *link);
void (*unreg)(void *kdata, struct bpf_link *link);
int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
int (*validate)(void *kdata);
void *cfi_stubs;
struct module *owner;
const char *name;
struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
};
/* Every member of a struct_ops type has an instance even a member is not
* an operator (function pointer). The "info" field will be assigned to
* prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
* argument information required by the verifier to verify the program.
*
* btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
* corresponding entry for an given argument.
*/
struct bpf_struct_ops_arg_info {
struct bpf_ctx_arg_aux *info;
u32 cnt;
};
struct bpf_struct_ops_desc {
struct bpf_struct_ops *st_ops;
const struct btf_type *type;
const struct btf_type *value_type;
u32 type_id;
u32 value_id;
/* Collection of argument information for each member */
struct bpf_struct_ops_arg_info *arg_info;
};
enum bpf_struct_ops_state {
BPF_STRUCT_OPS_STATE_INIT,
BPF_STRUCT_OPS_STATE_INUSE,
BPF_STRUCT_OPS_STATE_TOBEFREE,
BPF_STRUCT_OPS_STATE_READY,
};
struct bpf_struct_ops_common_value {
refcount_t refcnt;
enum bpf_struct_ops_state state;
};
#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
/* This macro helps developer to register a struct_ops type and generate
* type information correctly. Developers should use this macro to register
* a struct_ops type instead of calling __register_bpf_struct_ops() directly.
*/
#define register_bpf_struct_ops(st_ops, type) \
({ \
struct bpf_struct_ops_##type { \
struct bpf_struct_ops_common_value common; \
struct type data ____cacheline_aligned_in_smp; \
}; \
BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
__register_bpf_struct_ops(st_ops); \
})
#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
bool bpf_struct_ops_get(const void *kdata);
void bpf_struct_ops_put(const void *kdata);
int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
void *value);
int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
struct bpf_tramp_link *link,
const struct btf_func_model *model,
void *stub_func,
void **image, u32 *image_off,
bool allow_alloc);
void bpf_struct_ops_image_free(void *image);
static inline bool bpf_try_module_get(const void *data, struct module *owner)
{
if (owner == BPF_MODULE_OWNER)
return bpf_struct_ops_get(data);
else
return try_module_get(owner);
}
static inline void bpf_module_put(const void *data, struct module *owner)
{
if (owner == BPF_MODULE_OWNER)
bpf_struct_ops_put(data);
else
module_put(owner);
}
int bpf_struct_ops_link_create(union bpf_attr *attr);
#ifdef CONFIG_NET
/* Define it here to avoid the use of forward declaration */
struct bpf_dummy_ops_state {
int val;
};
struct bpf_dummy_ops {
int (*test_1)(struct bpf_dummy_ops_state *cb);
int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
char a3, unsigned long a4);
int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
};
int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
#endif
int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
struct btf *btf,
struct bpf_verifier_log *log);
void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
#else
#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
static inline bool bpf_try_module_get(const void *data, struct module *owner)
{
return try_module_get(owner);
}
static inline void bpf_module_put(const void *data, struct module *owner)
{
module_put(owner);
}
static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
{
return -ENOTSUPP;
}
static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
void *key,
void *value)
{
return -EINVAL;
}
static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
{
return -EOPNOTSUPP;
}
static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
{
}
static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
{
}
#endif
#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
int cgroup_atype);
void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
#else
static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
int cgroup_atype)
{
return -EOPNOTSUPP;
}
static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
{
}
#endif
struct bpf_array {
struct bpf_map map;
u32 elem_size;
u32 index_mask;
struct bpf_array_aux *aux;
union {
DECLARE_FLEX_ARRAY(char, value) __aligned(8);
DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
};
};
#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
#define MAX_TAIL_CALL_CNT 33
/* Maximum number of loops for bpf_loop and bpf_iter_num.
* It's enum to expose it (and thus make it discoverable) through BTF.
*/
enum {
BPF_MAX_LOOPS = 8 * 1024 * 1024,
};
#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
BPF_F_RDONLY_PROG | \
BPF_F_WRONLY | \
BPF_F_WRONLY_PROG)
#define BPF_MAP_CAN_READ BIT(0)
#define BPF_MAP_CAN_WRITE BIT(1)
/* Maximum number of user-producer ring buffer samples that can be drained in
* a call to bpf_user_ringbuf_drain().
