linux-stable/fs/btrfs/extent-io-tree.c
Boris Burkov 33336c1805 btrfs: preallocate ulist memory for qgroup rsv
When qgroups are enabled, during data reservation, we allocate the
ulist_nodes that track the exact reserved extents with GFP_ATOMIC
unconditionally. This is unnecessary, and we can follow the model
already employed by the struct extent_state we preallocate in the non
qgroups case, which should reduce the risk of allocation failures with
GFP_ATOMIC.

Add a prealloc node to struct ulist which ulist_add will grab when it is
present, and try to allocate it before taking the tree lock while we can
still take advantage of a less strict gfp mask. The lifetime of that
node belongs to the new prealloc field, until it is used, at which point
it belongs to the ulist linked list.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:26 +02:00

1897 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/slab.h>
#include <trace/events/btrfs.h>
#include "messages.h"
#include "ctree.h"
#include "extent_io.h"
#include "extent-io-tree.h"
#include "btrfs_inode.h"
static struct kmem_cache *extent_state_cache;
static inline bool extent_state_in_tree(const struct extent_state *state)
{
return !RB_EMPTY_NODE(&state->rb_node);
}
#ifdef CONFIG_BTRFS_DEBUG
static LIST_HEAD(states);
static DEFINE_SPINLOCK(leak_lock);
static inline void btrfs_leak_debug_add_state(struct extent_state *state)
{
unsigned long flags;
spin_lock_irqsave(&leak_lock, flags);
list_add(&state->leak_list, &states);
spin_unlock_irqrestore(&leak_lock, flags);
}
static inline void btrfs_leak_debug_del_state(struct extent_state *state)
{
unsigned long flags;
spin_lock_irqsave(&leak_lock, flags);
list_del(&state->leak_list);
spin_unlock_irqrestore(&leak_lock, flags);
}
static inline void btrfs_extent_state_leak_debug_check(void)
{
struct extent_state *state;
while (!list_empty(&states)) {
state = list_entry(states.next, struct extent_state, leak_list);
pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
state->start, state->end, state->state,
extent_state_in_tree(state),
refcount_read(&state->refs));
list_del(&state->leak_list);
WARN_ON_ONCE(1);
kmem_cache_free(extent_state_cache, state);
}
}
#define btrfs_debug_check_extent_io_range(tree, start, end) \
__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
struct extent_io_tree *tree,
u64 start, u64 end)
{
const struct btrfs_inode *inode;
u64 isize;
if (tree->owner != IO_TREE_INODE_IO)
return;
inode = extent_io_tree_to_inode_const(tree);
isize = i_size_read(&inode->vfs_inode);
if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
btrfs_debug_rl(inode->root->fs_info,
"%s: ino %llu isize %llu odd range [%llu,%llu]",
caller, btrfs_ino(inode), isize, start, end);
}
}
#else
#define btrfs_leak_debug_add_state(state) do {} while (0)
#define btrfs_leak_debug_del_state(state) do {} while (0)
#define btrfs_extent_state_leak_debug_check() do {} while (0)
#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
#endif
/*
* The only tree allowed to set the inode is IO_TREE_INODE_IO.
*/
static bool is_inode_io_tree(const struct extent_io_tree *tree)
{
return tree->owner == IO_TREE_INODE_IO;
}
/* Return the inode if it's valid for the given tree, otherwise NULL. */
struct btrfs_inode *extent_io_tree_to_inode(struct extent_io_tree *tree)
{
if (tree->owner == IO_TREE_INODE_IO)
return tree->inode;
return NULL;
}
/* Read-only access to the inode. */
const struct btrfs_inode *extent_io_tree_to_inode_const(const struct extent_io_tree *tree)
{
if (tree->owner == IO_TREE_INODE_IO)
return tree->inode;
return NULL;
}
/* For read-only access to fs_info. */
const struct btrfs_fs_info *extent_io_tree_to_fs_info(const struct extent_io_tree *tree)
{
if (tree->owner == IO_TREE_INODE_IO)
return tree->inode->root->fs_info;
return tree->fs_info;
}
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
struct extent_io_tree *tree, unsigned int owner)
{
tree->state = RB_ROOT;
spin_lock_init(&tree->lock);
tree->fs_info = fs_info;
tree->owner = owner;
}
/*
* Empty an io tree, removing and freeing every extent state record from the
* tree. This should be called once we are sure no other task can access the
* tree anymore, so no tree updates happen after we empty the tree and there
* aren't any waiters on any extent state record (EXTENT_LOCKED bit is never
* set on any extent state when calling this function).
*/
void extent_io_tree_release(struct extent_io_tree *tree)
{
struct rb_root root;
struct extent_state *state;
struct extent_state *tmp;
spin_lock(&tree->lock);
root = tree->state;
tree->state = RB_ROOT;
rbtree_postorder_for_each_entry_safe(state, tmp, &root, rb_node) {
/* Clear node to keep free_extent_state() happy. */
RB_CLEAR_NODE(&state->rb_node);
ASSERT(!(state->state & EXTENT_LOCKED));
/*
* No need for a memory barrier here, as we are holding the tree
* lock and we only change the waitqueue while holding that lock
* (see wait_extent_bit()).
*/
ASSERT(!waitqueue_active(&state->wq));
free_extent_state(state);
cond_resched_lock(&tree->lock);
}
/*
* Should still be empty even after a reschedule, no other task should
* be accessing the tree anymore.
