linux-stable/drivers/thermal/intel_soc_dts_thermal.c
Srinivas Pandruvada 6c355fafeb thermal: Intel SoC DTS: Add Braswell support
Added Intel Braswell CPU id for SOC DTS. Since this doesn't support
APIC IRQ, the driver is modified to have capability to not register
any modifiable trips.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
2015-01-29 11:28:01 +08:00

496 lines
11 KiB
C

/*
* intel_soc_dts_thermal.c
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/thermal.h>
#include <asm/cpu_device_id.h>
#include <asm/iosf_mbi.h>
#define SOC_DTS_OFFSET_ENABLE 0xB0
#define SOC_DTS_OFFSET_TEMP 0xB1
#define SOC_DTS_OFFSET_PTPS 0xB2
#define SOC_DTS_OFFSET_PTTS 0xB3
#define SOC_DTS_OFFSET_PTTSS 0xB4
#define SOC_DTS_OFFSET_PTMC 0x80
#define SOC_DTS_TE_AUX0 0xB5
#define SOC_DTS_TE_AUX1 0xB6
#define SOC_DTS_AUX0_ENABLE_BIT BIT(0)
#define SOC_DTS_AUX1_ENABLE_BIT BIT(1)
#define SOC_DTS_CPU_MODULE0_ENABLE_BIT BIT(16)
#define SOC_DTS_CPU_MODULE1_ENABLE_BIT BIT(17)
#define SOC_DTS_TE_SCI_ENABLE BIT(9)
#define SOC_DTS_TE_SMI_ENABLE BIT(10)
#define SOC_DTS_TE_MSI_ENABLE BIT(11)
#define SOC_DTS_TE_APICA_ENABLE BIT(14)
#define SOC_DTS_PTMC_APIC_DEASSERT_BIT BIT(4)
/* DTS encoding for TJ MAX temperature */
#define SOC_DTS_TJMAX_ENCODING 0x7F
/* IRQ 86 is a fixed APIC interrupt for BYT DTS Aux threshold notifications */
#define BYT_SOC_DTS_APIC_IRQ 86
/* Only 2 out of 4 is allowed for OSPM */
#define SOC_MAX_DTS_TRIPS 2
/* Mask for two trips in status bits */
#define SOC_DTS_TRIP_MASK 0x03
/* DTS0 and DTS 1 */
#define SOC_MAX_DTS_SENSORS 2
#define CRITICAL_OFFSET_FROM_TJ_MAX 5000
struct soc_sensor_entry {
int id;
u32 tj_max;
u32 temp_mask;
u32 temp_shift;
u32 store_status;
struct thermal_zone_device *tzone;
};
static struct soc_sensor_entry *soc_dts[SOC_MAX_DTS_SENSORS];
static int crit_offset = CRITICAL_OFFSET_FROM_TJ_MAX;
module_param(crit_offset, int, 0644);
MODULE_PARM_DESC(crit_offset,
"Critical Temperature offset from tj max in millidegree Celsius.");
static DEFINE_MUTEX(aux_update_mutex);
static spinlock_t intr_notify_lock;
static int soc_dts_thres_irq;
static int get_tj_max(u32 *tj_max)
{
u32 eax, edx;
u32 val;
int err;
err = rdmsr_safe(MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
if (err)
goto err_ret;
else {
val = (eax >> 16) & 0xff;
if (val)
*tj_max = val * 1000;
else {
err = -EINVAL;
goto err_ret;
}
}
return 0;
err_ret:
*tj_max = 0;
return err;
}
static int sys_get_trip_temp(struct thermal_zone_device *tzd,
int trip, unsigned long *temp)
{
int status;
u32 out;
struct soc_sensor_entry *aux_entry;
aux_entry = tzd->devdata;
if (!trip) {
/* Just return the critical temp */
*temp = aux_entry->tj_max - crit_offset;
return 0;
}
mutex_lock(&aux_update_mutex);
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_PTPS, &out);
mutex_unlock(&aux_update_mutex);
if (status)
return status;
out = (out >> (trip * 8)) & SOC_DTS_TJMAX_ENCODING;
if (!out)
*temp = 0;
else
*temp = aux_entry->tj_max - out * 1000;
return 0;
}
static int update_trip_temp(struct soc_sensor_entry *aux_entry,
int thres_index, unsigned long temp)
{
int status;
u32 temp_out;
u32 out;
u32 store_ptps;
u32 store_ptmc;
u32 store_te_out;
u32 te_out;
u32 int_enable_bit = SOC_DTS_TE_APICA_ENABLE |
SOC_DTS_TE_MSI_ENABLE;
temp_out = (aux_entry->tj_max - temp) / 1000;
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_PTPS, &store_ptps);
if (status)
return status;
out = (store_ptps & ~(0xFF << (thres_index * 8)));
out |= (temp_out & 0xFF) << (thres_index * 8);
status = iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTPS, out);
if (status)
return status;
pr_debug("update_trip_temp PTPS = %x\n", out);
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_PTMC, &out);
if (status)
goto err_restore_ptps;
store_ptmc = out;
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_TE_AUX0 + thres_index,
&te_out);
if (status)
goto err_restore_ptmc;
store_te_out = te_out;
/* Enable for CPU module 0 and module 1 */
out |= (SOC_DTS_CPU_MODULE0_ENABLE_BIT |
SOC_DTS_CPU_MODULE1_ENABLE_BIT);
if (temp) {
if (thres_index)
out |= SOC_DTS_AUX1_ENABLE_BIT;
else
out |= SOC_DTS_AUX0_ENABLE_BIT;
te_out |= int_enable_bit;
} else {
if (thres_index)
out &= ~SOC_DTS_AUX1_ENABLE_BIT;
else
out &= ~SOC_DTS_AUX0_ENABLE_BIT;
te_out &= ~int_enable_bit;
}
status = iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTMC, out);
if (status)
goto err_restore_te_out;
status = iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_TE_AUX0 + thres_index,
te_out);
if (status)
goto err_restore_te_out;
return 0;
err_restore_te_out:
iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTMC, store_te_out);
err_restore_ptmc:
iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTMC, store_ptmc);
err_restore_ptps:
iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTPS, store_ptps);
/* Nothing we can do if restore fails */
return status;
}
static int sys_set_trip_temp(struct thermal_zone_device *tzd, int trip,
unsigned long temp)
{
struct soc_sensor_entry *aux_entry = tzd->devdata;
int status;
if (temp > (aux_entry->tj_max - crit_offset))
return -EINVAL;
mutex_lock(&aux_update_mutex);
status = update_trip_temp(tzd->devdata, trip, temp);
mutex_unlock(&aux_update_mutex);
return status;
}
static int sys_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
if (trip)
*type = THERMAL_TRIP_PASSIVE;
else
*type = THERMAL_TRIP_CRITICAL;
return 0;
}
static int sys_get_curr_temp(struct thermal_zone_device *tzd,
unsigned long *temp)
{
int status;
u32 out;
struct soc_sensor_entry *aux_entry;
aux_entry = tzd->devdata;
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_TEMP, &out);
if (status)
return status;
out = (out & aux_entry->temp_mask) >> aux_entry->temp_shift;
out -= SOC_DTS_TJMAX_ENCODING;
*temp = aux_entry->tj_max - out * 1000;
return 0;
}
static struct thermal_zone_device_ops tzone_ops = {
.get_temp = sys_get_curr_temp,
.get_trip_temp = sys_get_trip_temp,
.get_trip_type = sys_get_trip_type,
.set_trip_temp = sys_set_trip_temp,
};
static void free_soc_dts(struct soc_sensor_entry *aux_entry)
{
if (aux_entry) {
iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_ENABLE, aux_entry->store_status);
thermal_zone_device_unregister(aux_entry->tzone);
kfree(aux_entry);
}
}
static int soc_dts_enable(int id)
{
u32 out;
int ret;
ret = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_ENABLE, &out);
if (ret)
return ret;
if (!(out & BIT(id))) {
out |= BIT(id);
ret = iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_ENABLE, out);
if (ret)
return ret;
}
return ret;
}
static struct soc_sensor_entry *alloc_soc_dts(int id, u32 tj_max,
bool notification_support)
{
struct soc_sensor_entry *aux_entry;
char name[10];
int trip_count = 0;
int trip_mask = 0;
int err;
aux_entry = kzalloc(sizeof(*aux_entry), GFP_KERNEL);
if (!aux_entry) {
err = -ENOMEM;
return ERR_PTR(-ENOMEM);
}
/* Store status to restor on exit */
err = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_ENABLE,
&aux_entry->store_status);
if (err)
goto err_ret;
aux_entry->id = id;
aux_entry->tj_max = tj_max;