*/
#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
{
u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
* not possible.
*/
if (access_flags & BPF_F_RDONLY_PROG)
return BPF_MAP_CAN_READ;
else if (access_flags & BPF_F_WRONLY_PROG)
return BPF_MAP_CAN_WRITE;
else
return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
}
static inline bool bpf_map_flags_access_ok(u32 access_flags)
{
return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
(BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
}
struct bpf_event_entry {
struct perf_event *event;
struct file *perf_file;
struct file *map_file;
struct rcu_head rcu;
};
static inline bool map_type_contains_progs(struct bpf_map *map)
{
return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
map->map_type == BPF_MAP_TYPE_DEVMAP ||
map->map_type == BPF_MAP_TYPE_CPUMAP;
}
bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
int bpf_prog_calc_tag(struct bpf_prog *fp);
const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
unsigned long off, unsigned long len);
typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
const struct bpf_insn *src,
struct bpf_insn *dst,
struct bpf_prog *prog,
u32 *target_size);
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
/* an array of programs to be executed under rcu_lock.
*
* Typical usage:
* ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
*
* the structure returned by bpf_prog_array_alloc() should be populated
* with program pointers and the last pointer must be NULL.
* The user has to keep refcnt on the program and make sure the program
* is removed from the array before bpf_prog_put().
* The 'struct bpf_prog_array *' should only be replaced with xchg()
* since other cpus are walking the array of pointers in parallel.
*/
struct bpf_prog_array_item {
struct bpf_prog *prog;
union {
struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
u64 bpf_cookie;
};
};
struct bpf_prog_array {
struct rcu_head rcu;
struct bpf_prog_array_item items[];
};
struct bpf_empty_prog_array {
struct bpf_prog_array hdr;
struct bpf_prog *null_prog;
};
/* to avoid allocating empty bpf_prog_array for cgroups that
* don't have bpf program attached use one global 'bpf_empty_prog_array'
* It will not be modified the caller of bpf_prog_array_alloc()
* (since caller requested prog_cnt == 0)
* that pointer should be 'freed' by bpf_prog_array_free()
*/
extern struct bpf_empty_prog_array bpf_empty_prog_array;
struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
void bpf_prog_array_free(struct bpf_prog_array *progs);
/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
int bpf_prog_array_length(struct bpf_prog_array *progs);
bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
__u32 __user *prog_ids, u32 cnt);
void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
struct bpf_prog *old_prog);
int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
struct bpf_prog *prog);
int bpf_prog_array_copy_info(struct bpf_prog_array *array,
u32 *prog_ids, u32 request_cnt,
u32 *prog_cnt);
int bpf_prog_array_copy(struct bpf_prog_array *old_array,
struct bpf_prog *exclude_prog,
struct bpf_prog *include_prog,
u64 bpf_cookie,
struct bpf_prog_array **new_array);
struct bpf_run_ctx {};
struct bpf_cg_run_ctx {
struct bpf_run_ctx run_ctx;
const struct bpf_prog_array_item *prog_item;
int retval;
};
struct bpf_trace_run_ctx {
struct bpf_run_ctx run_ctx;
u64 bpf_cookie;
bool is_uprobe;
};
struct bpf_tramp_run_ctx {
struct bpf_run_ctx run_ctx;
u64 bpf_cookie;
struct bpf_run_ctx *saved_run_ctx;
};
static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
{
struct bpf_run_ctx *old_ctx = NULL;
#ifdef CONFIG_BPF_SYSCALL
old_ctx = current->bpf_ctx;
current->bpf_ctx = new_ctx;
#endif
return old_ctx;
}
static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
{
#ifdef CONFIG_BPF_SYSCALL
current->bpf_ctx = old_ctx;
#endif
}
/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
/* BPF program asks to set CN on the packet. */
#define BPF_RET_SET_CN (1 << 0)
typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array *array,
const void *ctx, bpf_prog_run_fn run_prog)
{
const struct bpf_prog_array_item *item;
const struct bpf_prog *prog;
struct bpf_run_ctx *old_run_ctx;
struct bpf_trace_run_ctx run_ctx;
u32 ret = 1;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
if (unlikely(!array))
return ret;
run_ctx.is_uprobe = false;
migrate_disable();
old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
item = &array->items[0];
while ((prog = READ_ONCE(item->prog))) {
run_ctx.bpf_cookie = item->bpf_cookie;
ret &= run_prog(prog, ctx);
item++;
}
bpf_reset_run_ctx(old_run_ctx);
migrate_enable();
return ret;
}
/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
*
* We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
* overall. As a result, we must use the bpf_prog_array_free_sleepable
* in order to use the tasks_trace rcu grace period.