*/
ASSERT(RB_EMPTY_ROOT(&tree->state));
spin_unlock(&tree->lock);
}
static struct extent_state *alloc_extent_state(gfp_t mask)
{
struct extent_state *state;
/*
* The given mask might be not appropriate for the slab allocator,
* drop the unsupported bits
*/
mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
state = kmem_cache_alloc(extent_state_cache, mask);
if (!state)
return state;
state->state = 0;
RB_CLEAR_NODE(&state->rb_node);
btrfs_leak_debug_add_state(state);
refcount_set(&state->refs, 1);
init_waitqueue_head(&state->wq);
trace_alloc_extent_state(state, mask, _RET_IP_);
return state;
}
static struct extent_state *alloc_extent_state_atomic(struct extent_state *prealloc)
{
if (!prealloc)
prealloc = alloc_extent_state(GFP_ATOMIC);
return prealloc;
}
void free_extent_state(struct extent_state *state)
{
if (!state)
return;
if (refcount_dec_and_test(&state->refs)) {
WARN_ON(extent_state_in_tree(state));
btrfs_leak_debug_del_state(state);
trace_free_extent_state(state, _RET_IP_);
kmem_cache_free(extent_state_cache, state);
}
}
static int add_extent_changeset(struct extent_state *state, u32 bits,
struct extent_changeset *changeset,
int set)
{
int ret;
if (!changeset)
return 0;
if (set && (state->state & bits) == bits)
return 0;
if (!set && (state->state & bits) == 0)
return 0;
changeset->bytes_changed += state->end - state->start + 1;
ret = ulist_add(&changeset->range_changed, state->start, state->end,
GFP_ATOMIC);
return ret;
}
static inline struct extent_state *next_state(struct extent_state *state)
{
struct rb_node *next = rb_next(&state->rb_node);
if (next)
return rb_entry(next, struct extent_state, rb_node);
else
return NULL;
}
static inline struct extent_state *prev_state(struct extent_state *state)
{
struct rb_node *next = rb_prev(&state->rb_node);
if (next)
return rb_entry(next, struct extent_state, rb_node);
else
return NULL;
}
/*
* Search @tree for an entry that contains @offset. Such entry would have
* entry->start <= offset && entry->end >= offset.
*
* @tree: the tree to search
* @offset: offset that should fall within an entry in @tree
* @node_ret: pointer where new node should be anchored (used when inserting an
* entry in the tree)
* @parent_ret: points to entry which would have been the parent of the entry,
* containing @offset
*
* Return a pointer to the entry that contains @offset byte address and don't change
* @node_ret and @parent_ret.
*
* If no such entry exists, return pointer to entry that ends before @offset
* and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
*/
static inline struct extent_state *tree_search_for_insert(struct extent_io_tree *tree,
u64 offset,
struct rb_node ***node_ret,
struct rb_node **parent_ret)
{
struct rb_root *root = &tree->state;
struct rb_node **node = &root->rb_node;
struct rb_node *prev = NULL;
struct extent_state *entry = NULL;
while (*node) {
prev = *node;
entry = rb_entry(prev, struct extent_state, rb_node);
if (offset < entry->start)
node = &(*node)->rb_left;
else if (offset > entry->end)
node = &(*node)->rb_right;
else
return entry;
}
if (node_ret)
*node_ret = node;
if (parent_ret)
*parent_ret = prev;
/* Search neighbors until we find the first one past the end */
while (entry && offset > entry->end)
entry = next_state(entry);
return entry;
}
/*
* Search offset in the tree or fill neighbor rbtree node pointers.
*
* @tree: the tree to search
* @offset: offset that should fall within an entry in @tree
* @next_ret: pointer to the first entry whose range ends after @offset
* @prev_ret: pointer to the first entry whose range begins before @offset
*
* Return a pointer to the entry that contains @offset byte address. If no
* such entry exists, then return NULL and fill @prev_ret and @next_ret.
* Otherwise return the found entry and other pointers are left untouched.
*/
static struct extent_state *tree_search_prev_next(struct extent_io_tree *tree,
u64 offset,
struct extent_state **prev_ret,
struct extent_state **next_ret)
{
struct rb_root *root = &tree->state;
struct rb_node **node = &root->rb_node;
struct extent_state *orig_prev;
struct extent_state *entry = NULL;
ASSERT(prev_ret);
ASSERT(next_ret);
while (*node) {
entry = rb_entry(*node, struct extent_state, rb_node);
if (offset < entry->start)
node = &(*node)->rb_left;
else if (offset > entry->end)
node = &(*node)->rb_right;
else
return entry;
}
orig_prev = entry;
while (entry && offset > entry->end)
entry = next_state(entry);
*next_ret = entry;
entry = orig_prev;
while (entry && offset < entry->start)
entry = prev_state(entry);
*prev_ret = entry;
return NULL;
}
/*
* Inexact rb-tree search, return the next entry if @offset is not found
*/
static inline struct extent_state *tree_search(struct extent_io_tree *tree, u64 offset)
{
return tree_search_for_insert(tree, offset, NULL, NULL);
}
static void extent_io_tree_panic(const struct extent_io_tree *tree,
const struct extent_state *state,
const char *opname,
int err)
{
btrfs_panic(extent_io_tree_to_fs_info(tree), err,
"extent io tree error on %s state start %llu end %llu",
opname, state->start, state->end);
}
static void merge_prev_state(struct extent_io_tree *tree, struct extent_state *state)
{
struct extent_state *prev;
prev = prev_state(state);
if (prev && prev->end == state->start - 1 && prev->state == state->state) {
if (is_inode_io_tree(tree))
btrfs_merge_delalloc_extent(extent_io_tree_to_inode(tree),
state, prev);
state->start = prev->start;
rb_erase(&prev->rb_node, &tree->state);
RB_CLEAR_NODE(&prev->rb_node);
free_extent_state(prev);
}
}
static void merge_next_state(struct extent_io_tree *tree, struct extent_state *state)
{
struct extent_state *next;
next = next_state(state);
if (next && next->start == state->end + 1 && next->state == state->state) {
if (is_inode_io_tree(tree))
btrfs_merge_delalloc_extent(extent_io_tree_to_inode(tree),
state, next);
state->end = next->end;
rb_erase(&next->rb_node, &tree->state);
RB_CLEAR_NODE(&next->rb_node);
free_extent_state(next);
}
}
/*
* Utility function to look for merge candidates inside a given range. Any
* extents with matching state are merged together into a single extent in the
* tree. Extents with EXTENT_IO in their state field are not merged because
* the end_io handlers need to be able to do operations on them without
* sleeping (or doing allocations/splits).
