linux-stable/drivers/acpi/scan.c
Andy Shevchenko 2649a0f29a ACPI: scan: Use list_first_entry_or_null() in acpi_device_hid()
To replace list_empty() + list_first_entry() pair to simplify code.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-04-04 21:19:02 +02:00

2811 lines
70 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* scan.c - support for transforming the ACPI namespace into individual objects
*/
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
#include <linux/acpi_viot.h>
#include <linux/iommu.h>
#include <linux/signal.h>
#include <linux/kthread.h>
#include <linux/dmi.h>
#include <linux/dma-map-ops.h>
#include <linux/platform_data/x86/apple.h>
#include <linux/pgtable.h>
#include <linux/crc32.h>
#include <linux/dma-direct.h>
#include "internal.h"
#include "sleep.h"
#define ACPI_BUS_CLASS "system_bus"
#define ACPI_BUS_HID "LNXSYBUS"
#define ACPI_BUS_DEVICE_NAME "System Bus"
#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
static const char *dummy_hid = "device";
static LIST_HEAD(acpi_dep_list);
static DEFINE_MUTEX(acpi_dep_list_lock);
LIST_HEAD(acpi_bus_id_list);
static DEFINE_MUTEX(acpi_scan_lock);
static LIST_HEAD(acpi_scan_handlers_list);
DEFINE_MUTEX(acpi_device_lock);
LIST_HEAD(acpi_wakeup_device_list);
static DEFINE_MUTEX(acpi_hp_context_lock);
/*
* The UART device described by the SPCR table is the only object which needs
* special-casing. Everything else is covered by ACPI namespace paths in STAO
* table.
*/
static u64 spcr_uart_addr;
void acpi_scan_lock_acquire(void)
{
mutex_lock(&acpi_scan_lock);
}
EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
void acpi_scan_lock_release(void)
{
mutex_unlock(&acpi_scan_lock);
}
EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
void acpi_lock_hp_context(void)
{
mutex_lock(&acpi_hp_context_lock);
}
void acpi_unlock_hp_context(void)
{
mutex_unlock(&acpi_hp_context_lock);
}
void acpi_initialize_hp_context(struct acpi_device *adev,
struct acpi_hotplug_context *hp,
int (*notify)(struct acpi_device *, u32),
void (*uevent)(struct acpi_device *, u32))
{
acpi_lock_hp_context();
hp->notify = notify;
hp->uevent = uevent;
acpi_set_hp_context(adev, hp);
acpi_unlock_hp_context();
}
EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
int acpi_scan_add_handler(struct acpi_scan_handler *handler)
{
if (!handler)
return -EINVAL;
list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
return 0;
}
int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
const char *hotplug_profile_name)
{
int error;
error = acpi_scan_add_handler(handler);
if (error)
return error;
acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
return 0;
}
bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
{
struct acpi_device_physical_node *pn;
bool offline = true;
char *envp[] = { "EVENT=offline", NULL };
/*
* acpi_container_offline() calls this for all of the container's
* children under the container's physical_node_lock lock.
*/
mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
list_for_each_entry(pn, &adev->physical_node_list, node)
if (device_supports_offline(pn->dev) && !pn->dev->offline) {
if (uevent)
kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
offline = false;
break;
}
mutex_unlock(&adev->physical_node_lock);
return offline;
}
static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
void **ret_p)
{
struct acpi_device *device = acpi_fetch_acpi_dev(handle);
struct acpi_device_physical_node *pn;
bool second_pass = (bool)data;
acpi_status status = AE_OK;
if (!device)
return AE_OK;
if (device->handler && !device->handler->hotplug.enabled) {
*ret_p = &device->dev;
return AE_SUPPORT;
}
mutex_lock(&device->physical_node_lock);
list_for_each_entry(pn, &device->physical_node_list, node) {
int ret;
if (second_pass) {
/* Skip devices offlined by the first pass. */
if (pn->put_online)
continue;
} else {
pn->put_online = false;
}
ret = device_offline(pn->dev);
if (ret >= 0) {
pn->put_online = !ret;
} else {
*ret_p = pn->dev;
if (second_pass) {
status = AE_ERROR;
break;
}
}
}
mutex_unlock(&device->physical_node_lock);
return status;
}
static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
void **ret_p)
{
struct acpi_device *device = acpi_fetch_acpi_dev(handle);
struct acpi_device_physical_node *pn;
if (!device)
return AE_OK;
mutex_lock(&device->physical_node_lock);
list_for_each_entry(pn, &device->physical_node_list, node)
if (pn->put_online) {
device_online(pn->dev);
pn->put_online = false;
}
mutex_unlock(&device->physical_node_lock);
return AE_OK;
}
static int acpi_scan_try_to_offline(struct acpi_device *device)
{
acpi_handle handle = device->handle;
struct device *errdev = NULL;
acpi_status status;
/*
* Carry out two passes here and ignore errors in the first pass,
* because if the devices in question are memory blocks and
* CONFIG_MEMCG is set, one of the blocks may hold data structures
* that the other blocks depend on, but it is not known in advance which
* block holds them.
*
* If the first pass is successful, the second one isn't needed, though.
*/
status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
NULL, acpi_bus_offline, (void *)false,
(void **)&errdev);
if (status == AE_SUPPORT) {
dev_warn(errdev, "Offline disabled.\n");
acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
acpi_bus_online, NULL, NULL, NULL);
return -EPERM;
}
acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
if (errdev) {
errdev = NULL;
acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
NULL, acpi_bus_offline, (void *)true,
(void **)&errdev);
if (!errdev)
acpi_bus_offline(handle, 0, (void *)true,
(void **)&errdev);
if (errdev) {
dev_warn(errdev, "Offline failed.\n");
acpi_bus_online(handle, 0, NULL, NULL);
acpi_walk_namespace(ACPI_TYPE_ANY, handle,
ACPI_UINT32_MAX, acpi_bus_online,
NULL, NULL, NULL);
return -EBUSY;
}
}
return 0;
}
static int acpi_scan_check_and_detach(struct acpi_device *adev, void *check)
{
struct acpi_scan_handler *handler = adev->handler;
acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, check);
if (check) {
acpi_bus_get_status(adev);
/*
* Skip devices that are still there and take the enabled
* flag into account.
*/
if (acpi_device_is_enabled(adev))
return 0;
/* Skip device that have not been enumerated. */
if (!acpi_device_enumerated(adev)) {
dev_dbg(&adev->dev, "Still not enumerated\n");
return 0;
}
}
adev->flags.match_driver = false;
if (handler) {
if (handler->detach)
handler->detach(adev);
adev->handler = NULL;
} else {
device_release_driver(&adev->dev);
}
/*
* Most likely, the device is going away, so put it into D3cold before
* that.