*
* When a non-sleepable program is inside the array, we take the rcu read
* section and disable preemption for that program alone, so it can access
* rcu-protected dynamically sized maps.
*/
static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
const void *ctx, bpf_prog_run_fn run_prog)
{
const struct bpf_prog_array_item *item;
const struct bpf_prog *prog;
const struct bpf_prog_array *array;
struct bpf_run_ctx *old_run_ctx;
struct bpf_trace_run_ctx run_ctx;
u32 ret = 1;
might_fault();
rcu_read_lock_trace();
migrate_disable();
run_ctx.is_uprobe = true;
array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
if (unlikely(!array))
goto out;
old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
item = &array->items[0];
while ((prog = READ_ONCE(item->prog))) {
if (!prog->sleepable)
rcu_read_lock();
run_ctx.bpf_cookie = item->bpf_cookie;
ret &= run_prog(prog, ctx);
item++;
if (!prog->sleepable)
rcu_read_unlock();
}
bpf_reset_run_ctx(old_run_ctx);
out:
migrate_enable();
rcu_read_unlock_trace();
return ret;
}
#ifdef CONFIG_BPF_SYSCALL
DECLARE_PER_CPU(int, bpf_prog_active);
extern struct mutex bpf_stats_enabled_mutex;
/*
* Block execution of BPF programs attached to instrumentation (perf,
* kprobes, tracepoints) to prevent deadlocks on map operations as any of
* these events can happen inside a region which holds a map bucket lock
* and can deadlock on it.
*/
static inline void bpf_disable_instrumentation(void)
{
migrate_disable();
this_cpu_inc(bpf_prog_active);
}
static inline void bpf_enable_instrumentation(void)
{
this_cpu_dec(bpf_prog_active);
migrate_enable();
}
extern const struct super_operations bpf_super_ops;
extern const struct file_operations bpf_map_fops;
extern const struct file_operations bpf_prog_fops;
extern const struct file_operations bpf_iter_fops;
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
extern const struct bpf_prog_ops _name ## _prog_ops; \
extern const struct bpf_verifier_ops _name ## _verifier_ops;
#define BPF_MAP_TYPE(_id, _ops) \
extern const struct bpf_map_ops _ops;
#define BPF_LINK_TYPE(_id, _name)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
#undef BPF_LINK_TYPE
extern const struct bpf_prog_ops bpf_offload_prog_ops;
extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
extern const struct bpf_verifier_ops xdp_analyzer_ops;
struct bpf_prog *bpf_prog_get(u32 ufd);
struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
bool attach_drv);
void bpf_prog_add(struct bpf_prog *prog, int i);
void bpf_prog_sub(struct bpf_prog *prog, int i);
void bpf_prog_inc(struct bpf_prog *prog);
struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
void bpf_prog_put(struct bpf_prog *prog);
void bpf_prog_free_id(struct bpf_prog *prog);
void bpf_map_free_id(struct bpf_map *map);
struct btf_field *btf_record_find(const struct btf_record *rec,
u32 offset, u32 field_mask);
void btf_record_free(struct btf_record *rec);
void bpf_map_free_record(struct bpf_map *map);
struct btf_record *btf_record_dup(const struct btf_record *rec);
bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
struct bpf_map *bpf_map_get(u32 ufd);
struct bpf_map *bpf_map_get_with_uref(u32 ufd);
static inline struct bpf_map *__bpf_map_get(struct fd f)
{
if (fd_empty(f))
return ERR_PTR(-EBADF);
if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
return ERR_PTR(-EINVAL);
return fd_file(f)->private_data;
}
void bpf_map_inc(struct bpf_map *map);
void bpf_map_inc_with_uref(struct bpf_map *map);
struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
void bpf_map_put_with_uref(struct bpf_map *map);
void bpf_map_put(struct bpf_map *map);
void *bpf_map_area_alloc(u64 size, int numa_node);
void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
void bpf_map_area_free(void *base);
bool bpf_map_write_active(const struct bpf_map *map);
void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
int generic_map_lookup_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
int generic_map_delete_batch(struct bpf_map *map,
const union bpf_attr *attr,
union bpf_attr __user *uattr);
struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
unsigned long nr_pages, struct page **page_array);
#ifdef CONFIG_MEMCG
void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
int node);
void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
gfp_t flags);
void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
size_t align, gfp_t flags);
#else
/*
* These specialized allocators have to be macros for their allocations to be
* accounted separately (to have separate alloc_tag).