*
* This should be called with the tree lock held.
*/
static void merge_state(struct extent_io_tree *tree, struct extent_state *state)
{
if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
return;
merge_prev_state(tree, state);
merge_next_state(tree, state);
}
static void set_state_bits(struct extent_io_tree *tree,
struct extent_state *state,
u32 bits, struct extent_changeset *changeset)
{
u32 bits_to_set = bits & ~EXTENT_CTLBITS;
int ret;
if (is_inode_io_tree(tree))
btrfs_set_delalloc_extent(extent_io_tree_to_inode(tree), state, bits);
ret = add_extent_changeset(state, bits_to_set, changeset, 1);
BUG_ON(ret < 0);
state->state |= bits_to_set;
}
/*
* Insert an extent_state struct into the tree. 'bits' are set on the
* struct before it is inserted.
*
* Returns a pointer to the struct extent_state record containing the range
* requested for insertion, which may be the same as the given struct or it
* may be an existing record in the tree that was expanded to accommodate the
* requested range. In case of an extent_state different from the one that was
* given, the later can be freed or reused by the caller.
*
* On error it returns an error pointer.
*
* The tree lock is not taken internally. This is a utility function and
* probably isn't what you want to call (see set/clear_extent_bit).
*/
static struct extent_state *insert_state(struct extent_io_tree *tree,
struct extent_state *state,
u32 bits,
struct extent_changeset *changeset)
{
struct rb_node **node;
struct rb_node *parent = NULL;
const u64 start = state->start - 1;
const u64 end = state->end + 1;
const bool try_merge = !(bits & (EXTENT_LOCKED | EXTENT_BOUNDARY));
set_state_bits(tree, state, bits, changeset);
node = &tree->state.rb_node;
while (*node) {
struct extent_state *entry;
parent = *node;
entry = rb_entry(parent, struct extent_state, rb_node);
if (state->end < entry->start) {
if (try_merge && end == entry->start &&
state->state == entry->state) {
if (is_inode_io_tree(tree))
btrfs_merge_delalloc_extent(
extent_io_tree_to_inode(tree),
state, entry);
entry->start = state->start;
merge_prev_state(tree, entry);
state->state = 0;
return entry;
}
node = &(*node)->rb_left;
} else if (state->end > entry->end) {
if (try_merge && entry->end == start &&
state->state == entry->state) {
if (is_inode_io_tree(tree))
btrfs_merge_delalloc_extent(
extent_io_tree_to_inode(tree),
state, entry);
entry->end = state->end;
merge_next_state(tree, entry);
state->state = 0;
return entry;
}
node = &(*node)->rb_right;
} else {
return ERR_PTR(-EEXIST);
}
}
rb_link_node(&state->rb_node, parent, node);
rb_insert_color(&state->rb_node, &tree->state);
return state;
}
/*
* Insert state to @tree to the location given by @node and @parent.
*/
static void insert_state_fast(struct extent_io_tree *tree,
struct extent_state *state, struct rb_node **node,
struct rb_node *parent, unsigned bits,
struct extent_changeset *changeset)
{
set_state_bits(tree, state, bits, changeset);
rb_link_node(&state->rb_node, parent, node);
rb_insert_color(&state->rb_node, &tree->state);
merge_state(tree, state);
}
/*
* Split a given extent state struct in two, inserting the preallocated
* struct 'prealloc' as the newly created second half. 'split' indicates an
* offset inside 'orig' where it should be split.
*
* Before calling,
* the tree has 'orig' at [orig->start, orig->end]. After calling, there
* are two extent state structs in the tree:
* prealloc: [orig->start, split - 1]
* orig: [ split, orig->end ]
*
* The tree locks are not taken by this function. They need to be held
* by the caller.
*/
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
struct extent_state *prealloc, u64 split)
{
struct rb_node *parent = NULL;
struct rb_node **node;
if (is_inode_io_tree(tree))
btrfs_split_delalloc_extent(extent_io_tree_to_inode(tree), orig,
split);
prealloc->start = orig->start;
prealloc->end = split - 1;
prealloc->state = orig->state;
orig->start = split;
parent = &orig->rb_node;
node = &parent;
while (*node) {
struct extent_state *entry;
parent = *node;
entry = rb_entry(parent, struct extent_state, rb_node);
if (prealloc->end < entry->start) {
node = &(*node)->rb_left;
} else if (prealloc->end > entry->end) {
node = &(*node)->rb_right;
} else {
free_extent_state(prealloc);
return -EEXIST;
}
}
rb_link_node(&prealloc->rb_node, parent, node);
rb_insert_color(&prealloc->rb_node, &tree->state);
return 0;
}
/*
* Utility function to clear some bits in an extent state struct. It will
* optionally wake up anyone waiting on this state (wake == 1).