*/
acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
adev->flags.initialized = false;
acpi_device_clear_enumerated(adev);
return 0;
}
static void acpi_scan_check_subtree(struct acpi_device *adev)
{
acpi_scan_check_and_detach(adev, (void *)true);
}
static int acpi_scan_hot_remove(struct acpi_device *device)
{
acpi_handle handle = device->handle;
unsigned long long sta;
acpi_status status;
if (device->handler && device->handler->hotplug.demand_offline) {
if (!acpi_scan_is_offline(device, true))
return -EBUSY;
} else {
int error = acpi_scan_try_to_offline(device);
if (error)
return error;
}
acpi_handle_debug(handle, "Ejecting\n");
acpi_bus_trim(device);
acpi_evaluate_lck(handle, 0);
/*
* TBD: _EJD support.
*/
status = acpi_evaluate_ej0(handle);
if (status == AE_NOT_FOUND)
return -ENODEV;
else if (ACPI_FAILURE(status))
return -EIO;
/*
* Verify if eject was indeed successful. If not, log an error
* message. No need to call _OST since _EJ0 call was made OK.
*/
status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
if (ACPI_FAILURE(status)) {
acpi_handle_warn(handle,
"Status check after eject failed (0x%x)\n", status);
} else if (sta & ACPI_STA_DEVICE_ENABLED) {
acpi_handle_warn(handle,
"Eject incomplete - status 0x%llx\n", sta);
}
return 0;
}
static int acpi_scan_rescan_bus(struct acpi_device *adev)
{
struct acpi_scan_handler *handler = adev->handler;
int ret;
if (handler && handler->hotplug.scan_dependent)
ret = handler->hotplug.scan_dependent(adev);
else
ret = acpi_bus_scan(adev->handle);
if (ret)
dev_info(&adev->dev, "Namespace scan failure\n");
return ret;
}
static int acpi_scan_device_check(struct acpi_device *adev)
{
struct acpi_device *parent;
acpi_scan_check_subtree(adev);
if (!acpi_device_is_present(adev))
return 0;
/*
* This function is only called for device objects for which matching
* scan handlers exist. The only situation in which the scan handler
* is not attached to this device object yet is when the device has
* just appeared (either it wasn't present at all before or it was
* removed and then added again).
*/
if (adev->handler) {
dev_dbg(&adev->dev, "Already enumerated\n");
return 0;
}
parent = acpi_dev_parent(adev);
if (!parent)
parent = adev;
return acpi_scan_rescan_bus(parent);
}
static int acpi_scan_bus_check(struct acpi_device *adev)
{
acpi_scan_check_subtree(adev);
return acpi_scan_rescan_bus(adev);
}
static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
{
switch (type) {
case ACPI_NOTIFY_BUS_CHECK:
return acpi_scan_bus_check(adev);
case ACPI_NOTIFY_DEVICE_CHECK:
return acpi_scan_device_check(adev);
case ACPI_NOTIFY_EJECT_REQUEST:
case ACPI_OST_EC_OSPM_EJECT:
if (adev->handler && !adev->handler->hotplug.enabled) {
dev_info(&adev->dev, "Eject disabled\n");
return -EPERM;
}
acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
return acpi_scan_hot_remove(adev);
}
return -EINVAL;
}
void acpi_device_hotplug(struct acpi_device *adev, u32 src)
{
u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
int error = -ENODEV;
lock_device_hotplug();
mutex_lock(&acpi_scan_lock);
/*
* The device object's ACPI handle cannot become invalid as long as we
* are holding acpi_scan_lock, but it might have become invalid before
* that lock was acquired.
*/
if (adev->handle == INVALID_ACPI_HANDLE)
goto err_out;
if (adev->flags.is_dock_station) {
error = dock_notify(adev, src);
} else if (adev->flags.hotplug_notify) {
error = acpi_generic_hotplug_event(adev, src);
} else {
int (*notify)(struct acpi_device *, u32);
acpi_lock_hp_context();
notify = adev->hp ? adev->hp->notify : NULL;
acpi_unlock_hp_context();
/*
* There may be additional notify handlers for device objects
* without the .event() callback, so ignore them here.
*/
if (notify)
error = notify(adev, src);
else
goto out;
}
switch (error) {
case 0:
ost_code = ACPI_OST_SC_SUCCESS;
break;
case -EPERM:
ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
break;
case -EBUSY:
ost_code = ACPI_OST_SC_DEVICE_BUSY;
break;
default:
ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
break;
}
err_out:
acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
out:
acpi_put_acpi_dev(adev);
mutex_unlock(&acpi_scan_lock);
unlock_device_hotplug();
}
static void acpi_free_power_resources_lists(struct acpi_device *device)
{
int i;
if (device->wakeup.flags.valid)
acpi_power_resources_list_free(&device->wakeup.resources);
if (!device->power.flags.power_resources)
return;
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
struct acpi_device_power_state *ps = &device->power.states[i];
acpi_power_resources_list_free(&ps->resources);
}
}
static void acpi_device_release(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
acpi_free_properties(acpi_dev);
acpi_free_pnp_ids(&acpi_dev->pnp);
acpi_free_power_resources_lists(acpi_dev);
kfree(acpi_dev);
}
static void acpi_device_del(struct acpi_device *device)
{
struct acpi_device_bus_id *acpi_device_bus_id;
mutex_lock(&acpi_device_lock);
list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
if (!strcmp(acpi_device_bus_id->bus_id,
acpi_device_hid(device))) {
ida_free(&acpi_device_bus_id->instance_ida,
device->pnp.instance_no);
if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
list_del(&acpi_device_bus_id->node);
kfree_const(acpi_device_bus_id->bus_id);
kfree(acpi_device_bus_id);
}
break;
}
list_del(&device->wakeup_list);
mutex_unlock(&acpi_device_lock);
acpi_power_add_remove_device(device, false);
acpi_device_remove_files(device);
if (device->remove)
device->remove(device);
device_del(&device->dev);
}
static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
static LIST_HEAD(acpi_device_del_list);
static DEFINE_MUTEX(acpi_device_del_lock);
static void acpi_device_del_work_fn(struct work_struct *work_not_used)
{
for (;;) {
struct acpi_device *adev;
mutex_lock(&acpi_device_del_lock);
if (list_empty(&acpi_device_del_list)) {
mutex_unlock(&acpi_device_del_lock);
break;
}
adev = list_first_entry(&acpi_device_del_list,
struct acpi_device, del_list);
list_del(&adev->del_list);
mutex_unlock(&acpi_device_del_lock);
blocking_notifier_call_chain(&acpi_reconfig_chain,
ACPI_RECONFIG_DEVICE_REMOVE, adev);
acpi_device_del(adev);
/*
* Drop references to all power resources that might have been
* used by the device.
