linux-stable/fs/btrfs/messages.c
Qu Wenruo 169aaaf2e0 btrfs: introduce new "rescue=ignoremetacsums" mount option
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the
other metadata sanity checks are still kept as is.

This new mount option is mostly to allow the kernel to mount an
interrupted checksum conversion (at the metadata csum overwrite stage).

And since the main part of metadata sanity checks is inside
tree-checker, we shouldn't lose much safety, and the new mount option is
rescue mount option it requires full read-only mount.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:29 +02:00

313 lines
8.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "fs.h"
#include "messages.h"
#include "discard.h"
#include "super.h"
#ifdef CONFIG_PRINTK
#define STATE_STRING_PREFACE " state "
#define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT + 1)
/*
* Characters to print to indicate error conditions or uncommon filesystem state.
* RO is not an error.
*/
static const char fs_state_chars[] = {
[BTRFS_FS_STATE_REMOUNTING] = 'M',
[BTRFS_FS_STATE_RO] = 0,
[BTRFS_FS_STATE_TRANS_ABORTED] = 'A',
[BTRFS_FS_STATE_DEV_REPLACING] = 'R',
[BTRFS_FS_STATE_DUMMY_FS_INFO] = 0,
[BTRFS_FS_STATE_NO_DATA_CSUMS] = 'C',
[BTRFS_FS_STATE_SKIP_META_CSUMS] = 'S',
[BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L',
};
static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
{
unsigned int bit;
bool states_printed = false;
unsigned long fs_state = READ_ONCE(info->fs_state);
char *curr = buf;
memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
curr += sizeof(STATE_STRING_PREFACE) - 1;
if (BTRFS_FS_ERROR(info)) {
*curr++ = 'E';
states_printed = true;
}
for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
*curr++ = fs_state_chars[bit];
states_printed = true;
}
}
/* If no states were printed, reset the buffer */
if (!states_printed)
curr = buf;
*curr++ = 0;
}
#endif
/*
* Generally the error codes correspond to their respective errors, but there
* are a few special cases.
*
* EUCLEAN: Any sort of corruption that we encounter. The tree-checker for
* instance will return EUCLEAN if any of the blocks are corrupted in
* a way that is problematic. We want to reserve EUCLEAN for these
* sort of corruptions.
*
* EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
* need to use EROFS for this case. We will have no idea of the
* original failure, that will have been reported at the time we tripped
* over the error. Each subsequent error that doesn't have any context
* of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
*/
const char * __attribute_const__ btrfs_decode_error(int error)
{
char *errstr = "unknown";
switch (error) {
case -ENOENT: /* -2 */
errstr = "No such entry";
break;
case -EIO: /* -5 */
errstr = "IO failure";
break;
case -ENOMEM: /* -12*/
errstr = "Out of memory";
break;
case -EEXIST: /* -17 */
errstr = "Object already exists";
break;
case -ENOSPC: /* -28 */
errstr = "No space left";
break;
case -EROFS: /* -30 */
errstr = "Readonly filesystem";
break;
case -EOPNOTSUPP: /* -95 */
errstr = "Operation not supported";
break;
case -EUCLEAN: /* -117 */
errstr = "Filesystem corrupted";
break;
case -EDQUOT: /* -122 */
errstr = "Quota exceeded";
break;
}
return errstr;
}
/*
* Decodes expected errors from the caller and invokes the appropriate error
* response.
*/
__cold
void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
unsigned int line, int error, const char *fmt, ...)
{
struct super_block *sb = fs_info->sb;
#ifdef CONFIG_PRINTK
char statestr[STATE_STRING_BUF_LEN];
const char *errstr;
#endif
#ifdef CONFIG_PRINTK_INDEX
printk_index_subsys_emit(
"BTRFS: error (device %s%s) in %s:%d: errno=%d %s", KERN_CRIT, fmt);
#endif
/*
* Special case: if the error is EROFS, and we're already under
* SB_RDONLY, then it is safe here.
*/
if (error == -EROFS && sb_rdonly(sb))
return;
#ifdef CONFIG_PRINTK
errstr = btrfs_decode_error(error);
