Wu Fengguang 253fb02d62 pagemap: export KPF_HWPOISON
This flag indicates a hardware detected memory corruption on the page.
Any future access of the page data may bring down the machine.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-10-08 07:36:39 -07:00

250 lines
5.7 KiB
C

#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/ksm.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/hugetlb.h>
#include <asm/uaccess.h>
#include "internal.h"
#define KPMSIZE sizeof(u64)
#define KPMMASK (KPMSIZE - 1)
/* /proc/kpagecount - an array exposing page counts
*
* Each entry is a u64 representing the corresponding
* physical page count.
*/
static ssize_t kpagecount_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
u64 __user *out = (u64 __user *)buf;
struct page *ppage;
unsigned long src = *ppos;
unsigned long pfn;
ssize_t ret = 0;
u64 pcount;
pfn = src / KPMSIZE;
count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
if (src & KPMMASK || count & KPMMASK)
return -EINVAL;
while (count > 0) {
if (pfn_valid(pfn))
ppage = pfn_to_page(pfn);
else
ppage = NULL;
if (!ppage)
pcount = 0;
else
pcount = page_mapcount(ppage);
if (put_user(pcount, out)) {
ret = -EFAULT;
break;
}
pfn++;
out++;
count -= KPMSIZE;
}
*ppos += (char __user *)out - buf;
if (!ret)
ret = (char __user *)out - buf;
return ret;
}
static const struct file_operations proc_kpagecount_operations = {
.llseek = mem_lseek,
.read = kpagecount_read,
};
/* /proc/kpageflags - an array exposing page flags
*
* Each entry is a u64 representing the corresponding
* physical page flags.
*/
/* These macros are used to decouple internal flags from exported ones */
#define KPF_LOCKED 0
#define KPF_ERROR 1
#define KPF_REFERENCED 2
#define KPF_UPTODATE 3
#define KPF_DIRTY 4
#define KPF_LRU 5
#define KPF_ACTIVE 6
#define KPF_SLAB 7
#define KPF_WRITEBACK 8
#define KPF_RECLAIM 9
#define KPF_BUDDY 10
/* 11-20: new additions in 2.6.31 */
#define KPF_MMAP 11
#define KPF_ANON 12
#define KPF_SWAPCACHE 13
#define KPF_SWAPBACKED 14
#define KPF_COMPOUND_HEAD 15
#define KPF_COMPOUND_TAIL 16
#define KPF_HUGE 17
#define KPF_UNEVICTABLE 18
#define KPF_HWPOISON 19
#define KPF_NOPAGE 20
#define KPF_KSM 21
/* kernel hacking assistances
* WARNING: subject to change, never rely on them!
*/
#define KPF_RESERVED 32
#define KPF_MLOCKED 33
#define KPF_MAPPEDTODISK 34
#define KPF_PRIVATE 35
#define KPF_PRIVATE_2 36
#define KPF_OWNER_PRIVATE 37
#define KPF_ARCH 38
#define KPF_UNCACHED 39
static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
{
return ((kflags >> kbit) & 1) << ubit;
}
static u64 get_uflags(struct page *page)
{
u64 k;
u64 u;
/*
* pseudo flag: KPF_NOPAGE
* it differentiates a memory hole from a page with no flags
*/
if (!page)
return 1 << KPF_NOPAGE;
k = page->flags;
u = 0;
/*
* pseudo flags for the well known (anonymous) memory mapped pages
*
* Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
* simple test in page_mapped() is not enough.
*/
if (!PageSlab(page) && page_mapped(page))
u |= 1 << KPF_MMAP;
if (PageAnon(page))
u |= 1 << KPF_ANON;
if (PageKsm(page))
u |= 1 << KPF_KSM;
/*
* compound pages: export both head/tail info
* they together define a compound page's start/end pos and order
*/
if (PageHead(page))
u |= 1 << KPF_COMPOUND_HEAD;
if (PageTail(page))
u |= 1 << KPF_COMPOUND_TAIL;
if (PageHuge(page))
u |= 1 << KPF_HUGE;
u |= kpf_copy_bit(k, KPF_LOCKED, PG_locked);
/*
* Caveats on high order pages:
* PG_buddy will only be set on the head page; SLUB/SLQB do the same
* for PG_slab; SLOB won't set PG_slab at all on compound pages.
*/
u |= kpf_copy_bit(k, KPF_SLAB, PG_slab);
u |= kpf_copy_bit(k, KPF_BUDDY, PG_buddy);
u |= kpf_copy_bit(k, KPF_ERROR, PG_error);
u |= kpf_copy_bit(k, KPF_DIRTY, PG_dirty);
u |= kpf_copy_bit(k, KPF_UPTODATE, PG_uptodate);
u |= kpf_copy_bit(k, KPF_WRITEBACK, PG_writeback);
u |= kpf_copy_bit(k, KPF_LRU, PG_lru);
u |= kpf_copy_bit(k, KPF_REFERENCED, PG_referenced);
u |= kpf_copy_bit(k, KPF_ACTIVE, PG_active);
u |= kpf_copy_bit(k, KPF_RECLAIM, PG_reclaim);
u |= kpf_copy_bit(k, KPF_SWAPCACHE, PG_swapcache);
u |= kpf_copy_bit(k, KPF_SWAPBACKED, PG_swapbacked);
u |= kpf_copy_bit(k, KPF_UNEVICTABLE, PG_unevictable);
u |= kpf_copy_bit(k, KPF_MLOCKED, PG_mlocked);
#ifdef CONFIG_MEMORY_FAILURE
u |= kpf_copy_bit(k, KPF_HWPOISON, PG_hwpoison);
#endif
#ifdef CONFIG_IA64_UNCACHED_ALLOCATOR
u |= kpf_copy_bit(k, KPF_UNCACHED, PG_uncached);
#endif
u |= kpf_copy_bit(k, KPF_RESERVED, PG_reserved);
u |= kpf_copy_bit(k, KPF_MAPPEDTODISK, PG_mappedtodisk);
u |= kpf_copy_bit(k, KPF_PRIVATE, PG_private);
u |= kpf_copy_bit(k, KPF_PRIVATE_2, PG_private_2);
u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE, PG_owner_priv_1);
u |= kpf_copy_bit(k, KPF_ARCH, PG_arch_1);
return u;
};
static ssize_t kpageflags_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
u64 __user *out = (u64 __user *)buf;
struct page *ppage;
unsigned long src = *ppos;
unsigned long pfn;
ssize_t ret = 0;
pfn = src / KPMSIZE;
count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
if (src & KPMMASK || count & KPMMASK)
return -EINVAL;
while (count > 0) {
if (pfn_valid(pfn))
ppage = pfn_to_page(pfn);
else
ppage = NULL;
if (put_user(get_uflags(ppage), out)) {
ret = -EFAULT;
break;
}
pfn++;
out++;
count -= KPMSIZE;
}
*ppos += (char __user *)out - buf;
if (!ret)
ret = (char __user *)out - buf;
return ret;
}
static const struct file_operations proc_kpageflags_operations = {
.llseek = mem_lseek,
.read = kpageflags_read,
};
static int __init proc_page_init(void)
{
proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
return 0;
}
module_init(proc_page_init);