*/
acpi_power_transition(adev, ACPI_STATE_D3_COLD);
acpi_dev_put(adev);
}
}
/**
* acpi_scan_drop_device - Drop an ACPI device object.
* @handle: Handle of an ACPI namespace node, not used.
* @context: Address of the ACPI device object to drop.
*
* This is invoked by acpi_ns_delete_node() during the removal of the ACPI
* namespace node the device object pointed to by @context is attached to.
*
* The unregistration is carried out asynchronously to avoid running
* acpi_device_del() under the ACPICA's namespace mutex and the list is used to
* ensure the correct ordering (the device objects must be unregistered in the
* same order in which the corresponding namespace nodes are deleted).
*/
static void acpi_scan_drop_device(acpi_handle handle, void *context)
{
static DECLARE_WORK(work, acpi_device_del_work_fn);
struct acpi_device *adev = context;
mutex_lock(&acpi_device_del_lock);
/*
* Use the ACPI hotplug workqueue which is ordered, so this work item
* won't run after any hotplug work items submitted subsequently. That
* prevents attempts to register device objects identical to those being
* deleted from happening concurrently (such attempts result from
* hotplug events handled via the ACPI hotplug workqueue). It also will
* run after all of the work items submitted previously, which helps
* those work items to ensure that they are not accessing stale device
* objects.
*/
if (list_empty(&acpi_device_del_list))
acpi_queue_hotplug_work(&work);
list_add_tail(&adev->del_list, &acpi_device_del_list);
/* Make acpi_ns_validate_handle() return NULL for this handle. */
adev->handle = INVALID_ACPI_HANDLE;
mutex_unlock(&acpi_device_del_lock);
}
static struct acpi_device *handle_to_device(acpi_handle handle,
void (*callback)(void *))
{
struct acpi_device *adev = NULL;
acpi_status status;
status = acpi_get_data_full(handle, acpi_scan_drop_device,
(void **)&adev, callback);
if (ACPI_FAILURE(status) || !adev) {
acpi_handle_debug(handle, "No context!\n");
return NULL;
}
return adev;
}
/**
* acpi_fetch_acpi_dev - Retrieve ACPI device object.
* @handle: ACPI handle associated with the requested ACPI device object.
*
* Return a pointer to the ACPI device object associated with @handle, if
* present, or NULL otherwise.
*/
struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
{
return handle_to_device(handle, NULL);
}
EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
static void get_acpi_device(void *dev)
{
acpi_dev_get(dev);
}
/**
* acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
* @handle: ACPI handle associated with the requested ACPI device object.
*
* Return a pointer to the ACPI device object associated with @handle and bump
* up that object's reference counter (under the ACPI Namespace lock), if
* present, or return NULL otherwise.
*
* The ACPI device object reference acquired by this function needs to be
* dropped via acpi_dev_put().
*/
struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
{
return handle_to_device(handle, get_acpi_device);
}
EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
{
struct acpi_device_bus_id *acpi_device_bus_id;
/* Find suitable bus_id and instance number in acpi_bus_id_list. */
list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
return acpi_device_bus_id;
}
return NULL;
}
static int acpi_device_set_name(struct acpi_device *device,
struct acpi_device_bus_id *acpi_device_bus_id)
{
struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
int result;
result = ida_alloc(instance_ida, GFP_KERNEL);
if (result < 0)
return result;
device->pnp.instance_no = result;
dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
return 0;
}
int acpi_tie_acpi_dev(struct acpi_device *adev)
{
acpi_handle handle = adev->handle;
acpi_status status;
if (!handle)
return 0;
status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
if (ACPI_FAILURE(status)) {
acpi_handle_err(handle, "Unable to attach device data\n");
return -ENODEV;
}
return 0;
}
static void acpi_store_pld_crc(struct acpi_device *adev)
{
struct acpi_pld_info *pld;
acpi_status status;
status = acpi_get_physical_device_location(adev->handle, &pld);
if (ACPI_FAILURE(status))
return;
adev->pld_crc = crc32(~0, pld, sizeof(*pld));
ACPI_FREE(pld);
}
int acpi_device_add(struct acpi_device *device)
{
struct acpi_device_bus_id *acpi_device_bus_id;
int result;
/*
* Linkage
* -------
* Link this device to its parent and siblings.
*/
INIT_LIST_HEAD(&device->wakeup_list);
INIT_LIST_HEAD(&device->physical_node_list);
INIT_LIST_HEAD(&device->del_list);
mutex_init(&device->physical_node_lock);
mutex_lock(&acpi_device_lock);
acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
if (acpi_device_bus_id) {
result = acpi_device_set_name(device, acpi_device_bus_id);
if (result)
goto err_unlock;
} else {
acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
GFP_KERNEL);
if (!acpi_device_bus_id) {
result = -ENOMEM;
goto err_unlock;
}
acpi_device_bus_id->bus_id =
kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
if (!acpi_device_bus_id->bus_id) {
kfree(acpi_device_bus_id);
result = -ENOMEM;
goto err_unlock;
}
ida_init(&acpi_device_bus_id->instance_ida);
result = acpi_device_set_name(device, acpi_device_bus_id);
if (result) {
kfree_const(acpi_device_bus_id->bus_id);
kfree(acpi_device_bus_id);
goto err_unlock;
}
list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
}
if (device->wakeup.flags.valid)
list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
acpi_store_pld_crc(device);
mutex_unlock(&acpi_device_lock);
result = device_add(&device->dev);
if (result) {
dev_err(&device->dev, "Error registering device\n");
goto err;
}
result = acpi_device_setup_files(device);
if (result)
pr_err("Error creating sysfs interface for device %s\n",
dev_name(&device->dev));
return 0;
err:
mutex_lock(&acpi_device_lock);
list_del(&device->wakeup_list);
err_unlock:
mutex_unlock(&acpi_device_lock);
acpi_detach_data(device->handle, acpi_scan_drop_device);
return result;
}
/* --------------------------------------------------------------------------
Device Enumeration
-------------------------------------------------------------------------- */
static bool acpi_info_matches_ids(struct acpi_device_info *info,
const char * const ids[])
{
struct acpi_pnp_device_id_list *cid_list = NULL;
int i, index;
if (!(info->valid & ACPI_VALID_HID))
return false;
index = match_string(ids, -1, info->hardware_id.string);
if (index >= 0)
return true;
if (info->valid & ACPI_VALID_CID)
cid_list = &info->compatible_id_list;
if (!cid_list)
return false;
for (i = 0; i < cid_list->count; i++) {
index = match_string(ids, -1, cid_list->ids[i].string);
if (index >= 0)
return true;
}
return false;
}
/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
static const char * const acpi_ignore_dep_ids[] = {
"PNP0D80", /* Windows-compatible System Power Management Controller */
"INT33BD", /* Intel Baytrail Mailbox Device */
"LATT2021", /* Lattice FW Update Client Driver */
NULL
};
/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
static const char * const acpi_honor_dep_ids[] = {
"INT3472", /* Camera sensor PMIC / clk and regulator info */
"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
NULL
};
static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
{
struct acpi_device *adev;
/*
* Fixed hardware devices do not appear in the namespace and do not
* have handles, but we fabricate acpi_devices for them, so we have
* to deal with them specially.
