linux-stable/drivers/video/sa1100fb.c
Russell King 7cb66dcc82 FB: sa11x0: convert to use platform resource and ioremap()
Convert the sa11x0 framebuffer driver to obtain the base address of its
hardware registers from the platform resources, and ioremap this rather
than relying on the static mappings.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2012-02-24 09:39:59 +00:00

1352 lines
38 KiB
C

/*
* linux/drivers/video/sa1100fb.c
*
* Copyright (C) 1999 Eric A. Thomas
* Based on acornfb.c Copyright (C) Russell King.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* StrongARM 1100 LCD Controller Frame Buffer Driver
*
* Please direct your questions and comments on this driver to the following
* email address:
*
* linux-arm-kernel@lists.arm.linux.org.uk
*
* Clean patches should be sent to the ARM Linux Patch System. Please see the
* following web page for more information:
*
* http://www.arm.linux.org.uk/developer/patches/info.shtml
*
* Thank you.
*
* Known problems:
* - With the Neponset plugged into an Assabet, LCD powerdown
* doesn't work (LCD stays powered up). Therefore we shouldn't
* blank the screen.
* - We don't limit the CPU clock rate nor the mode selection
* according to the available SDRAM bandwidth.
*
* Other notes:
* - Linear grayscale palettes and the kernel.
* Such code does not belong in the kernel. The kernel frame buffer
* drivers do not expect a linear colourmap, but a colourmap based on
* the VT100 standard mapping.
*
* If your _userspace_ requires a linear colourmap, then the setup of
* such a colourmap belongs _in userspace_, not in the kernel. Code
* to set the colourmap correctly from user space has been sent to
* David Neuer. It's around 8 lines of C code, plus another 4 to
* detect if we are using grayscale.
*
* - The following must never be specified in a panel definition:
* LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
*
* - The following should be specified:
* either LCCR0_Color or LCCR0_Mono
* either LCCR0_Sngl or LCCR0_Dual
* either LCCR0_Act or LCCR0_Pas
* either LCCR3_OutEnH or LCCD3_OutEnL
* either LCCR3_PixRsEdg or LCCR3_PixFlEdg
* either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
*
* Code Status:
* 1999/04/01:
* - Driver appears to be working for Brutus 320x200x8bpp mode. Other
* resolutions are working, but only the 8bpp mode is supported.
* Changes need to be made to the palette encode and decode routines
* to support 4 and 16 bpp modes.
* Driver is not designed to be a module. The FrameBuffer is statically
* allocated since dynamic allocation of a 300k buffer cannot be
* guaranteed.
*
* 1999/06/17:
* - FrameBuffer memory is now allocated at run-time when the
* driver is initialized.
*
* 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
* - Big cleanup for dynamic selection of machine type at run time.
*
* 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
* - Support for Bitsy aka Compaq iPAQ H3600 added.
*
* 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
* Jeff Sutherland <jsutherland@accelent.com>
* - Resolved an issue caused by a change made to the Assabet's PLD
* earlier this year which broke the framebuffer driver for newer
* Phase 4 Assabets. Some other parameters were changed to optimize
* for the Sharp display.
*
* 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
* - XP860 support added
*
* 2000/08/19: Mark Huang <mhuang@livetoy.com>
* - Allows standard options to be passed on the kernel command line
* for most common passive displays.
*
* 2000/08/29:
* - s/save_flags_cli/local_irq_save/
* - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
*
* 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
* - Updated LART stuff. Fixed some minor bugs.
*
* 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
* - Pangolin support added
*
* 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
* - Huw Webpanel support added
*
* 2000/11/23: Eric Peng <ericpeng@coventive.com>
* - Freebird add
*
* 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
* Cliff Brake <cbrake@accelent.com>
* - Added PM callback
*
* 2001/05/26: <rmk@arm.linux.org.uk>
* - Fix 16bpp so that (a) we use the right colours rather than some
* totally random colour depending on what was in page 0, and (b)
* we don't de-reference a NULL pointer.
* - remove duplicated implementation of consistent_alloc()
* - convert dma address types to dma_addr_t
* - remove unused 'montype' stuff
* - remove redundant zero inits of init_var after the initial
* memset.