btrfs_state_to_string(fs_info, statestr);
if (fmt) {
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
sb->s_id, statestr, function, line, error, errstr, &vaf);
va_end(args);
} else {
pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
sb->s_id, statestr, function, line, error, errstr);
}
#endif
/*
* Today we only save the error info to memory. Long term we'll also
* send it down to the disk.
*/
WRITE_ONCE(fs_info->fs_error, error);
/* Don't go through full error handling during mount. */
if (!(sb->s_flags & SB_BORN))
return;
if (sb_rdonly(sb))
return;
btrfs_discard_stop(fs_info);
/* Handle error by forcing the filesystem readonly. */
btrfs_set_sb_rdonly(sb);
btrfs_info(fs_info, "forced readonly");
/*
* Note that a running device replace operation is not canceled here
* although there is no way to update the progress. It would add the
* risk of a deadlock, therefore the canceling is omitted. The only
* penalty is that some I/O remains active until the procedure
* completes. The next time when the filesystem is mounted writable
* again, the device replace operation continues.
*/
}
#ifdef CONFIG_PRINTK
static const char * const logtypes[] = {
"emergency",
"alert",
"critical",
"error",
"warning",
"notice",
"info",
"debug",
};
/*
* Use one ratelimit state per log level so that a flood of less important
* messages doesn't cause more important ones to be dropped.
*/
static struct ratelimit_state printk_limits[] = {
RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
};
void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
{
char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
struct va_format vaf;
va_list args;
int kern_level;
const char *type = logtypes[4];
struct ratelimit_state *ratelimit = &printk_limits[4];
#ifdef CONFIG_PRINTK_INDEX
printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);
#endif
va_start(args, fmt);
while ((kern_level = printk_get_level(fmt)) != 0) {
size_t size = printk_skip_level(fmt) - fmt;
if (kern_level >= '0' && kern_level <= '7') {
memcpy(lvl, fmt, size);
lvl[size] = '\0';
type = logtypes[kern_level - '0'];
ratelimit = &printk_limits[kern_level - '0'];
}
fmt += size;
}
vaf.fmt = fmt;
vaf.va = &args;
if (__ratelimit(ratelimit)) {
if (fs_info) {
char statestr[STATE_STRING_BUF_LEN];
btrfs_state_to_string(fs_info, statestr);
_printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
fs_info->sb->s_id, statestr, &vaf);
} else {
_printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
}
}
va_end(args);
}
#endif
#if BITS_PER_LONG == 32
void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
{
if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
btrfs_warn(fs_info,
"due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
BTRFS_32BIT_MAX_FILE_SIZE >> 40);
btrfs_warn(fs_info,
"please consider upgrading to 64bit kernel/hardware");
}
}
void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
{
if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
btrfs_err(fs_info, "reached 32bit limit for logical addresses");
btrfs_err(fs_info,
"due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
BTRFS_32BIT_MAX_FILE_SIZE >> 40);
btrfs_err(fs_info,
"please consider upgrading to 64bit kernel/hardware");
}
}
#endif
/*
* Decode unexpected, fatal errors from the caller, issue an alert, and either
* panic or BUGs, depending on mount options.
*/
__cold
void __btrfs_panic(const struct btrfs_fs_info *fs_info, const char *function,
unsigned int line, int error, const char *fmt, ...)
{
char *s_id = "<unknown>";
const char *errstr;
struct va_format vaf = { .fmt = fmt };
va_list args;
if (fs_info)
s_id = fs_info->sb->s_id;
va_start(args, fmt);
vaf.va = &args;
errstr = btrfs_decode_error(error);
if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
s_id, function, line, &vaf, error, errstr);
btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
function, line, &vaf, error, errstr);
va_end(args);
/* Caller calls BUG() */
}