*/
#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
kmalloc_node(_size, _flags, _node)
#define bpf_map_kzalloc(_map, _size, _flags) \
kzalloc(_size, _flags)
#define bpf_map_kvcalloc(_map, _n, _size, _flags) \
kvcalloc(_n, _size, _flags)
#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
__alloc_percpu_gfp(_size, _align, _flags)
#endif
static inline int
bpf_map_init_elem_count(struct bpf_map *map)
{
size_t size = sizeof(*map->elem_count), align = size;
gfp_t flags = GFP_USER | __GFP_NOWARN;
map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
if (!map->elem_count)
return -ENOMEM;
return 0;
}
static inline void
bpf_map_free_elem_count(struct bpf_map *map)
{
free_percpu(map->elem_count);
}
static inline void bpf_map_inc_elem_count(struct bpf_map *map)
{
this_cpu_inc(*map->elem_count);
}
static inline void bpf_map_dec_elem_count(struct bpf_map *map)
{
this_cpu_dec(*map->elem_count);
}
extern int sysctl_unprivileged_bpf_disabled;
bool bpf_token_capable(const struct bpf_token *token, int cap);
static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
{
return bpf_token_capable(token, CAP_PERFMON);
}
static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
{
return bpf_token_capable(token, CAP_PERFMON);
}
static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
{
return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
}
static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
{
return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
}
int bpf_map_new_fd(struct bpf_map *map, int flags);
int bpf_prog_new_fd(struct bpf_prog *prog);
void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
const struct bpf_link_ops *ops, struct bpf_prog *prog);
int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
int bpf_link_settle(struct bpf_link_primer *primer);
void bpf_link_cleanup(struct bpf_link_primer *primer);
void bpf_link_inc(struct bpf_link *link);
struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
void bpf_link_put(struct bpf_link *link);
int bpf_link_new_fd(struct bpf_link *link);
struct bpf_link *bpf_link_get_from_fd(u32 ufd);
struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
void bpf_token_inc(struct bpf_token *token);
void bpf_token_put(struct bpf_token *token);
int bpf_token_create(union bpf_attr *attr);
struct bpf_token *bpf_token_get_from_fd(u32 ufd);
bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
bool bpf_token_allow_prog_type(const struct bpf_token *token,
enum bpf_prog_type prog_type,
enum bpf_attach_type attach_type);
int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
umode_t mode);
#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
#define DEFINE_BPF_ITER_FUNC(target, args...) \
extern int bpf_iter_ ## target(args); \
int __init bpf_iter_ ## target(args) { return 0; }
/*
* The task type of iterators.
*
* For BPF task iterators, they can be parameterized with various
* parameters to visit only some of tasks.
*
* BPF_TASK_ITER_ALL (default)
* Iterate over resources of every task.
*
* BPF_TASK_ITER_TID
* Iterate over resources of a task/tid.
*
* BPF_TASK_ITER_TGID
* Iterate over resources of every task of a process / task group.