* - remove allow_modeset (acornfb idea does not belong here)
*
* 2001/05/28: <rmk@arm.linux.org.uk>
* - massive cleanup - move machine dependent data into structures
* - I've left various #warnings in - if you see one, and know
* the hardware concerned, please get in contact with me.
*
* 2001/05/31: <rmk@arm.linux.org.uk>
* - Fix LCCR1 HSW value, fix all machine type specifications to
* keep values in line. (Please check your machine type specs)
*
* 2001/06/10: <rmk@arm.linux.org.uk>
* - Fiddle with the LCD controller from task context only; mainly
* so that we can run with interrupts on, and sleep.
* - Convert #warnings into #errors. No pain, no gain. ;)
*
* 2001/06/14: <rmk@arm.linux.org.uk>
* - Make the palette BPS value for 12bpp come out correctly.
* - Take notice of "greyscale" on any colour depth.
* - Make truecolor visuals use the RGB channel encoding information.
*
* 2001/07/02: <rmk@arm.linux.org.uk>
* - Fix colourmap problems.
*
* 2001/07/13: <abraham@2d3d.co.za>
* - Added support for the ICP LCD-Kit01 on LART. This LCD is
* manufactured by Prime View, model no V16C6448AB
*
* 2001/07/23: <rmk@arm.linux.org.uk>
* - Hand merge version from handhelds.org CVS tree. See patch
* notes for 595/1 for more information.
* - Drop 12bpp (it's 16bpp with different colour register mappings).
* - This hardware can not do direct colour. Therefore we don't
* support it.
*
* 2001/07/27: <rmk@arm.linux.org.uk>
* - Halve YRES on dual scan LCDs.
*
* 2001/08/22: <rmk@arm.linux.org.uk>
* - Add b/w iPAQ pixclock value.
*
* 2001/10/12: <rmk@arm.linux.org.uk>
* - Add patch 681/1 and clean up stork definitions.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include <video/sa1100fb.h>
#include <mach/hardware.h>
#include <asm/mach-types.h>
#include <mach/shannon.h>
/*
* Complain if VAR is out of range.
*/
#define DEBUG_VAR 1
#include "sa1100fb.h"
static const struct sa1100fb_rgb rgb_4 = {
.red = { .offset = 0, .length = 4, },
.green = { .offset = 0, .length = 4, },
.blue = { .offset = 0, .length = 4, },
.transp = { .offset = 0, .length = 0, },
};
static const struct sa1100fb_rgb rgb_8 = {
.red = { .offset = 0, .length = 8, },
.green = { .offset = 0, .length = 8, },
.blue = { .offset = 0, .length = 8, },
.transp = { .offset = 0, .length = 0, },
};
static const struct sa1100fb_rgb def_rgb_16 = {
.red = { .offset = 11, .length = 5, },
.green = { .offset = 5, .length = 6, },
.blue = { .offset = 0, .length = 5, },
.transp = { .offset = 0, .length = 0, },
};
static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
{
unsigned long flags;
local_irq_save(flags);
/*
* We need to handle two requests being made at the same time.
* There are two important cases:
* 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
* We must perform the unblanking, which will do our REENABLE for us.
* 2. When we are blanking, but immediately unblank before we have
* blanked. We do the "REENABLE" thing here as well, just to be sure.
*/
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
state = (u_int) -1;
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
state = C_REENABLE;
if (state != (u_int)-1) {
fbi->task_state = state;
schedule_work(&fbi->task);
}
local_irq_restore(flags);
}
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
/*
* Convert bits-per-pixel to a hardware palette PBS value.