*
* If no bits are set on the state struct after clearing things, the
* struct is freed and removed from the tree
*/
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
struct extent_state *state,
u32 bits, int wake,
struct extent_changeset *changeset)
{
struct extent_state *next;
u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
int ret;
if (is_inode_io_tree(tree))
btrfs_clear_delalloc_extent(extent_io_tree_to_inode(tree), state,
bits);
ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
BUG_ON(ret < 0);
state->state &= ~bits_to_clear;
if (wake)
wake_up(&state->wq);
if (state->state == 0) {
next = next_state(state);
if (extent_state_in_tree(state)) {
rb_erase(&state->rb_node, &tree->state);
RB_CLEAR_NODE(&state->rb_node);
free_extent_state(state);
} else {
WARN_ON(1);
}
} else {
merge_state(tree, state);
next = next_state(state);
}
return next;
}
/*
* Detect if extent bits request NOWAIT semantics and set the gfp mask accordingly,
* unset the EXTENT_NOWAIT bit.
*/
static void set_gfp_mask_from_bits(u32 *bits, gfp_t *mask)
{
*mask = (*bits & EXTENT_NOWAIT ? GFP_NOWAIT : GFP_NOFS);
*bits &= EXTENT_NOWAIT - 1;
}
/*
* Clear some bits on a range in the tree. This may require splitting or
* inserting elements in the tree, so the gfp mask is used to indicate which
* allocations or sleeping are allowed.
*
* Pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove the given
* range from the tree regardless of state (ie for truncate).
*
* The range [start, end] is inclusive.
*
* This takes the tree lock, and returns 0 on success and < 0 on error.
*/
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_state **cached_state,
struct extent_changeset *changeset)
{
struct extent_state *state;
struct extent_state *cached;
struct extent_state *prealloc = NULL;
u64 last_end;
int err;
int clear = 0;
int wake;
int delete = (bits & EXTENT_CLEAR_ALL_BITS);
gfp_t mask;
set_gfp_mask_from_bits(&bits, &mask);
btrfs_debug_check_extent_io_range(tree, start, end);
trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
if (delete)
bits |= ~EXTENT_CTLBITS;
if (bits & EXTENT_DELALLOC)
bits |= EXTENT_NORESERVE;
wake = (bits & EXTENT_LOCKED) ? 1 : 0;
if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
clear = 1;
again:
if (!prealloc) {
/*
* Don't care for allocation failure here because we might end
* up not needing the pre-allocated extent state at all, which
* is the case if we only have in the tree extent states that
* cover our input range and don't cover too any other range.
* If we end up needing a new extent state we allocate it later.
*/
prealloc = alloc_extent_state(mask);
}
spin_lock(&tree->lock);
if (cached_state) {
cached = *cached_state;
if (clear) {
*cached_state = NULL;
cached_state = NULL;
}
if (cached && extent_state_in_tree(cached) &&
cached->start <= start && cached->end > start) {
if (clear)
refcount_dec(&cached->refs);
state = cached;
goto hit_next;
}
if (clear)
free_extent_state(cached);
}
/* This search will find the extents that end after our range starts. */
state = tree_search(tree, start);
if (!state)
goto out;
hit_next:
if (state->start > end)
goto out;
WARN_ON(state->end < start);
last_end = state->end;
/* The state doesn't have the wanted bits, go ahead. */
if (!(state->state & bits)) {
state = next_state(state);
goto next;
}
/*
* | ---- desired range ---- |
* | state | or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on second
* half.
*
* If the extent we found extends past our range, we just split and
* search again. It'll get split again the next time though.
*
* If the extent we found is inside our range, we clear the desired bit
* on it.
*/
if (state->start < start) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc)
goto search_again;
err = split_state(tree, state, prealloc, start);
if (err)
extent_io_tree_panic(tree, state, "split", err);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
state = clear_state_bit(tree, state, bits, wake, changeset);
goto next;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* We need to split the extent, and clear the bit on the first half.
*/
if (state->start <= end && state->end > end) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc)
goto search_again;
err = split_state(tree, state, prealloc, end + 1);
if (err)
extent_io_tree_panic(tree, state, "split", err);
if (wake)
wake_up(&state->wq);
clear_state_bit(tree, prealloc, bits, wake, changeset);
prealloc = NULL;
goto out;
}
state = clear_state_bit(tree, state, bits, wake, changeset);
next:
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
if (start <= end && state && !need_resched())
goto hit_next;
search_again:
if (start > end)
goto out;
spin_unlock(&tree->lock);
if (gfpflags_allow_blocking(mask))
cond_resched();
goto again;
out:
spin_unlock(&tree->lock);
if (prealloc)
free_extent_state(prealloc);
return 0;
}
/*
* Wait for one or more bits to clear on a range in the state tree.
* The range [start, end] is inclusive.
* The tree lock is taken by this function
*/
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_state **cached_state)
{
struct extent_state *state;
btrfs_debug_check_extent_io_range(tree, start, end);
spin_lock(&tree->lock);
again:
/*
* Maintain cached_state, as we may not remove it from the tree if there
* are more bits than the bits we're waiting on set on this state.
*/
if (cached_state && *cached_state) {
state = *cached_state;
if (extent_state_in_tree(state) &&
state->start <= start && start < state->end)
goto process_node;
}
while (1) {
/*
* This search will find all the extents that end after our
* range starts.