*/
enum bpf_iter_task_type {
BPF_TASK_ITER_ALL = 0,
BPF_TASK_ITER_TID,
BPF_TASK_ITER_TGID,
};
struct bpf_iter_aux_info {
/* for map_elem iter */
struct bpf_map *map;
/* for cgroup iter */
struct {
struct cgroup *start; /* starting cgroup */
enum bpf_cgroup_iter_order order;
} cgroup;
struct {
enum bpf_iter_task_type type;
u32 pid;
} task;
};
typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
union bpf_iter_link_info *linfo,
struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
struct seq_file *seq);
typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
struct bpf_link_info *info);
typedef const struct bpf_func_proto *
(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
const struct bpf_prog *prog);
enum bpf_iter_feature {
BPF_ITER_RESCHED = BIT(0),
};
#define BPF_ITER_CTX_ARG_MAX 2
struct bpf_iter_reg {
const char *target;
bpf_iter_attach_target_t attach_target;
bpf_iter_detach_target_t detach_target;
bpf_iter_show_fdinfo_t show_fdinfo;
bpf_iter_fill_link_info_t fill_link_info;
bpf_iter_get_func_proto_t get_func_proto;
u32 ctx_arg_info_size;
u32 feature;
struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
const struct bpf_iter_seq_info *seq_info;
};
struct bpf_iter_meta {
__bpf_md_ptr(struct seq_file *, seq);
u64 session_id;
u64 seq_num;
};
struct bpf_iter__bpf_map_elem {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct bpf_map *, map);
__bpf_md_ptr(void *, key);
__bpf_md_ptr(void *, value);
};
int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
bool bpf_iter_prog_supported(struct bpf_prog *prog);
const struct bpf_func_proto *
bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
int bpf_iter_new_fd(struct bpf_link *link);
bool bpf_link_is_iter(struct bpf_link *link);
struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
struct seq_file *seq);
int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
struct bpf_link_info *info);
int map_set_for_each_callback_args(struct bpf_verifier_env *env,
struct bpf_func_state *caller,
struct bpf_func_state *callee);
int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
u64 flags);
int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
u64 flags);
int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags);
int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags);
int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
int bpf_get_file_flag(int flags);
int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
size_t actual_size);
/* verify correctness of eBPF program */
int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
#endif
struct btf *bpf_get_btf_vmlinux(void);
/* Map specifics */
struct xdp_frame;
struct sk_buff;
struct bpf_dtab_netdev;
struct bpf_cpu_map_entry;
void __dev_flush(struct list_head *flush_list);
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
struct net_device *dev_rx);
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
struct net_device *dev_rx);
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
struct bpf_map *map, bool exclude_ingress);
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
struct bpf_prog *xdp_prog);
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
struct bpf_prog *xdp_prog, struct bpf_map *map,
bool exclude_ingress);
void __cpu_map_flush(struct list_head *flush_list);
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
struct net_device *dev_rx);
int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
struct sk_buff *skb);
/* Return map's numa specified by userspace */
static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
{
return (attr->map_flags & BPF_F_NUMA_NODE) ?
attr->numa_node : NUMA_NO_NODE;
}
struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
int array_map_alloc_check(union bpf_attr *attr);
int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_nf(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info);
static inline bool bpf_tracing_ctx_access(int off, int size,
enum bpf_access_type type)
{
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
return true;
}
static inline bool bpf_tracing_btf_ctx_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (!bpf_tracing_ctx_access(off, size, type))
return false;
return btf_ctx_access(off, size, type, prog, info);
}
int btf_struct_access(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off, int size, enum bpf_access_type atype,
u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
bool btf_struct_ids_match(struct bpf_verifier_log *log,
const struct btf *btf, u32 id, int off,
const struct btf *need_btf, u32 need_type_id,
bool strict);
int btf_distill_func_proto(struct bpf_verifier_log *log,
struct btf *btf,
const struct btf_type *func_proto,
const char *func_name,
struct btf_func_model *m);
struct bpf_reg_state;
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
struct btf *btf, const struct btf_type *t);
const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
int comp_idx, const char *tag_key);
int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
int comp_idx, const char *tag_key, int last_id);
struct bpf_prog *bpf_prog_by_id(u32 id);
struct bpf_link *bpf_link_by_id(u32 id);
const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
const struct bpf_prog *prog);
void bpf_task_storage_free(struct task_struct *task);
void bpf_cgrp_storage_free(struct cgroup *cgroup);
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
const struct bpf_insn *insn);
int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
u16 btf_fd_idx, u8 **func_addr);
struct bpf_core_ctx {
struct bpf_verifier_log *log;
const struct btf *btf;
};
bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
const char *field_name, u32 btf_id, const char *suffix);
bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
const struct btf *reg_btf, u32 reg_id,
const struct btf *arg_btf, u32 arg_id);
int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
int relo_idx, void *insn);
static inline bool unprivileged_ebpf_enabled(void)
{
return !sysctl_unprivileged_bpf_disabled;
}
/* Not all bpf prog type has the bpf_ctx.