*/
static inline u_int palette_pbs(struct fb_var_screeninfo *var)
{
int ret = 0;
switch (var->bits_per_pixel) {
case 4: ret = 0 << 12; break;
case 8: ret = 1 << 12; break;
case 16: ret = 2 << 12; break;
}
return ret;
}
static int
sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
u_int val, ret = 1;
if (regno < fbi->palette_size) {
val = ((red >> 4) & 0xf00);
val |= ((green >> 8) & 0x0f0);
val |= ((blue >> 12) & 0x00f);
if (regno == 0)
val |= palette_pbs(&fbi->fb.var);
fbi->palette_cpu[regno] = val;
ret = 0;
}
return ret;
}
static int
sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
unsigned int val;
int ret = 1;
/*
* If inverse mode was selected, invert all the colours
* rather than the register number. The register number
* is what you poke into the framebuffer to produce the
* colour you requested.
*/
if (fbi->inf->cmap_inverse) {
red = 0xffff - red;
green = 0xffff - green;
blue = 0xffff - blue;
}
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no mater what visual we are using.
*/
if (fbi->fb.var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fb.fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 12 or 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fbi->fb.pseudo_palette;
val = chan_to_field(red, &fbi->fb.var.red);
val |= chan_to_field(green, &fbi->fb.var.green);
val |= chan_to_field(blue, &fbi->fb.var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
break;
}
return ret;
}
#ifdef CONFIG_CPU_FREQ
/*
* sa1100fb_display_dma_period()
* Calculate the minimum period (in picoseconds) between two DMA
* requests for the LCD controller. If we hit this, it means we're
* doing nothing but LCD DMA.
*/
static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
{
/*
* Period = pixclock * bits_per_byte * bytes_per_transfer
* / memory_bits_per_pixel;
*/
return var->pixclock * 8 * 16 / var->bits_per_pixel;
}
#endif
/*
* sa1100fb_check_var():
* Round up in the following order: bits_per_pixel, xres,
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
* bitfields, horizontal timing, vertical timing.
*/
static int
sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
int rgbidx;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
if (var->xres > fbi->inf->xres)
var->xres = fbi->inf->xres;
if (var->yres > fbi->inf->yres)
var->yres = fbi->inf->yres;
var->xres_virtual = max(var->xres_virtual, var->xres);
var->yres_virtual = max(var->yres_virtual, var->yres);
dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
switch (var->bits_per_pixel) {
case 4:
rgbidx = RGB_4;
break;
case 8:
rgbidx = RGB_8;
break;
case 16:
rgbidx = RGB_16;
break;
default:
return -EINVAL;
}
/*
* Copy the RGB parameters for this display
* from the machine specific parameters.
*/
var->red = fbi->rgb[rgbidx]->red;
var->green = fbi->rgb[rgbidx]->green;
var->blue = fbi->rgb[rgbidx]->blue;
var->transp = fbi->rgb[rgbidx]->transp;
dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
var->red.length, var->green.length, var->blue.length,
var->transp.length);
dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
var->red.offset, var->green.offset, var->blue.offset,
var->transp.offset);
#ifdef CONFIG_CPU_FREQ
dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
sa1100fb_display_dma_period(var),
cpufreq_get(smp_processor_id()));
#endif
return 0;
}
static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
{
if (fbi->inf->set_visual)
fbi->inf->set_visual(visual);
}
/*
* sa1100fb_set_par():
* Set the user defined part of the display for the specified console
*/
static int sa1100fb_set_par(struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
struct fb_var_screeninfo *var = &info->var;
unsigned long palette_mem_size;
dev_dbg(fbi->dev, "set_par\n");
if (var->bits_per_pixel == 16)
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
else if (!fbi->inf->cmap_static)
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
else {
/*
* Some people have weird ideas about wanting static
* pseudocolor maps. I suspect their user space
* applications are broken.
*/
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
}
fbi->fb.fix.line_length = var->xres_virtual *
var->bits_per_pixel / 8;
fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
palette_mem_size = fbi->palette_size * sizeof(u16);
dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
/*
* Set (any) board control register to handle new color depth
*/
sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
sa1100fb_activate_var(var, fbi);
return 0;
}
#if 0
static int
sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
/*
* Make sure the user isn't doing something stupid.