*/
if (!handle)
return acpi_root;
do {
acpi_status status;
status = acpi_get_parent(handle, &handle);
if (ACPI_FAILURE(status)) {
if (status != AE_NULL_ENTRY)
return acpi_root;
return NULL;
}
adev = acpi_fetch_acpi_dev(handle);
} while (!adev);
return adev;
}
acpi_status
acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
{
acpi_status status;
acpi_handle tmp;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object *obj;
status = acpi_get_handle(handle, "_EJD", &tmp);
if (ACPI_FAILURE(status))
return status;
status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
if (ACPI_SUCCESS(status)) {
obj = buffer.pointer;
status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
ejd);
kfree(buffer.pointer);
}
return status;
}
EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
{
acpi_handle handle = dev->handle;
struct acpi_device_wakeup *wakeup = &dev->wakeup;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *package = NULL;
union acpi_object *element = NULL;
acpi_status status;
int err = -ENODATA;
INIT_LIST_HEAD(&wakeup->resources);
/* _PRW */
status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
if (ACPI_FAILURE(status)) {
acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
acpi_format_exception(status));
return err;
}
package = (union acpi_object *)buffer.pointer;
if (!package || package->package.count < 2)
goto out;
element = &(package->package.elements[0]);
if (!element)
goto out;
if (element->type == ACPI_TYPE_PACKAGE) {
if ((element->package.count < 2) ||
(element->package.elements[0].type !=
ACPI_TYPE_LOCAL_REFERENCE)
|| (element->package.elements[1].type != ACPI_TYPE_INTEGER))
goto out;
wakeup->gpe_device =
element->package.elements[0].reference.handle;
wakeup->gpe_number =
(u32) element->package.elements[1].integer.value;
} else if (element->type == ACPI_TYPE_INTEGER) {
wakeup->gpe_device = NULL;
wakeup->gpe_number = element->integer.value;
} else {
goto out;
}
element = &(package->package.elements[1]);
if (element->type != ACPI_TYPE_INTEGER)
goto out;
wakeup->sleep_state = element->integer.value;
err = acpi_extract_power_resources(package, 2, &wakeup->resources);
if (err)
goto out;
if (!list_empty(&wakeup->resources)) {
int sleep_state;
err = acpi_power_wakeup_list_init(&wakeup->resources,
&sleep_state);
if (err) {
acpi_handle_warn(handle, "Retrieving current states "
"of wakeup power resources failed\n");
acpi_power_resources_list_free(&wakeup->resources);
goto out;
}
if (sleep_state < wakeup->sleep_state) {
acpi_handle_warn(handle, "Overriding _PRW sleep state "
"(S%d) by S%d from power resources\n",
(int)wakeup->sleep_state, sleep_state);
wakeup->sleep_state = sleep_state;
}
}
out:
kfree(buffer.pointer);
return err;
}
/* Do not use a button for S5 wakeup */
#define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
static bool acpi_wakeup_gpe_init(struct acpi_device *device)
{
static const struct acpi_device_id button_device_ids[] = {
{"PNP0C0C", 0}, /* Power button */
{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
{"", 0},
};
struct acpi_device_wakeup *wakeup = &device->wakeup;
const struct acpi_device_id *match;
acpi_status status;
wakeup->flags.notifier_present = 0;
/* Power button, Lid switch always enable wakeup */
match = acpi_match_acpi_device(button_device_ids, device);
if (match) {
if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
wakeup->sleep_state == ACPI_STATE_S5)
wakeup->sleep_state = ACPI_STATE_S4;
acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
device_set_wakeup_capable(&device->dev, true);
return true;
}
status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
wakeup->gpe_number);
return ACPI_SUCCESS(status);
}
static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
{
int err;
/* Presence of _PRW indicates wake capable */
if (!acpi_has_method(device->handle, "_PRW"))
return;
err = acpi_bus_extract_wakeup_device_power_package(device);
if (err) {
dev_err(&device->dev, "Unable to extract wakeup power resources");
return;
}
device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
device->wakeup.prepare_count = 0;
/*
* Call _PSW/_DSW object to disable its ability to wake the sleeping
* system for the ACPI device with the _PRW object.
* The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
* So it is necessary to call _DSW object first. Only when it is not
* present will the _PSW object used.
*/
err = acpi_device_sleep_wake(device, 0, 0, 0);
if (err)
pr_debug("error in _DSW or _PSW evaluation\n");
}
static void acpi_bus_init_power_state(struct acpi_device *device, int state)
{
struct acpi_device_power_state *ps = &device->power.states[state];
char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
acpi_status status;
INIT_LIST_HEAD(&ps->resources);
/* Evaluate "_PRx" to get referenced power resources */
status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
if (ACPI_SUCCESS(status)) {
union acpi_object *package = buffer.pointer;
if (buffer.length && package
&& package->type == ACPI_TYPE_PACKAGE
&& package->package.count)
acpi_extract_power_resources(package, 0, &ps->resources);
ACPI_FREE(buffer.pointer);
}
/* Evaluate "_PSx" to see if we can do explicit sets */
pathname[2] = 'S';
if (acpi_has_method(device->handle, pathname))
ps->flags.explicit_set = 1;
/* State is valid if there are means to put the device into it. */
if (!list_empty(&ps->resources) || ps->flags.explicit_set)
ps->flags.valid = 1;
ps->power = -1; /* Unknown - driver assigned */
ps->latency = -1; /* Unknown - driver assigned */
}
static void acpi_bus_get_power_flags(struct acpi_device *device)
{
unsigned long long dsc = ACPI_STATE_D0;
u32 i;
/* Presence of _PS0|_PR0 indicates 'power manageable' */
if (!acpi_has_method(device->handle, "_PS0") &&
!acpi_has_method(device->handle, "_PR0"))
return;
device->flags.power_manageable = 1;
/*
* Power Management Flags
*/
if (acpi_has_method(device->handle, "_PSC"))
device->power.flags.explicit_get = 1;
if (acpi_has_method(device->handle, "_IRC"))
device->power.flags.inrush_current = 1;
if (acpi_has_method(device->handle, "_DSW"))
device->power.flags.dsw_present = 1;
acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
device->power.state_for_enumeration = dsc;
/*
* Enumerate supported power management states
*/
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
acpi_bus_init_power_state(device, i);
INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
/* Set the defaults for D0 and D3hot (always supported). */
device->power.states[ACPI_STATE_D0].flags.valid = 1;
device->power.states[ACPI_STATE_D0].power = 100;
device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
/*
* Use power resources only if the D0 list of them is populated, because
* some platforms may provide _PR3 only to indicate D3cold support and
* in those cases the power resources list returned by it may be bogus.