*/
state = tree_search(tree, start);
process_node:
if (!state)
break;
if (state->start > end)
goto out;
if (state->state & bits) {
DEFINE_WAIT(wait);
start = state->start;
refcount_inc(&state->refs);
prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock(&tree->lock);
schedule();
spin_lock(&tree->lock);
finish_wait(&state->wq, &wait);
free_extent_state(state);
goto again;
}
start = state->end + 1;
if (start > end)
break;
if (!cond_resched_lock(&tree->lock)) {
state = next_state(state);
goto process_node;
}
}
out:
/* This state is no longer useful, clear it and free it up. */
if (cached_state && *cached_state) {
state = *cached_state;
*cached_state = NULL;
free_extent_state(state);
}
spin_unlock(&tree->lock);
}
static void cache_state_if_flags(struct extent_state *state,
struct extent_state **cached_ptr,
unsigned flags)
{
if (cached_ptr && !(*cached_ptr)) {
if (!flags || (state->state & flags)) {
*cached_ptr = state;
refcount_inc(&state->refs);
}
}
}
static void cache_state(struct extent_state *state,
struct extent_state **cached_ptr)
{
return cache_state_if_flags(state, cached_ptr,
EXTENT_LOCKED | EXTENT_BOUNDARY);
}
/*
* Find the first state struct with 'bits' set after 'start', and return it.
* tree->lock must be held. NULL will returned if nothing was found after
* 'start'.
*/
static struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
u64 start, u32 bits)
{
struct extent_state *state;
/*
* This search will find all the extents that end after our range
* starts.
*/
state = tree_search(tree, start);
while (state) {
if (state->end >= start && (state->state & bits))
return state;
state = next_state(state);
}
return NULL;
}
/*
* Find the first offset in the io tree with one or more @bits set.
*
* Note: If there are multiple bits set in @bits, any of them will match.
*
* Return true if we find something, and update @start_ret and @end_ret.
* Return false if we found nothing.
*/
bool find_first_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, u32 bits,
struct extent_state **cached_state)
{
struct extent_state *state;
bool ret = false;
spin_lock(&tree->lock);
if (cached_state && *cached_state) {
state = *cached_state;
if (state->end == start - 1 && extent_state_in_tree(state)) {
while ((state = next_state(state)) != NULL) {
if (state->state & bits)
break;
}
/*
* If we found the next extent state, clear cached_state
* so that we can cache the next extent state below and
* avoid future calls going over the same extent state
* again. If we haven't found any, clear as well since
* it's now useless.
*/
free_extent_state(*cached_state);
*cached_state = NULL;
if (state)
goto got_it;
goto out;
}
free_extent_state(*cached_state);
*cached_state = NULL;
}
state = find_first_extent_bit_state(tree, start, bits);
got_it:
if (state) {
cache_state_if_flags(state, cached_state, 0);
*start_ret = state->start;
*end_ret = state->end;
ret = true;
}
out:
spin_unlock(&tree->lock);
return ret;
}
/*
* Find a contiguous area of bits
*
* @tree: io tree to check
* @start: offset to start the search from
* @start_ret: the first offset we found with the bits set
* @end_ret: the final contiguous range of the bits that were set
* @bits: bits to look for
*
* set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
* to set bits appropriately, and then merge them again. During this time it
* will drop the tree->lock, so use this helper if you want to find the actual
* contiguous area for given bits. We will search to the first bit we find, and
* then walk down the tree until we find a non-contiguous area. The area
* returned will be the full contiguous area with the bits set.
*/
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, u32 bits)
{
struct extent_state *state;
int ret = 1;
ASSERT(!btrfs_fs_incompat(extent_io_tree_to_fs_info(tree), NO_HOLES));
spin_lock(&tree->lock);
state = find_first_extent_bit_state(tree, start, bits);
if (state) {
*start_ret = state->start;
*end_ret = state->end;
while ((state = next_state(state)) != NULL) {
if (state->start > (*end_ret + 1))
break;
*end_ret = state->end;
}
ret = 0;
}
spin_unlock(&tree->lock);
return ret;
}
/*
* Find a contiguous range of bytes in the file marked as delalloc, not more
* than 'max_bytes'. start and end are used to return the range,
*
* True is returned if we find something, false if nothing was in the tree.
*/
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
u64 *end, u64 max_bytes,
struct extent_state **cached_state)
{
struct extent_state *state;
u64 cur_start = *start;
bool found = false;
u64 total_bytes = 0;
spin_lock(&tree->lock);
/*
* This search will find all the extents that end after our range
* starts.
*/
state = tree_search(tree, cur_start);
if (!state) {
*end = (u64)-1;
goto out;
}
while (state) {
if (found && (state->start != cur_start ||
(state->state & EXTENT_BOUNDARY))) {
goto out;
}
if (!(state->state & EXTENT_DELALLOC)) {
if (!found)
*end = state->end;
goto out;
}
if (!found) {
*start = state->start;
*cached_state = state;
refcount_inc(&state->refs);
}
found = true;
*end = state->end;
cur_start = state->end + 1;
total_bytes += state->end - state->start + 1;
if (total_bytes >= max_bytes)
break;
state = next_state(state);
}
out:
spin_unlock(&tree->lock);
return found;
}
/*
* Set some bits on a range in the tree. This may require allocations or
* sleeping. By default all allocations use GFP_NOFS, use EXTENT_NOWAIT for
* GFP_NOWAIT.
*
* If any of the exclusive bits are set, this will fail with -EEXIST if some
* part of the range already has the desired bits set. The extent_state of the
* existing range is returned in failed_state in this case, and the start of the
* existing range is returned in failed_start. failed_state is used as an
* optimization for wait_extent_bit, failed_start must be used as the source of
* truth as failed_state may have changed since we returned.
*
* [start, end] is inclusive This takes the tree lock.
*/
static int __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, u64 *failed_start,
struct extent_state **failed_state,
struct extent_state **cached_state,
struct extent_changeset *changeset)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct rb_node **p = NULL;
struct rb_node *parent = NULL;
int ret = 0;
u64 last_start;
u64 last_end;
u32 exclusive_bits = (bits & EXTENT_LOCKED);
gfp_t mask;
set_gfp_mask_from_bits(&bits, &mask);
btrfs_debug_check_extent_io_range(tree, start, end);
trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
if (exclusive_bits)
ASSERT(failed_start);
else
ASSERT(failed_start == NULL && failed_state == NULL);
again:
if (!prealloc) {
/*
* Don't care for allocation failure here because we might end
* up not needing the pre-allocated extent state at all, which
* is the case if we only have in the tree extent states that
* cover our input range and don't cover too any other range.