* For the bpf prog type that has initialized the bpf_ctx,
* this function can be used to decide if a kernel function
* is called by a bpf program.
*/
static inline bool has_current_bpf_ctx(void)
{
return !!current->bpf_ctx;
}
void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size);
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
#else /* !CONFIG_BPF_SYSCALL */
static inline struct bpf_prog *bpf_prog_get(u32 ufd)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
enum bpf_prog_type type,
bool attach_drv)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_prog_add(struct bpf_prog *prog, int i)
{
}
static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
{
}
static inline void bpf_prog_put(struct bpf_prog *prog)
{
}
static inline void bpf_prog_inc(struct bpf_prog *prog)
{
}
static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog *prog)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
const struct bpf_link_ops *ops,
struct bpf_prog *prog)
{
}
static inline int bpf_link_prime(struct bpf_link *link,
struct bpf_link_primer *primer)
{
return -EOPNOTSUPP;
}
static inline int bpf_link_settle(struct bpf_link_primer *primer)
{
return -EOPNOTSUPP;
}
static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
{
}
static inline void bpf_link_inc(struct bpf_link *link)
{
}
static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
{
return NULL;
}
static inline void bpf_link_put(struct bpf_link *link)
{
}
static inline int bpf_obj_get_user(const char __user *pathname, int flags)
{
return -EOPNOTSUPP;
}
static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
{
return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
}
static inline void bpf_token_inc(struct bpf_token *token)
{
}
static inline void bpf_token_put(struct bpf_token *token)
{
}
static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void __dev_flush(struct list_head *flush_list)
{
}
struct xdp_frame;
struct bpf_dtab_netdev;
struct bpf_cpu_map_entry;
static inline
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
return 0;
}
static inline
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
return 0;
}
static inline
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
struct bpf_map *map, bool exclude_ingress)
{
return 0;
}
struct sk_buff;
static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
struct sk_buff *skb,
struct bpf_prog *xdp_prog)
{
return 0;
}
static inline
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
struct bpf_prog *xdp_prog, struct bpf_map *map,
bool exclude_ingress)
{
return 0;
}
static inline void __cpu_map_flush(struct list_head *flush_list)
{
}
static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
return 0;
}
static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
struct sk_buff *skb)
{
return -EOPNOTSUPP;
}
static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
enum bpf_prog_type type)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
static inline void bpf_map_put(struct bpf_map *map)
{
}
static inline struct bpf_prog *bpf_prog_by_id(u32 id)
{
return ERR_PTR(-ENOTSUPP);
}
static inline int btf_struct_access(struct bpf_verifier_log *log,
const struct bpf_reg_state *reg,
int off, int size, enum bpf_access_type atype,
u32 *next_btf_id, enum bpf_type_flag *flag,
const char **field_name)
{
return -EACCES;
}
static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
return NULL;
}
static inline void bpf_task_storage_free(struct task_struct *task)
{
}
static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
{
return false;
}
static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
const struct bpf_insn *insn)
{
return NULL;
}
static inline int
bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
u16 btf_fd_idx, u8 **func_addr)
{
return -ENOTSUPP;
}
static inline bool unprivileged_ebpf_enabled(void)
{
return false;
}
static inline bool has_current_bpf_ctx(void)
{
return false;
}
static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
{
}
static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
{
}
static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size)
{
}
static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
{
}
static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
{
}
#endif /* CONFIG_BPF_SYSCALL */
static __always_inline int
bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
{
int ret = -EFAULT;
if (IS_ENABLED(CONFIG_BPF_EVENTS))
ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
enum bpf_prog_type type)
{
return bpf_prog_get_type_dev(ufd, type, false);
}
void __bpf_free_used_maps(struct bpf_prog_aux *aux,
struct bpf_map **used_maps, u32 len);
bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
int bpf_prog_offload_compile(struct bpf_prog *prog);
void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
struct bpf_prog *prog);