*/
if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
device->power.flags.power_resources = 1;
/*
* D3cold is supported if the D3hot list of power resources is
* not empty.
*/
if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
}
if (acpi_bus_init_power(device))
device->flags.power_manageable = 0;
}
static void acpi_bus_get_flags(struct acpi_device *device)
{
/* Presence of _STA indicates 'dynamic_status' */
if (acpi_has_method(device->handle, "_STA"))
device->flags.dynamic_status = 1;
/* Presence of _RMV indicates 'removable' */
if (acpi_has_method(device->handle, "_RMV"))
device->flags.removable = 1;
/* Presence of _EJD|_EJ0 indicates 'ejectable' */
if (acpi_has_method(device->handle, "_EJD") ||
acpi_has_method(device->handle, "_EJ0"))
device->flags.ejectable = 1;
}
static void acpi_device_get_busid(struct acpi_device *device)
{
char bus_id[5] = { '?', 0 };
struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
int i = 0;
/*
* Bus ID
* ------
* The device's Bus ID is simply the object name.
* TBD: Shouldn't this value be unique (within the ACPI namespace)?
*/
if (!acpi_dev_parent(device)) {
strcpy(device->pnp.bus_id, "ACPI");
return;
}
switch (device->device_type) {
case ACPI_BUS_TYPE_POWER_BUTTON:
strcpy(device->pnp.bus_id, "PWRF");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
strcpy(device->pnp.bus_id, "SLPF");
break;
case ACPI_BUS_TYPE_ECDT_EC:
strcpy(device->pnp.bus_id, "ECDT");
break;
default:
acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
/* Clean up trailing underscores (if any) */
for (i = 3; i > 1; i--) {
if (bus_id[i] == '_')
bus_id[i] = '\0';
else
break;
}
strcpy(device->pnp.bus_id, bus_id);
break;
}
}
/*
* acpi_ata_match - see if an acpi object is an ATA device
*
* If an acpi object has one of the ACPI ATA methods defined,
* then we can safely call it an ATA device.
*/
bool acpi_ata_match(acpi_handle handle)
{
return acpi_has_method(handle, "_GTF") ||
acpi_has_method(handle, "_GTM") ||
acpi_has_method(handle, "_STM") ||
acpi_has_method(handle, "_SDD");
}
/*
* acpi_bay_match - see if an acpi object is an ejectable driver bay
*
* If an acpi object is ejectable and has one of the ACPI ATA methods defined,
* then we can safely call it an ejectable drive bay
*/
bool acpi_bay_match(acpi_handle handle)
{
acpi_handle phandle;
if (!acpi_has_method(handle, "_EJ0"))
return false;
if (acpi_ata_match(handle))
return true;
if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
return false;
return acpi_ata_match(phandle);
}
bool acpi_device_is_battery(struct acpi_device *adev)
{
struct acpi_hardware_id *hwid;
list_for_each_entry(hwid, &adev->pnp.ids, list)
if (!strcmp("PNP0C0A", hwid->id))
return true;
return false;
}
static bool is_ejectable_bay(struct acpi_device *adev)
{
acpi_handle handle = adev->handle;
if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
return true;
return acpi_bay_match(handle);
}
/*
* acpi_dock_match - see if an acpi object has a _DCK method
*/
bool acpi_dock_match(acpi_handle handle)
{
return acpi_has_method(handle, "_DCK");
}
static acpi_status
acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
void **return_value)
{
long *cap = context;
if (acpi_has_method(handle, "_BCM") &&
acpi_has_method(handle, "_BCL")) {
acpi_handle_debug(handle, "Found generic backlight support\n");
*cap |= ACPI_VIDEO_BACKLIGHT;
/* We have backlight support, no need to scan further */
return AE_CTRL_TERMINATE;
}
return 0;
}
/* Returns true if the ACPI object is a video device which can be
* handled by video.ko.
* The device will get a Linux specific CID added in scan.c to
* identify the device as an ACPI graphics device
* Be aware that the graphics device may not be physically present
* Use acpi_video_get_capabilities() to detect general ACPI video
* capabilities of present cards
*/
long acpi_is_video_device(acpi_handle handle)
{
long video_caps = 0;
/* Is this device able to support video switching ? */
if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
/* Is this device able to retrieve a video ROM ? */
if (acpi_has_method(handle, "_ROM"))
video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
/* Is this device able to configure which video head to be POSTed ? */
if (acpi_has_method(handle, "_VPO") &&
acpi_has_method(handle, "_GPD") &&
acpi_has_method(handle, "_SPD"))
video_caps |= ACPI_VIDEO_DEVICE_POSTING;
/* Only check for backlight functionality if one of the above hit. */
if (video_caps)
acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
&video_caps, NULL);
return video_caps;
}
EXPORT_SYMBOL(acpi_is_video_device);
const char *acpi_device_hid(struct acpi_device *device)
{
struct acpi_hardware_id *hid;
hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
if (!hid)
return dummy_hid;
return hid->id;
}
EXPORT_SYMBOL(acpi_device_hid);
static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
{
struct acpi_hardware_id *id;
id = kmalloc(sizeof(*id), GFP_KERNEL);
if (!id)
return;
id->id = kstrdup_const(dev_id, GFP_KERNEL);
if (!id->id) {
kfree(id);
return;
}
list_add_tail(&id->list, &pnp->ids);
pnp->type.hardware_id = 1;
}
/*
* Old IBM workstations have a DSDT bug wherein the SMBus object
* lacks the SMBUS01 HID and the methods do not have the necessary "_"
* prefix. Work around this.