*/
if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
return -EINVAL;
return gen_set_cmap(cmap, kspc, con, info);
}
#endif
/*
* Formal definition of the VESA spec:
* On
* This refers to the state of the display when it is in full operation
* Stand-By
* This defines an optional operating state of minimal power reduction with
* the shortest recovery time
* Suspend
* This refers to a level of power management in which substantial power
* reduction is achieved by the display. The display can have a longer
* recovery time from this state than from the Stand-by state
* Off
* This indicates that the display is consuming the lowest level of power
* and is non-operational. Recovery from this state may optionally require
* the user to manually power on the monitor
*
* Now, the fbdev driver adds an additional state, (blank), where they
* turn off the video (maybe by colormap tricks), but don't mess with the
* video itself: think of it semantically between on and Stand-By.
*
* So here's what we should do in our fbdev blank routine:
*
* VESA_NO_BLANKING (mode 0) Video on, front/back light on
* VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
* VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
* VESA_POWERDOWN (mode 3) Video off, front/back light off
*
* This will match the matrox implementation.
*/
/*
* sa1100fb_blank():
* Blank the display by setting all palette values to zero. Note, the
* 12 and 16 bpp modes don't really use the palette, so this will not
* blank the display in all modes.
*/
static int sa1100fb_blank(int blank, struct fb_info *info)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
int i;
dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
for (i = 0; i < fbi->palette_size; i++)
sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
sa1100fb_schedule_work(fbi, C_DISABLE);
break;
case FB_BLANK_UNBLANK:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
fb_set_cmap(&fbi->fb.cmap, info);
sa1100fb_schedule_work(fbi, C_ENABLE);
}
return 0;
}
static int sa1100fb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
if (off < info->fix.smem_len) {
vma->vm_pgoff += 1; /* skip over the palette */
return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
fbi->map_dma, fbi->map_size);
}
start = info->fix.mmio_start;
len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
if ((vma->vm_end - vma->vm_start + off) > len)
return -EINVAL;
off += start & PAGE_MASK;
vma->vm_pgoff = off >> PAGE_SHIFT;
vma->vm_flags |= VM_IO;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
static struct fb_ops sa1100fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = sa1100fb_check_var,
.fb_set_par = sa1100fb_set_par,
// .fb_set_cmap = sa1100fb_set_cmap,
.fb_setcolreg = sa1100fb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = sa1100fb_blank,
.fb_mmap = sa1100fb_mmap,
};
/*
* Calculate the PCD value from the clock rate (in picoseconds).
* We take account of the PPCR clock setting.
*/
static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
{
unsigned int pcd = cpuclock / 100;
pcd *= pixclock;
pcd /= 10000000;
return pcd + 1; /* make up for integer math truncations */
}
/*
* sa1100fb_activate_var():
* Configures LCD Controller based on entries in var parameter. Settings are
* only written to the controller if changes were made.
*/
static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
{
struct sa1100fb_lcd_reg new_regs;
u_int half_screen_size, yres, pcd;
u_long flags;
dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
var->xres, var->hsync_len,
var->left_margin, var->right_margin);
dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
var->yres, var->vsync_len,
var->upper_margin, var->lower_margin);
#if DEBUG_VAR
if (var->xres < 16 || var->xres > 1024)
dev_err(fbi->dev, "%s: invalid xres %d\n",
fbi->fb.fix.id, var->xres);
if (var->hsync_len < 1 || var->hsync_len > 64)
dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
fbi->fb.fix.id, var->hsync_len);
if (var->left_margin < 1 || var->left_margin > 255)
dev_err(fbi->dev, "%s: invalid left_margin %d\n",
fbi->fb.fix.id, var->left_margin);
if (var->right_margin < 1 || var->right_margin > 255)
dev_err(fbi->dev, "%s: invalid right_margin %d\n",
fbi->fb.fix.id, var->right_margin);
if (var->yres < 1 || var->yres > 1024)
dev_err(fbi->dev, "%s: invalid yres %d\n",
fbi->fb.fix.id, var->yres);
if (var->vsync_len < 1 || var->vsync_len > 64)
dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
fbi->fb.fix.id, var->vsync_len);
if (var->upper_margin < 0 || var->upper_margin > 255)
dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
fbi->fb.fix.id, var->upper_margin);
if (var->lower_margin < 0 || var->lower_margin > 255)
dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
fbi->fb.fix.id, var->lower_margin);
#endif
new_regs.lccr0 = fbi->inf->lccr0 |
LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
new_regs.lccr1 =
LCCR1_DisWdth(var->xres) +
LCCR1_HorSnchWdth(var->hsync_len) +
LCCR1_BegLnDel(var->left_margin) +
LCCR1_EndLnDel(var->right_margin);
/*
* If we have a dual scan LCD, then we need to halve
* the YRES parameter.