int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
int bpf_map_offload_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags);
int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
int bpf_map_offload_get_next_key(struct bpf_map *map,
void *key, void *next_key);
bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
struct bpf_offload_dev *
bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
struct net_device *netdev);
void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
struct net_device *netdev);
bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
void unpriv_ebpf_notify(int new_state);
#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
struct bpf_prog_aux *prog_aux);
void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
void bpf_dev_bound_netdev_unregister(struct net_device *dev);
static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
{
return aux->dev_bound;
}
static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
{
return aux->offload_requested;
}
bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
static inline bool bpf_map_is_offloaded(struct bpf_map *map)
{
return unlikely(map->ops == &bpf_map_offload_ops);
}
struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
void bpf_map_offload_map_free(struct bpf_map *map);
u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
int sock_map_bpf_prog_query(const union bpf_attr *attr,
union bpf_attr __user *uattr);
int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
void sock_map_unhash(struct sock *sk);
void sock_map_destroy(struct sock *sk);
void sock_map_close(struct sock *sk, long timeout);
#else
static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
struct bpf_prog_aux *prog_aux)
{
return -EOPNOTSUPP;
}
static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
u32 func_id)
{
return NULL;
}
static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
union bpf_attr *attr)
{
return -EOPNOTSUPP;
}
static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
struct bpf_prog *old_prog)
{
return -EOPNOTSUPP;
}
static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
{
}
static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
{
return false;
}
static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
{
return false;
}
static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
{
return false;
}
static inline bool bpf_map_is_offloaded(struct bpf_map *map)
{
return false;
}
static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_map_offload_map_free(struct bpf_map *map)
{
}
static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
{
return 0;
}
static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
#ifdef CONFIG_BPF_SYSCALL
static inline int sock_map_get_from_fd(const union bpf_attr *attr,
struct bpf_prog *prog)
{
return -EINVAL;
}
static inline int sock_map_prog_detach(const union bpf_attr *attr,
enum bpf_prog_type ptype)
{
return -EOPNOTSUPP;
}
static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
u64 flags)
{
return -EOPNOTSUPP;
}
static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return -EINVAL;
}
static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_BPF_SYSCALL */
#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
static __always_inline void
bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
{
const struct bpf_prog_array_item *item;
struct bpf_prog *prog;
if (unlikely(!array))
return;
item = &array->items[0];
while ((prog = READ_ONCE(item->prog))) {
bpf_prog_inc_misses_counter(prog);
item++;
}
}
#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
void bpf_sk_reuseport_detach(struct sock *sk);
int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
void *value);
int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags);
#else
static inline void bpf_sk_reuseport_detach(struct sock *sk)
{
}
#ifdef CONFIG_BPF_SYSCALL
static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
void *key, void *value)
{
return -EOPNOTSUPP;
}
static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
void *key, void *value,
u64 map_flags)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_BPF_SYSCALL */
#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
/* verifier prototypes for helper functions called from eBPF programs */
extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
extern const struct bpf_func_proto bpf_map_update_elem_proto;
extern const struct bpf_func_proto bpf_map_delete_elem_proto;
extern const struct bpf_func_proto bpf_map_push_elem_proto;
extern const struct bpf_func_proto bpf_map_pop_elem_proto;
extern const struct bpf_func_proto bpf_map_peek_elem_proto;
extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
extern const struct bpf_func_proto bpf_tail_call_proto;
extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
extern const struct bpf_func_proto bpf_get_current_comm_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto;