*/
static bool acpi_ibm_smbus_match(acpi_handle handle)
{
char node_name[ACPI_PATH_SEGMENT_LENGTH];
struct acpi_buffer path = { sizeof(node_name), node_name };
if (!dmi_name_in_vendors("IBM"))
return false;
/* Look for SMBS object */
if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
strcmp("SMBS", path.pointer))
return false;
/* Does it have the necessary (but misnamed) methods? */
if (acpi_has_method(handle, "SBI") &&
acpi_has_method(handle, "SBR") &&
acpi_has_method(handle, "SBW"))
return true;
return false;
}
static bool acpi_object_is_system_bus(acpi_handle handle)
{
acpi_handle tmp;
if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
tmp == handle)
return true;
if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
tmp == handle)
return true;
return false;
}
static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
int device_type)
{
struct acpi_device_info *info = NULL;
struct acpi_pnp_device_id_list *cid_list;
int i;
switch (device_type) {
case ACPI_BUS_TYPE_DEVICE:
if (handle == ACPI_ROOT_OBJECT) {
acpi_add_id(pnp, ACPI_SYSTEM_HID);
break;
}
acpi_get_object_info(handle, &info);
if (!info) {
pr_err("%s: Error reading device info\n", __func__);
return;
}
if (info->valid & ACPI_VALID_HID) {
acpi_add_id(pnp, info->hardware_id.string);
pnp->type.platform_id = 1;
}
if (info->valid & ACPI_VALID_CID) {
cid_list = &info->compatible_id_list;
for (i = 0; i < cid_list->count; i++)
acpi_add_id(pnp, cid_list->ids[i].string);
}
if (info->valid & ACPI_VALID_ADR) {
pnp->bus_address = info->address;
pnp->type.bus_address = 1;
}
if (info->valid & ACPI_VALID_UID)
pnp->unique_id = kstrdup(info->unique_id.string,
GFP_KERNEL);
if (info->valid & ACPI_VALID_CLS)
acpi_add_id(pnp, info->class_code.string);
kfree(info);
/*
* Some devices don't reliably have _HIDs & _CIDs, so add
* synthetic HIDs to make sure drivers can find them.
*/
if (acpi_is_video_device(handle)) {
acpi_add_id(pnp, ACPI_VIDEO_HID);
pnp->type.backlight = 1;
break;
}
if (acpi_bay_match(handle))
acpi_add_id(pnp, ACPI_BAY_HID);
else if (acpi_dock_match(handle))
acpi_add_id(pnp, ACPI_DOCK_HID);
else if (acpi_ibm_smbus_match(handle))
acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
else if (list_empty(&pnp->ids) &&
acpi_object_is_system_bus(handle)) {
/* \_SB, \_TZ, LNXSYBUS */
acpi_add_id(pnp, ACPI_BUS_HID);
strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
strcpy(pnp->device_class, ACPI_BUS_CLASS);
}
break;
case ACPI_BUS_TYPE_POWER:
acpi_add_id(pnp, ACPI_POWER_HID);
break;
case ACPI_BUS_TYPE_PROCESSOR:
acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
break;
case ACPI_BUS_TYPE_THERMAL:
acpi_add_id(pnp, ACPI_THERMAL_HID);
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
break;
case ACPI_BUS_TYPE_ECDT_EC:
acpi_add_id(pnp, ACPI_ECDT_HID);
break;
}
}
void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
{
struct acpi_hardware_id *id, *tmp;
list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
kfree_const(id->id);
kfree(id);
}
kfree(pnp->unique_id);
}
/**
* acpi_dma_supported - Check DMA support for the specified device.
* @adev: The pointer to acpi device
*
* Return false if DMA is not supported. Otherwise, return true
*/
bool acpi_dma_supported(const struct acpi_device *adev)
{
if (!adev)
return false;
if (adev->flags.cca_seen)
return true;
/*
* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
* DMA on "Intel platforms". Presumably that includes all x86 and
* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
*/
if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
return true;
return false;
}
/**
* acpi_get_dma_attr - Check the supported DMA attr for the specified device.
* @adev: The pointer to acpi device
*
* Return enum dev_dma_attr.
*/
enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
{
if (!acpi_dma_supported(adev))
return DEV_DMA_NOT_SUPPORTED;
if (adev->flags.coherent_dma)
return DEV_DMA_COHERENT;
else
return DEV_DMA_NON_COHERENT;
}
/**
* acpi_dma_get_range() - Get device DMA parameters.
*
* @dev: device to configure
* @map: pointer to DMA ranges result
*
* Evaluate DMA regions and return pointer to DMA regions on
* parsing success; it does not update the passed in values on failure.
*
* Return 0 on success, < 0 on failure.
*/
int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
{
struct acpi_device *adev;
LIST_HEAD(list);
struct resource_entry *rentry;
int ret;
struct device *dma_dev = dev;
struct bus_dma_region *r;
/*
* Walk the device tree chasing an ACPI companion with a _DMA
* object while we go. Stop if we find a device with an ACPI
* companion containing a _DMA method.
*/
do {
adev = ACPI_COMPANION(dma_dev);
if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
break;
dma_dev = dma_dev->parent;
} while (dma_dev);
if (!dma_dev)
return -ENODEV;
if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
return -EINVAL;
}
ret = acpi_dev_get_dma_resources(adev, &list);
if (ret > 0) {
r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
if (!r) {
ret = -ENOMEM;
goto out;
}
*map = r;
list_for_each_entry(rentry, &list, node) {
if (rentry->res->start >= rentry->res->end) {
kfree(*map);
*map = NULL;
ret = -EINVAL;
dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
goto out;
}
r->cpu_start = rentry->res->start;
r->dma_start = rentry->res->start - rentry->offset;
r->size = resource_size(rentry->res);
r++;
}
}
out:
acpi_dev_free_resource_list(&list);
return ret >= 0 ? 0 : ret;
}
#ifdef CONFIG_IOMMU_API
int acpi_iommu_fwspec_init(struct device *dev, u32 id,
struct fwnode_handle *fwnode,
const struct iommu_ops *ops)
{
int ret = iommu_fwspec_init(dev, fwnode, ops);
if (!ret)
ret = iommu_fwspec_add_ids(dev, &id, 1);
return ret;
}
static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
return fwspec ? fwspec->ops : NULL;
}
static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
{
int err;
const struct iommu_ops *ops;
/* Serialise to make dev->iommu stable under our potential fwspec */
mutex_lock(&iommu_probe_device_lock);
/*
* If we already translated the fwspec there is nothing left to do,
* return the iommu_ops.
*/
ops = acpi_iommu_fwspec_ops(dev);
if (ops) {
mutex_unlock(&iommu_probe_device_lock);
return 0;
}
err = iort_iommu_configure_id(dev, id_in);
if (err && err != -EPROBE_DEFER)
err = viot_iommu_configure(dev);
mutex_unlock(&iommu_probe_device_lock);
/*
* If we have reason to believe the IOMMU driver missed the initial
* iommu_probe_device() call for dev, replay it to get things in order.