*/
yres = var->yres;
if (fbi->inf->lccr0 & LCCR0_Dual)
yres /= 2;
new_regs.lccr2 =
LCCR2_DisHght(yres) +
LCCR2_VrtSnchWdth(var->vsync_len) +
LCCR2_BegFrmDel(var->upper_margin) +
LCCR2_EndFrmDel(var->lower_margin);
pcd = get_pcd(var->pixclock, cpufreq_get(0));
new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
half_screen_size = var->bits_per_pixel;
half_screen_size = half_screen_size * var->xres * var->yres / 16;
/* Update shadow copy atomically */
local_irq_save(flags);
fbi->dbar1 = fbi->palette_dma;
fbi->dbar2 = fbi->screen_dma + half_screen_size;
fbi->reg_lccr0 = new_regs.lccr0;
fbi->reg_lccr1 = new_regs.lccr1;
fbi->reg_lccr2 = new_regs.lccr2;
fbi->reg_lccr3 = new_regs.lccr3;
local_irq_restore(flags);
/*
* Only update the registers if the controller is enabled
* and something has changed.
*/
if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
sa1100fb_schedule_work(fbi, C_REENABLE);
return 0;
}
/*
* NOTE! The following functions are purely helpers for set_ctrlr_state.
* Do not call them directly; set_ctrlr_state does the correct serialisation
* to ensure that things happen in the right way 100% of time time.
* -- rmk
*/
static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
{
dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
if (fbi->inf->backlight_power)
fbi->inf->backlight_power(on);
}
static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
{
dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
if (fbi->inf->lcd_power)
fbi->inf->lcd_power(on);
}
static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
{
u_int mask = 0;
/*
* Enable GPIO<9:2> for LCD use if:
* 1. Active display, or
* 2. Color Dual Passive display
*
* see table 11.8 on page 11-27 in the SA1100 manual
* -- Erik.
*
* SA1110 spec update nr. 25 says we can and should
* clear LDD15 to 12 for 4 or 8bpp modes with active
* panels.
*/
if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
(fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
if (fbi->fb.var.bits_per_pixel > 8 ||
(fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
}
if (mask) {
unsigned long flags;
/*
* SA-1100 requires the GPIO direction register set
* appropriately for the alternate function. Hence
* we set it here via bitmask rather than excessive
* fiddling via the GPIO subsystem - and even then
* we'll still have to deal with GAFR.
*/
local_irq_save(flags);
GPDR |= mask;
GAFR |= mask;
local_irq_restore(flags);
}
}
static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
{
dev_dbg(fbi->dev, "Enabling LCD controller\n");
/*
* Make sure the mode bits are present in the first palette entry
*/
fbi->palette_cpu[0] &= 0xcfff;
fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
/* Sequence from 11.7.10 */
writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
if (machine_is_shannon())
gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
}
static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
{
DECLARE_WAITQUEUE(wait, current);
u32 lccr0;
dev_dbg(fbi->dev, "Disabling LCD controller\n");
if (machine_is_shannon())
gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&fbi->ctrlr_wait, &wait);
/* Clear LCD Status Register */
writel_relaxed(~0, fbi->base + LCSR);
lccr0 = readl_relaxed(fbi->base + LCCR0);
lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
writel_relaxed(lccr0, fbi->base + LCCR0);
lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
writel_relaxed(lccr0, fbi->base + LCCR0);
schedule_timeout(20 * HZ / 1000);
remove_wait_queue(&fbi->ctrlr_wait, &wait);
}
/*
* sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
*/
static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
{
struct sa1100fb_info *fbi = dev_id;
unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
if (lcsr & LCSR_LDD) {
u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
writel_relaxed(lccr0, fbi->base + LCCR0);
wake_up(&fbi->ctrlr_wait);
}
writel_relaxed(lcsr, fbi->base + LCSR);
return IRQ_HANDLED;
}
/*
* This function must be called from task context only, since it will
* sleep when disabling the LCD controller, or if we get two contending
* processes trying to alter state.