* If we end up needing a new extent state we allocate it later.
*/
prealloc = alloc_extent_state(mask);
}
/* Optimistically preallocate the extent changeset ulist node. */
if (changeset)
extent_changeset_prealloc(changeset, mask);
spin_lock(&tree->lock);
if (cached_state && *cached_state) {
state = *cached_state;
if (state->start <= start && state->end > start &&
extent_state_in_tree(state))
goto hit_next;
}
/*
* This search will find all the extents that end after our range
* starts.
*/
state = tree_search_for_insert(tree, start, &p, &parent);
if (!state) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc)
goto search_again;
prealloc->start = start;
prealloc->end = end;
insert_state_fast(tree, prealloc, p, parent, bits, changeset);
cache_state(prealloc, cached_state);
prealloc = NULL;
goto out;
}
hit_next:
last_start = state->start;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state |
*
* Just lock what we found and keep going
*/
if (state->start == start && state->end <= end) {
if (state->state & exclusive_bits) {
*failed_start = state->start;
cache_state(state, failed_state);
ret = -EEXIST;
goto out;
}
set_state_bits(tree, state, bits, changeset);
cache_state(state, cached_state);
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
state = next_state(state);
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on second
* half.
*
* If the extent we found extends past our range, we just split and
* search again. It'll get split again the next time though.
*
* If the extent we found is inside our range, we set the desired bit
* on it.
*/
if (state->start < start) {
if (state->state & exclusive_bits) {
*failed_start = start;
cache_state(state, failed_state);
ret = -EEXIST;
goto out;
}
/*
* If this extent already has all the bits we want set, then
* skip it, not necessary to split it or do anything with it.
*/
if ((state->state & bits) == bits) {
start = state->end + 1;
cache_state(state, cached_state);
goto search_again;
}
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc)
goto search_again;
ret = split_state(tree, state, prealloc, start);
if (ret)
extent_io_tree_panic(tree, state, "split", ret);
prealloc = NULL;
if (ret)
goto out;
if (state->end <= end) {
set_state_bits(tree, state, bits, changeset);
cache_state(state, cached_state);
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
state = next_state(state);
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state | or | state |
*
* There's a hole, we need to insert something in it and ignore the
* extent we found.
*/
if (state->start > start) {
u64 this_end;
struct extent_state *inserted_state;
if (end < last_start)
this_end = end;
else
this_end = last_start - 1;
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc)
goto search_again;
/*
* Avoid to free 'prealloc' if it can be merged with the later
* extent.
*/
prealloc->start = start;
prealloc->end = this_end;
inserted_state = insert_state(tree, prealloc, bits, changeset);
if (IS_ERR(inserted_state)) {
ret = PTR_ERR(inserted_state);
extent_io_tree_panic(tree, prealloc, "insert", ret);
}
cache_state(inserted_state, cached_state);
if (inserted_state == prealloc)
prealloc = NULL;
start = this_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
*
* We need to split the extent, and set the bit on the first half
*/
if (state->start <= end && state->end > end) {
if (state->state & exclusive_bits) {
*failed_start = start;
cache_state(state, failed_state);
ret = -EEXIST;
goto out;
}
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc)
goto search_again;
ret = split_state(tree, state, prealloc, end + 1);
if (ret)
extent_io_tree_panic(tree, state, "split", ret);
set_state_bits(tree, prealloc, bits, changeset);
cache_state(prealloc, cached_state);
merge_state(tree, prealloc);
prealloc = NULL;
goto out;
}
search_again:
if (start > end)
goto out;
spin_unlock(&tree->lock);
if (gfpflags_allow_blocking(mask))
cond_resched();
goto again;
out:
spin_unlock(&tree->lock);
if (prealloc)
free_extent_state(prealloc);
return ret;
}
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_state **cached_state)
{
return __set_extent_bit(tree, start, end, bits, NULL, NULL,
cached_state, NULL);
}
/*
* Convert all bits in a given range from one bit to another
*
* @tree: the io tree to search
* @start: the start offset in bytes
* @end: the end offset in bytes (inclusive)
* @bits: the bits to set in this range
* @clear_bits: the bits to clear in this range
* @cached_state: state that we're going to cache
*
* This will go through and set bits for the given range. If any states exist
* already in this range they are set with the given bit and cleared of the
* clear_bits. This is only meant to be used by things that are mergeable, ie.
* converting from say DELALLOC to DIRTY. This is not meant to be used with
* boundary bits like LOCK.
*
* All allocations are done with GFP_NOFS.
*/
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, u32 clear_bits,
struct extent_state **cached_state)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct rb_node **p = NULL;
struct rb_node *parent = NULL;
int ret = 0;
u64 last_start;
u64 last_end;
bool first_iteration = true;
btrfs_debug_check_extent_io_range(tree, start, end);
trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
clear_bits);
again:
if (!prealloc) {
/*
* Best effort, don't worry if extent state allocation fails
* here for the first iteration. We might have a cached state
* that matches exactly the target range, in which case no
* extent state allocations are needed. We'll only know this
* after locking the tree.
*/
prealloc = alloc_extent_state(GFP_NOFS);
if (!prealloc && !first_iteration)
return -ENOMEM;
}
spin_lock(&tree->lock);
if (cached_state && *cached_state) {
state = *cached_state;
if (state->start <= start && state->end > start &&
extent_state_in_tree(state))
goto hit_next;
}
/*
* This search will find all the extents that end after our range
* starts.