*/
if (!err && dev->bus)
err = iommu_probe_device(dev);
/* Ignore all other errors apart from EPROBE_DEFER */
if (err == -EPROBE_DEFER) {
return err;
} else if (err) {
dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
return -ENODEV;
}
if (!acpi_iommu_fwspec_ops(dev))
return -ENODEV;
return 0;
}
#else /* !CONFIG_IOMMU_API */
int acpi_iommu_fwspec_init(struct device *dev, u32 id,
struct fwnode_handle *fwnode,
const struct iommu_ops *ops)
{
return -ENODEV;
}
static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
{
return -ENODEV;
}
#endif /* !CONFIG_IOMMU_API */
/**
* acpi_dma_configure_id - Set-up DMA configuration for the device.
* @dev: The pointer to the device
* @attr: device dma attributes
* @input_id: input device id const value pointer
*/
int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
const u32 *input_id)
{
int ret;
if (attr == DEV_DMA_NOT_SUPPORTED) {
set_dma_ops(dev, &dma_dummy_ops);
return 0;
}
acpi_arch_dma_setup(dev);
ret = acpi_iommu_configure_id(dev, input_id);
if (ret == -EPROBE_DEFER)
return -EPROBE_DEFER;
/*
* Historically this routine doesn't fail driver probing due to errors
* in acpi_iommu_configure_id()
*/
arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
return 0;
}
EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
static void acpi_init_coherency(struct acpi_device *adev)
{
unsigned long long cca = 0;
acpi_status status;
struct acpi_device *parent = acpi_dev_parent(adev);
if (parent && parent->flags.cca_seen) {
/*
* From ACPI spec, OSPM will ignore _CCA if an ancestor
* already saw one.
*/
adev->flags.cca_seen = 1;
cca = parent->flags.coherent_dma;
} else {
status = acpi_evaluate_integer(adev->handle, "_CCA",
NULL, &cca);
if (ACPI_SUCCESS(status))
adev->flags.cca_seen = 1;
else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
/*
* If architecture does not specify that _CCA is
* required for DMA-able devices (e.g. x86),
* we default to _CCA=1.
*/
cca = 1;
else
acpi_handle_debug(adev->handle,
"ACPI device is missing _CCA.\n");
}
adev->flags.coherent_dma = cca;
}
static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
{
bool *is_serial_bus_slave_p = data;
if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
return 1;
*is_serial_bus_slave_p = true;
/* no need to do more checking */
return -1;
}
static bool acpi_is_indirect_io_slave(struct acpi_device *device)
{
struct acpi_device *parent = acpi_dev_parent(device);
static const struct acpi_device_id indirect_io_hosts[] = {
{"HISI0191", 0},
{}
};
return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
}
static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
{
struct list_head resource_list;
bool is_serial_bus_slave = false;
static const struct acpi_device_id ignore_serial_bus_ids[] = {
/*
* These devices have multiple SerialBus resources and a client
* device must be instantiated for each of them, each with
* its own device id.
* Normally we only instantiate one client device for the first
* resource, using the ACPI HID as id. These special cases are handled
* by the drivers/platform/x86/serial-multi-instantiate.c driver, which
* knows which client device id to use for each resource.
*/
{"BSG1160", },
{"BSG2150", },
{"CSC3551", },
{"CSC3554", },
{"CSC3556", },
{"CSC3557", },
{"INT33FE", },
{"INT3515", },
/* Non-conforming _HID for Cirrus Logic already released */
{"CLSA0100", },
{"CLSA0101", },
/*
* Some ACPI devs contain SerialBus resources even though they are not
* attached to a serial bus at all.
*/
{ACPI_VIDEO_HID, },
{"MSHW0028", },
/*
* HIDs of device with an UartSerialBusV2 resource for which userspace
* expects a regular tty cdev to be created (instead of the in kernel
* serdev) and which have a kernel driver which expects a platform_dev
* such as the rfkill-gpio driver.
*/
{"BCM4752", },
{"LNV4752", },
{}
};
if (acpi_is_indirect_io_slave(device))
return true;
/* Macs use device properties in lieu of _CRS resources */
if (x86_apple_machine &&
(fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
fwnode_property_present(&device->fwnode, "i2cAddress") ||
fwnode_property_present(&device->fwnode, "baud")))
return true;
if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
return false;
INIT_LIST_HEAD(&resource_list);
acpi_dev_get_resources(device, &resource_list,
acpi_check_serial_bus_slave,
&is_serial_bus_slave);
acpi_dev_free_resource_list(&resource_list);
return is_serial_bus_slave;
}
void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
int type, void (*release)(struct device *))
{
struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
INIT_LIST_HEAD(&device->pnp.ids);
device->device_type = type;
device->handle = handle;
device->dev.parent = parent ? &parent->dev : NULL;
device->dev.release = release;
device->dev.bus = &acpi_bus_type;
fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
acpi_set_device_status(device, ACPI_STA_DEFAULT);
acpi_device_get_busid(device);
acpi_set_pnp_ids(handle, &device->pnp, type);
acpi_init_properties(device);
acpi_bus_get_flags(device);
device->flags.match_driver = false;
device->flags.initialized = true;
device->flags.enumeration_by_parent =
acpi_device_enumeration_by_parent(device);
acpi_device_clear_enumerated(device);
device_initialize(&device->dev);
dev_set_uevent_suppress(&device->dev, true);
acpi_init_coherency(device);
}
static void acpi_scan_dep_init(struct acpi_device *adev)
{
struct acpi_dep_data *dep;
list_for_each_entry(dep, &acpi_dep_list, node) {
if (dep->consumer == adev->handle) {
if (dep->honor_dep)
adev->flags.honor_deps = 1;
adev->dep_unmet++;
}
}
}
void acpi_device_add_finalize(struct acpi_device *device)
{
dev_set_uevent_suppress(&device->dev, false);
kobject_uevent(&device->dev.kobj, KOBJ_ADD);
}
static void acpi_scan_init_status(struct acpi_device *adev)
{
if (acpi_bus_get_status(adev))
acpi_set_device_status(adev, 0);
}
static int acpi_add_single_object(struct acpi_device **child,
acpi_handle handle, int type, bool dep_init)
{
struct acpi_device *device;
bool release_dep_lock = false;
int result;
device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
if (!device)
return -ENOMEM;
acpi_init_device_object(device, handle, type, acpi_device_release);
/*
* Getting the status is delayed till here so that we can call
* acpi_bus_get_status() and use its quirk handling. Note that
* this must be done before the get power-/wakeup_dev-flags calls.