*/
static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
{
u_int old_state;
mutex_lock(&fbi->ctrlr_lock);
old_state = fbi->state;
/*
* Hack around fbcon initialisation.
*/
if (old_state == C_STARTUP && state == C_REENABLE)
state = C_ENABLE;
switch (state) {
case C_DISABLE_CLKCHANGE:
/*
* Disable controller for clock change. If the
* controller is already disabled, then do nothing.
*/
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
fbi->state = state;
sa1100fb_disable_controller(fbi);
}
break;
case C_DISABLE_PM:
case C_DISABLE:
/*
* Disable controller
*/
if (old_state != C_DISABLE) {
fbi->state = state;
__sa1100fb_backlight_power(fbi, 0);
if (old_state != C_DISABLE_CLKCHANGE)
sa1100fb_disable_controller(fbi);
__sa1100fb_lcd_power(fbi, 0);
}
break;
case C_ENABLE_CLKCHANGE:
/*
* Enable the controller after clock change. Only
* do this if we were disabled for the clock change.
*/
if (old_state == C_DISABLE_CLKCHANGE) {
fbi->state = C_ENABLE;
sa1100fb_enable_controller(fbi);
}
break;
case C_REENABLE:
/*
* Re-enable the controller only if it was already
* enabled. This is so we reprogram the control
* registers.
*/
if (old_state == C_ENABLE) {
sa1100fb_disable_controller(fbi);
sa1100fb_setup_gpio(fbi);
sa1100fb_enable_controller(fbi);
}
break;
case C_ENABLE_PM:
/*
* Re-enable the controller after PM. This is not
* perfect - think about the case where we were doing
* a clock change, and we suspended half-way through.
*/
if (old_state != C_DISABLE_PM)
break;
/* fall through */
case C_ENABLE:
/*
* Power up the LCD screen, enable controller, and
* turn on the backlight.
*/
if (old_state != C_ENABLE) {
fbi->state = C_ENABLE;
sa1100fb_setup_gpio(fbi);
__sa1100fb_lcd_power(fbi, 1);
sa1100fb_enable_controller(fbi);
__sa1100fb_backlight_power(fbi, 1);
}
break;
}
mutex_unlock(&fbi->ctrlr_lock);
}
/*
* Our LCD controller task (which is called when we blank or unblank)
* via keventd.
*/
static void sa1100fb_task(struct work_struct *w)
{
struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
u_int state = xchg(&fbi->task_state, -1);
set_ctrlr_state(fbi, state);
}
#ifdef CONFIG_CPU_FREQ
/*
* Calculate the minimum DMA period over all displays that we own.
* This, together with the SDRAM bandwidth defines the slowest CPU
* frequency that can be selected.
*/
static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
{
#if 0
unsigned int min_period = (unsigned int)-1;
int i;
for (i = 0; i < MAX_NR_CONSOLES; i++) {
struct display *disp = &fb_display[i];
unsigned int period;
/*
* Do we own this display?
*/
if (disp->fb_info != &fbi->fb)
continue;
/*
* Ok, calculate its DMA period
*/
period = sa1100fb_display_dma_period(&disp->var);
if (period < min_period)
min_period = period;
}
return min_period;
#else
/*
* FIXME: we need to verify _all_ consoles.
*/
return sa1100fb_display_dma_period(&fbi->fb.var);
#endif
}
/*
* CPU clock speed change handler. We need to adjust the LCD timing
* parameters when the CPU clock is adjusted by the power management
* subsystem.