*/
state = tree_search_for_insert(tree, start, &p, &parent);
if (!state) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
prealloc->start = start;
prealloc->end = end;
insert_state_fast(tree, prealloc, p, parent, bits, NULL);
cache_state(prealloc, cached_state);
prealloc = NULL;
goto out;
}
hit_next:
last_start = state->start;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state |
*
* Just lock what we found and keep going.
*/
if (state->start == start && state->end <= end) {
set_state_bits(tree, state, bits, NULL);
cache_state(state, cached_state);
state = clear_state_bit(tree, state, clear_bits, 0, NULL);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on second
* half.
*
* If the extent we found extends past our range, we just split and
* search again. It'll get split again the next time though.
*
* If the extent we found is inside our range, we set the desired bit
* on it.
*/
if (state->start < start) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
ret = split_state(tree, state, prealloc, start);
if (ret)
extent_io_tree_panic(tree, state, "split", ret);
prealloc = NULL;
if (ret)
goto out;
if (state->end <= end) {
set_state_bits(tree, state, bits, NULL);
cache_state(state, cached_state);
state = clear_state_bit(tree, state, clear_bits, 0, NULL);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state | or | state |
*
* There's a hole, we need to insert something in it and ignore the
* extent we found.
*/
if (state->start > start) {
u64 this_end;
struct extent_state *inserted_state;
if (end < last_start)
this_end = end;
else
this_end = last_start - 1;
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
/*
* Avoid to free 'prealloc' if it can be merged with the later
* extent.
*/
prealloc->start = start;
prealloc->end = this_end;
inserted_state = insert_state(tree, prealloc, bits, NULL);
if (IS_ERR(inserted_state)) {
ret = PTR_ERR(inserted_state);
extent_io_tree_panic(tree, prealloc, "insert", ret);
}
cache_state(inserted_state, cached_state);
if (inserted_state == prealloc)
prealloc = NULL;
start = this_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
*
* We need to split the extent, and set the bit on the first half.
*/
if (state->start <= end && state->end > end) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
ret = split_state(tree, state, prealloc, end + 1);
if (ret)
extent_io_tree_panic(tree, state, "split", ret);
set_state_bits(tree, prealloc, bits, NULL);
cache_state(prealloc, cached_state);
clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
prealloc = NULL;
goto out;
}
search_again:
if (start > end)
goto out;
spin_unlock(&tree->lock);
cond_resched();
first_iteration = false;
goto again;
out:
spin_unlock(&tree->lock);
if (prealloc)
free_extent_state(prealloc);
return ret;
}
/*
* Find the first range that has @bits not set. This range could start before
* @start.
*
* @tree: the tree to search
* @start: offset at/after which the found extent should start
* @start_ret: records the beginning of the range
* @end_ret: records the end of the range (inclusive)
* @bits: the set of bits which must be unset
*
* Since unallocated range is also considered one which doesn't have the bits
* set it's possible that @end_ret contains -1, this happens in case the range
* spans (last_range_end, end of device]. In this case it's up to the caller to
* trim @end_ret to the appropriate size.
*/
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, u32 bits)
{
struct extent_state *state;
struct extent_state *prev = NULL, *next = NULL;
spin_lock(&tree->lock);
/* Find first extent with bits cleared */
while (1) {
state = tree_search_prev_next(tree, start, &prev, &next);
if (!state && !next && !prev) {
/*
* Tree is completely empty, send full range and let
* caller deal with it
*/
*start_ret = 0;
*end_ret = -1;
goto out;
} else if (!state && !next) {
/*
* We are past the last allocated chunk, set start at
* the end of the last extent.
*/
*start_ret = prev->end + 1;
*end_ret = -1;
goto out;
} else if (!state) {
state = next;
}
/*
* At this point 'state' either contains 'start' or start is
* before 'state'
*/
if (in_range(start, state->start, state->end - state->start + 1)) {
if (state->state & bits) {
/*
* |--range with bits sets--|
* |
* start
*/
start = state->end + 1;
} else {
/*
* 'start' falls within a range that doesn't
* have the bits set, so take its start as the
* beginning of the desired range
*
* |--range with bits cleared----|
* |
* start
*/
*start_ret = state->start;
break;
}
} else {
/*
* |---prev range---|---hole/unset---|---node range---|
* |
* start
*
* or
*
* |---hole/unset--||--first node--|
* 0 |
* start
*/
if (prev)
*start_ret = prev->end + 1;
else
*start_ret = 0;
break;
}
}
/*
* Find the longest stretch from start until an entry which has the
* bits set
*/
while (state) {
if (state->end >= start && !(state->state & bits)) {
*end_ret = state->end;
} else {
*end_ret = state->start - 1;
break;
}
state = next_state(state);
}
out:
spin_unlock(&tree->lock);
}
/*
* Count the number of bytes in the tree that have a given bit(s) set for a
* given range.
*
* @tree: The io tree to search.
* @start: The start offset of the range. This value is updated to the
* offset of the first byte found with the given bit(s), so it
* can end up being bigger than the initial value.
* @search_end: The end offset (inclusive value) of the search range.
* @max_bytes: The maximum byte count we are interested. The search stops
* once it reaches this count.
* @bits: The bits the range must have in order to be accounted for.
* If multiple bits are set, then only subranges that have all
* the bits set are accounted for.
* @contig: Indicate if we should ignore holes in the range or not. If
* this is true, then stop once we find a hole.
* @cached_state: A cached state to be used across multiple calls to this
* function in order to speedup searches. Use NULL if this is
* called only once or if each call does not start where the
* previous one ended.