aux_entry->temp_mask = 0x00FF << (id * 8);
aux_entry->temp_shift = id * 8;
if (notification_support) {
trip_count = SOC_MAX_DTS_TRIPS;
trip_mask = 0x02;
}
snprintf(name, sizeof(name), "soc_dts%d", id);
aux_entry->tzone = thermal_zone_device_register(name,
trip_count,
trip_mask,
aux_entry, &tzone_ops,
NULL, 0, 0);
if (IS_ERR(aux_entry->tzone)) {
err = PTR_ERR(aux_entry->tzone);
goto err_ret;
}
err = soc_dts_enable(id);
if (err)
goto err_aux_status;
return aux_entry;
err_aux_status:
thermal_zone_device_unregister(aux_entry->tzone);
err_ret:
kfree(aux_entry);
return ERR_PTR(err);
}
static void proc_thermal_interrupt(void)
{
u32 sticky_out;
int status;
u32 ptmc_out;
unsigned long flags;
spin_lock_irqsave(&intr_notify_lock, flags);
/* Clear APIC interrupt */
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_PTMC, &ptmc_out);
ptmc_out |= SOC_DTS_PTMC_APIC_DEASSERT_BIT;
status = iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTMC, ptmc_out);
/* Read status here */
status = iosf_mbi_read(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_READ,
SOC_DTS_OFFSET_PTTSS, &sticky_out);
pr_debug("status %d PTTSS %x\n", status, sticky_out);
if (sticky_out & SOC_DTS_TRIP_MASK) {
int i;
/* reset sticky bit */
status = iosf_mbi_write(BT_MBI_UNIT_PMC, BT_MBI_BUNIT_WRITE,
SOC_DTS_OFFSET_PTTSS, sticky_out);
spin_unlock_irqrestore(&intr_notify_lock, flags);
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
pr_debug("TZD update for zone %d\n", i);
thermal_zone_device_update(soc_dts[i]->tzone);
}
} else
spin_unlock_irqrestore(&intr_notify_lock, flags);
}
static irqreturn_t soc_irq_thread_fn(int irq, void *dev_data)
{
proc_thermal_interrupt();
pr_debug("proc_thermal_interrupt\n");
return IRQ_HANDLED;
}
static const struct x86_cpu_id soc_thermal_ids[] = {
{ X86_VENDOR_INTEL, X86_FAMILY_ANY, 0x37, 0, BYT_SOC_DTS_APIC_IRQ},
{ X86_VENDOR_INTEL, X86_FAMILY_ANY, 0x4c, 0, 0},
{}
};
MODULE_DEVICE_TABLE(x86cpu, soc_thermal_ids);
static int __init intel_soc_thermal_init(void)
{
u32 tj_max;
int err = 0;
int i;
const struct x86_cpu_id *match_cpu;
match_cpu = x86_match_cpu(soc_thermal_ids);
if (!match_cpu)
return -ENODEV;
if (get_tj_max(&tj_max))
return -EINVAL;
soc_dts_thres_irq = (int)match_cpu->driver_data;
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
soc_dts[i] = alloc_soc_dts(i, tj_max,
soc_dts_thres_irq ? true : false);
if (IS_ERR(soc_dts[i])) {
err = PTR_ERR(soc_dts[i]);
goto err_free;
}
}
spin_lock_init(&intr_notify_lock);
if (soc_dts_thres_irq) {
err = request_threaded_irq(soc_dts_thres_irq, NULL,
soc_irq_thread_fn,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"soc_dts", soc_dts);
if (err) {
pr_err("request_threaded_irq ret %d\n", err);
goto err_free;
}
}
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
err = update_trip_temp(soc_dts[i], 0, tj_max - crit_offset);
if (err)
goto err_trip_temp;
}
return 0;
err_trip_temp:
i = SOC_MAX_DTS_SENSORS;
if (soc_dts_thres_irq)
free_irq(soc_dts_thres_irq, soc_dts);
err_free:
while (--i >= 0)
free_soc_dts(soc_dts[i]);
return err;
}
static void __exit intel_soc_thermal_exit(void)
{
int i;
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i)
update_trip_temp(soc_dts[i], 0, 0);
if (soc_dts_thres_irq)
free_irq(soc_dts_thres_irq, soc_dts);
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i)
free_soc_dts(soc_dts[i]);
}
module_init(intel_soc_thermal_init)
module_exit(intel_soc_thermal_exit)
MODULE_DESCRIPTION("Intel SoC DTS Thermal Driver");
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");