*/
static int
sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
void *data)
{
struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
struct cpufreq_freqs *f = data;
u_int pcd;
switch (val) {
case CPUFREQ_PRECHANGE:
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
break;
case CPUFREQ_POSTCHANGE:
pcd = get_pcd(fbi->fb.var.pixclock, f->new);
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
break;
}
return 0;
}
static int
sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
void *data)
{
struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
struct cpufreq_policy *policy = data;
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
dev_dbg(fbi->dev, "min dma period: %d ps, "
"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
policy->max);
/* todo: fill in min/max values */
break;
case CPUFREQ_NOTIFY:
do {} while(0);
/* todo: panic if min/max values aren't fulfilled
* [can't really happen unless there's a bug in the
* CPU policy verififcation process *
*/
break;
}
return 0;
}
#endif
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
{
struct sa1100fb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_DISABLE_PM);
return 0;
}
static int sa1100fb_resume(struct platform_device *dev)
{
struct sa1100fb_info *fbi = platform_get_drvdata(dev);
set_ctrlr_state(fbi, C_ENABLE_PM);
return 0;
}
#else
#define sa1100fb_suspend NULL
#define sa1100fb_resume NULL
#endif
/*
* sa1100fb_map_video_memory():
* Allocates the DRAM memory for the frame buffer. This buffer is
* remapped into a non-cached, non-buffered, memory region to
* allow palette and pixel writes to occur without flushing the
* cache. Once this area is remapped, all virtual memory
* access to the video memory should occur at the new region.
*/
static int __devinit sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
{
/*
* We reserve one page for the palette, plus the size
* of the framebuffer.
*/
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
if (fbi->map_cpu) {
fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
/*
* FIXME: this is actually the wrong thing to place in
* smem_start. But fbdev suffers from the problem that
* it needs an API which doesn't exist (in this case,
* dma_writecombine_mmap)
*/
fbi->fb.fix.smem_start = fbi->screen_dma;
}
return fbi->map_cpu ? 0 : -ENOMEM;
}
/* Fake monspecs to fill in fbinfo structure */
static struct fb_monspecs monspecs __devinitdata = {
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 50,
.vfmax = 65,
};
static struct sa1100fb_info * __devinit sa1100fb_init_fbinfo(struct device *dev)
{
struct sa1100fb_mach_info *inf = dev->platform_data;
struct sa1100fb_info *fbi;
unsigned i;
fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
GFP_KERNEL);
if (!fbi)
return NULL;
memset(fbi, 0, sizeof(struct sa1100fb_info));
fbi->dev = dev;
strcpy(fbi->fb.fix.id, SA1100_NAME);
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
fbi->fb.fix.type_aux = 0;
fbi->fb.fix.xpanstep = 0;
fbi->fb.fix.ypanstep = 0;
fbi->fb.fix.ywrapstep = 0;
fbi->fb.fix.accel = FB_ACCEL_NONE;
fbi->fb.var.nonstd = 0;
fbi->fb.var.activate = FB_ACTIVATE_NOW;
fbi->fb.var.height = -1;
fbi->fb.var.width = -1;
fbi->fb.var.accel_flags = 0;
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
fbi->fb.fbops = &sa1100fb_ops;
fbi->fb.flags = FBINFO_DEFAULT;
fbi->fb.monspecs = monspecs;
fbi->fb.pseudo_palette = (fbi + 1);
fbi->rgb[RGB_4] = &rgb_4;
fbi->rgb[RGB_8] = &rgb_8;
fbi->rgb[RGB_16] = &def_rgb_16;
/*
* People just don't seem to get this. We don't support
* anything but correct entries now, so panic if someone
* does something stupid.