extern const struct bpf_func_proto bpf_get_stack_proto;
extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
extern const struct bpf_func_proto bpf_get_task_stack_proto;
extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
extern const struct bpf_func_proto bpf_get_stack_proto_pe;
extern const struct bpf_func_proto bpf_sock_map_update_proto;
extern const struct bpf_func_proto bpf_sock_hash_update_proto;
extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
extern const struct bpf_func_proto bpf_spin_lock_proto;
extern const struct bpf_func_proto bpf_spin_unlock_proto;
extern const struct bpf_func_proto bpf_get_local_storage_proto;
extern const struct bpf_func_proto bpf_strtol_proto;
extern const struct bpf_func_proto bpf_strtoul_proto;
extern const struct bpf_func_proto bpf_tcp_sock_proto;
extern const struct bpf_func_proto bpf_jiffies64_proto;
extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_event_output_data_proto;
extern const struct bpf_func_proto bpf_ringbuf_output_proto;
extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
extern const struct bpf_func_proto bpf_ringbuf_query_proto;
extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
extern const struct bpf_func_proto bpf_copy_from_user_proto;
extern const struct bpf_func_proto bpf_snprintf_btf_proto;
extern const struct bpf_func_proto bpf_snprintf_proto;
extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
extern const struct bpf_func_proto bpf_sock_from_file_proto;
extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
extern const struct bpf_func_proto bpf_task_storage_get_proto;
extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
extern const struct bpf_func_proto bpf_task_storage_delete_proto;
extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
extern const struct bpf_func_proto bpf_find_vma_proto;
extern const struct bpf_func_proto bpf_loop_proto;
extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
extern const struct bpf_func_proto bpf_set_retval_proto;
extern const struct bpf_func_proto bpf_get_retval_proto;
extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
const struct bpf_func_proto *tracing_prog_func_proto(
enum bpf_func_id func_id, const struct bpf_prog *prog);
/* Shared helpers among cBPF and eBPF. */
void bpf_user_rnd_init_once(void);
u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
#if defined(CONFIG_NET)
bool bpf_sock_common_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info);
bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
struct bpf_dynptr *ptr);
#else
static inline bool bpf_sock_common_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline bool bpf_sock_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size)
{
return 0;
}
static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
struct bpf_dynptr *ptr)
{
return -EOPNOTSUPP;
}
#endif
#ifdef CONFIG_INET
struct sk_reuseport_kern {
struct sk_buff *skb;
struct sock *sk;
struct sock *selected_sk;
struct sock *migrating_sk;
void *data_end;
u32 hash;
u32 reuseport_id;
bool bind_inany;
};
bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size);
#else
static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size)
{
return 0;
}
static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
return false;
}
static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog,
u32 *target_size)
{
return 0;
}
#endif /* CONFIG_INET */
enum bpf_text_poke_type {
BPF_MOD_CALL,
BPF_MOD_JUMP,
};
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
void *addr1, void *addr2);
void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
struct bpf_prog *new, struct bpf_prog *old);
void *bpf_arch_text_copy(void *dst, void *src, size_t len);
int bpf_arch_text_invalidate(void *dst, size_t len);
struct btf_id_set;
bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
#define MAX_BPRINTF_VARARGS 12
#define MAX_BPRINTF_BUF 1024
struct bpf_bprintf_data {
u32 *bin_args;
char *buf;
bool get_bin_args;
bool get_buf;
};
int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
u32 num_args, struct bpf_bprintf_data *data);
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
#ifdef CONFIG_BPF_LSM
void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
void bpf_cgroup_atype_put(int cgroup_atype);
#else
static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
#endif /* CONFIG_BPF_LSM */
struct key;
#ifdef CONFIG_KEYS
struct bpf_key {
struct key *key;
bool has_ref;
};
#endif /* CONFIG_KEYS */
static inline bool type_is_alloc(u32 type)
{
return type & MEM_ALLOC;
}
static inline gfp_t bpf_memcg_flags(gfp_t flags)
{
if (memcg_bpf_enabled())
return flags | __GFP_ACCOUNT;
return flags;
}
static inline bool bpf_is_subprog(const struct bpf_prog *prog)
{
return prog->aux->func_idx != 0;
}
#endif /* _LINUX_BPF_H */