*
* Returns the total number of bytes found within the given range that have
* all given bits set. If the returned number of bytes is greater than zero
* then @start is updated with the offset of the first byte with the bits set.
*/
u64 count_range_bits(struct extent_io_tree *tree,
u64 *start, u64 search_end, u64 max_bytes,
u32 bits, int contig,
struct extent_state **cached_state)
{
struct extent_state *state = NULL;
struct extent_state *cached;
u64 cur_start = *start;
u64 total_bytes = 0;
u64 last = 0;
int found = 0;
if (WARN_ON(search_end < cur_start))
return 0;
spin_lock(&tree->lock);
if (!cached_state || !*cached_state)
goto search;
cached = *cached_state;
if (!extent_state_in_tree(cached))
goto search;
if (cached->start <= cur_start && cur_start <= cached->end) {
state = cached;
} else if (cached->start > cur_start) {
struct extent_state *prev;
/*
* The cached state starts after our search range's start. Check
* if the previous state record starts at or before the range we
* are looking for, and if so, use it - this is a common case
* when there are holes between records in the tree. If there is
* no previous state record, we can start from our cached state.
*/
prev = prev_state(cached);
if (!prev)
state = cached;
else if (prev->start <= cur_start && cur_start <= prev->end)
state = prev;
}
/*
* This search will find all the extents that end after our range
* starts.
*/
search:
if (!state)
state = tree_search(tree, cur_start);
while (state) {
if (state->start > search_end)
break;
if (contig && found && state->start > last + 1)
break;
if (state->end >= cur_start && (state->state & bits) == bits) {
total_bytes += min(search_end, state->end) + 1 -
max(cur_start, state->start);
if (total_bytes >= max_bytes)
break;
if (!found) {
*start = max(cur_start, state->start);
found = 1;
}
last = state->end;
} else if (contig && found) {
break;
}
state = next_state(state);
}
if (cached_state) {
free_extent_state(*cached_state);
*cached_state = state;
if (state)
refcount_inc(&state->refs);
}
spin_unlock(&tree->lock);
return total_bytes;
}
/*
* Check if the single @bit exists in the given range.
*/
bool test_range_bit_exists(struct extent_io_tree *tree, u64 start, u64 end, u32 bit)
{
struct extent_state *state = NULL;
bool bitset = false;
ASSERT(is_power_of_2(bit));
spin_lock(&tree->lock);
state = tree_search(tree, start);
while (state && start <= end) {
if (state->start > end)
break;
if (state->state & bit) {
bitset = true;
break;
}
/* If state->end is (u64)-1, start will overflow to 0 */
start = state->end + 1;
if (start > end || start == 0)
break;
state = next_state(state);
}
spin_unlock(&tree->lock);
return bitset;
}
/*
* Check if the whole range [@start,@end) contains the single @bit set.
*/
bool test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bit,
struct extent_state *cached)
{
struct extent_state *state = NULL;
bool bitset = true;
ASSERT(is_power_of_2(bit));
spin_lock(&tree->lock);
if (cached && extent_state_in_tree(cached) && cached->start <= start &&
cached->end > start)
state = cached;
else
state = tree_search(tree, start);
while (state && start <= end) {
if (state->start > start) {
bitset = false;
break;
}
if (state->start > end)
break;
if ((state->state & bit) == 0) {
bitset = false;
break;
}
if (state->end == (u64)-1)
break;
/*
* Last entry (if state->end is (u64)-1 and overflow happens),
* or next entry starts after the range.
*/
start = state->end + 1;
if (start > end || start == 0)
break;
state = next_state(state);
}
/* We ran out of states and were still inside of our range. */
if (!state)
bitset = false;
spin_unlock(&tree->lock);
return bitset;
}
/* Wrappers around set/clear extent bit */
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_changeset *changeset)
{
/*
* We don't support EXTENT_LOCKED yet, as current changeset will
* record any bits changed, so for EXTENT_LOCKED case, it will
* either fail with -EEXIST or changeset will record the whole
* range.
*/
ASSERT(!(bits & EXTENT_LOCKED));
return __set_extent_bit(tree, start, end, bits, NULL, NULL, NULL, changeset);
}
int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_changeset *changeset)
{
/*
* Don't support EXTENT_LOCKED case, same reason as
* set_record_extent_bits().
*/
ASSERT(!(bits & EXTENT_LOCKED));
return __clear_extent_bit(tree, start, end, bits, NULL, changeset);
}
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
struct extent_state **cached)
{
int err;
u64 failed_start;
err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start,
NULL, cached, NULL);
if (err == -EEXIST) {
if (failed_start > start)
clear_extent_bit(tree, start, failed_start - 1,
EXTENT_LOCKED, cached);
return 0;
}
return 1;
}
/*
* Either insert or lock state struct between start and end use mask to tell
* us if waiting is desired.
*/
int lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
struct extent_state **cached_state)
{
struct extent_state *failed_state = NULL;
int err;
u64 failed_start;
err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start,
&failed_state, cached_state, NULL);
while (err == -EEXIST) {
if (failed_start != start)
clear_extent_bit(tree, start, failed_start - 1,
EXTENT_LOCKED, cached_state);
wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED,
&failed_state);
err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
&failed_start, &failed_state,
cached_state, NULL);
}
return err;
}
void __cold extent_state_free_cachep(void)
{
btrfs_extent_state_leak_debug_check();
kmem_cache_destroy(extent_state_cache);
}
int __init extent_state_init_cachep(void)
{
extent_state_cache = kmem_cache_create("btrfs_extent_state",
sizeof(struct extent_state), 0, 0,
NULL);
if (!extent_state_cache)
return -ENOMEM;
return 0;
}