*/
if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
inf->pixclock == 0)
panic("sa1100fb error: invalid LCCR3 fields set or zero "
"pixclock.");
fbi->fb.var.xres = inf->xres;
fbi->fb.var.xres_virtual = inf->xres;
fbi->fb.var.yres = inf->yres;
fbi->fb.var.yres_virtual = inf->yres;
fbi->fb.var.bits_per_pixel = inf->bpp;
fbi->fb.var.pixclock = inf->pixclock;
fbi->fb.var.hsync_len = inf->hsync_len;
fbi->fb.var.left_margin = inf->left_margin;
fbi->fb.var.right_margin = inf->right_margin;
fbi->fb.var.vsync_len = inf->vsync_len;
fbi->fb.var.upper_margin = inf->upper_margin;
fbi->fb.var.lower_margin = inf->lower_margin;
fbi->fb.var.sync = inf->sync;
fbi->fb.var.grayscale = inf->cmap_greyscale;
fbi->state = C_STARTUP;
fbi->task_state = (u_char)-1;
fbi->fb.fix.smem_len = inf->xres * inf->yres *
inf->bpp / 8;
fbi->inf = inf;
/* Copy the RGB bitfield overrides */
for (i = 0; i < NR_RGB; i++)
if (inf->rgb[i])
fbi->rgb[i] = inf->rgb[i];
init_waitqueue_head(&fbi->ctrlr_wait);
INIT_WORK(&fbi->task, sa1100fb_task);
mutex_init(&fbi->ctrlr_lock);
return fbi;
}
static int __devinit sa1100fb_probe(struct platform_device *pdev)
{
struct sa1100fb_info *fbi;
struct resource *res;
int ret, irq;
if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "no platform LCD data\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (irq < 0 || !res)
return -EINVAL;
if (!request_mem_region(res->start, resource_size(res), "LCD"))
return -EBUSY;
fbi = sa1100fb_init_fbinfo(&pdev->dev);
ret = -ENOMEM;
if (!fbi)
goto failed;
fbi->base = ioremap(res->start, resource_size(res));
if (!fbi->base)
goto failed;
/* Initialize video memory */
ret = sa1100fb_map_video_memory(fbi);
if (ret)
goto failed;
ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
if (ret) {
dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
goto failed;
}
if (machine_is_shannon()) {
ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
GPIOF_OUT_INIT_LOW, "display enable");
if (ret)
goto err_free_irq;
}
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
platform_set_drvdata(pdev, fbi);
ret = register_framebuffer(&fbi->fb);
if (ret < 0)
goto err_reg_fb;
#ifdef CONFIG_CPU_FREQ
fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
#endif
/* This driver cannot be unloaded at the moment */
return 0;
err_reg_fb:
if (machine_is_shannon())
gpio_free(SHANNON_GPIO_DISP_EN);
err_free_irq:
free_irq(irq, fbi);
failed:
if (fbi)
iounmap(fbi->base);
platform_set_drvdata(pdev, NULL);
kfree(fbi);
release_mem_region(res->start, resource_size(res));
return ret;
}
static struct platform_driver sa1100fb_driver = {
.probe = sa1100fb_probe,
.suspend = sa1100fb_suspend,
.resume = sa1100fb_resume,
.driver = {
.name = "sa11x0-fb",
.owner = THIS_MODULE,
},
};
int __init sa1100fb_init(void)
{
if (fb_get_options("sa1100fb", NULL))
return -ENODEV;
return platform_driver_register(&sa1100fb_driver);
}
int __init sa1100fb_setup(char *options)
{
#if 0
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "bpp:", 4))
current_par.max_bpp =
simple_strtoul(this_opt + 4, NULL, 0);
if (!strncmp(this_opt, "lccr0:", 6))
lcd_shadow.lccr0 =
simple_strtoul(this_opt + 6, NULL, 0);
if (!strncmp(this_opt, "lccr1:", 6)) {
lcd_shadow.lccr1 =
simple_strtoul(this_opt + 6, NULL, 0);
current_par.max_xres =
(lcd_shadow.lccr1 & 0x3ff) + 16;
}
if (!strncmp(this_opt, "lccr2:", 6)) {
lcd_shadow.lccr2 =
simple_strtoul(this_opt + 6, NULL, 0);
current_par.max_yres =
(lcd_shadow.
lccr0 & LCCR0_SDS) ? ((lcd_shadow.
lccr2 & 0x3ff) +
1) *
2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
}
if (!strncmp(this_opt, "lccr3:", 6))
lcd_shadow.lccr3 =
simple_strtoul(this_opt + 6, NULL, 0);
}
#endif
return 0;
}
module_init(sa1100fb_init);
MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
MODULE_LICENSE("GPL");