*/
if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
if (dep_init) {
mutex_lock(&acpi_dep_list_lock);
/*
* Hold the lock until the acpi_tie_acpi_dev() call
* below to prevent concurrent acpi_scan_clear_dep()
* from deleting a dependency list entry without
* updating dep_unmet for the device.
*/
release_dep_lock = true;
acpi_scan_dep_init(device);
}
acpi_scan_init_status(device);
}
acpi_bus_get_power_flags(device);
acpi_bus_get_wakeup_device_flags(device);
result = acpi_tie_acpi_dev(device);
if (release_dep_lock)
mutex_unlock(&acpi_dep_list_lock);
if (!result)
result = acpi_device_add(device);
if (result) {
acpi_device_release(&device->dev);
return result;
}
acpi_power_add_remove_device(device, true);
acpi_device_add_finalize(device);
acpi_handle_debug(handle, "Added as %s, parent %s\n",
dev_name(&device->dev), device->dev.parent ?
dev_name(device->dev.parent) : "(null)");
*child = device;
return 0;
}
static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
void *context)
{
struct resource *res = context;
if (acpi_dev_resource_memory(ares, res))
return AE_CTRL_TERMINATE;
return AE_OK;
}
static bool acpi_device_should_be_hidden(acpi_handle handle)
{
acpi_status status;
struct resource res;
/* Check if it should ignore the UART device */
if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
return false;
/*
* The UART device described in SPCR table is assumed to have only one
* memory resource present. So we only look for the first one here.
*/
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
acpi_get_resource_memory, &res);
if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
return false;
acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
&res.start);
return true;
}
bool acpi_device_is_present(const struct acpi_device *adev)
{
return adev->status.present || adev->status.functional;
}
bool acpi_device_is_enabled(const struct acpi_device *adev)
{
return adev->status.present && adev->status.enabled;
}
static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
const char *idstr,
const struct acpi_device_id **matchid)
{
const struct acpi_device_id *devid;
if (handler->match)
return handler->match(idstr, matchid);
for (devid = handler->ids; devid->id[0]; devid++)
if (!strcmp((char *)devid->id, idstr)) {
if (matchid)
*matchid = devid;
return true;
}
return false;
}
static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
const struct acpi_device_id **matchid)
{
struct acpi_scan_handler *handler;
list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
if (acpi_scan_handler_matching(handler, idstr, matchid))
return handler;
return NULL;
}
void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
{
if (!!hotplug->enabled == !!val)
return;
mutex_lock(&acpi_scan_lock);
hotplug->enabled = val;
mutex_unlock(&acpi_scan_lock);
}
static void acpi_scan_init_hotplug(struct acpi_device *adev)
{
struct acpi_hardware_id *hwid;
if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
acpi_dock_add(adev);
return;
}
list_for_each_entry(hwid, &adev->pnp.ids, list) {
struct acpi_scan_handler *handler;
handler = acpi_scan_match_handler(hwid->id, NULL);
if (handler) {
adev->flags.hotplug_notify = true;
break;
}
}
}
static u32 acpi_scan_check_dep(acpi_handle handle)
{
struct acpi_handle_list dep_devices;
u32 count;
int i;
/*
* Check for _HID here to avoid deferring the enumeration of:
* 1. PCI devices.
* 2. ACPI nodes describing USB ports.
* Still, checking for _HID catches more then just these cases ...
*/
if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
return 0;
if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
return 0;
}
for (count = 0, i = 0; i < dep_devices.count; i++) {
struct acpi_device_info *info;
struct acpi_dep_data *dep;
bool skip, honor_dep;
acpi_status status;
status = acpi_get_object_info(dep_devices.handles[i], &info);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "Error reading _DEP device info\n");
continue;
}
skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
kfree(info);
if (skip)
continue;
dep = kzalloc(sizeof(*dep), GFP_KERNEL);
if (!dep)
continue;
count++;
dep->supplier = dep_devices.handles[i];
dep->consumer = handle;
dep->honor_dep = honor_dep;
mutex_lock(&acpi_dep_list_lock);
list_add_tail(&dep->node , &acpi_dep_list);
mutex_unlock(&acpi_dep_list_lock);
}
acpi_handle_list_free(&dep_devices);
return count;
}
static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
{
acpi_mipi_check_crs_csi2(handle);
return AE_OK;
}
static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
struct acpi_device **adev_p)
{
struct acpi_device *device = acpi_fetch_acpi_dev(handle);
acpi_object_type acpi_type;
int type;
if (device)
goto out;
if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
return AE_OK;
switch (acpi_type) {
case ACPI_TYPE_DEVICE:
if (acpi_device_should_be_hidden(handle))
return AE_OK;
if (first_pass) {
acpi_mipi_check_crs_csi2(handle);
/* Bail out if there are dependencies. */
if (acpi_scan_check_dep(handle) > 0) {
/*
* The entire CSI-2 connection graph needs to be
* extracted before any drivers or scan handlers
* are bound to struct device objects, so scan
* _CRS CSI-2 resource descriptors for all
* devices below the current handle.
*/
acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
ACPI_UINT32_MAX,
acpi_scan_check_crs_csi2_cb,
NULL, NULL, NULL);
return AE_CTRL_DEPTH;
}
}
fallthrough;
case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
type = ACPI_BUS_TYPE_DEVICE;
break;
case ACPI_TYPE_PROCESSOR:
type = ACPI_BUS_TYPE_PROCESSOR;
break;
case ACPI_TYPE_THERMAL:
type = ACPI_BUS_TYPE_THERMAL;
break;
case ACPI_TYPE_POWER:
acpi_add_power_resource(handle);
fallthrough;
default:
return AE_OK;
}
/*
* If first_pass is true at this point, the device has no dependencies,
* or the creation of the device object would have been postponed above.
*/
acpi_add_single_object(&device, handle, type, !first_pass);
if (!device)
return AE_CTRL_DEPTH;
acpi_scan_init_hotplug(device);
out:
if (!*adev_p)
*adev_p = device;
return AE_OK;
}
static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
void *not_used, void **ret_p)
{
return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
}
static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
void *not_used, void **ret_p)
{
return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
}
static void acpi_default_enumeration(struct acpi_device *device)
{
/*
* Do not enumerate devices with enumeration_by_parent flag set as
* they will be enumerated by their respective parents.
*/
if (!device->flags.enumeration_by_parent) {
acpi_create_platform_device(device, NULL);
acpi_device_set_enumerated(device);
} else {
blocking_notifier_call_chain(&acpi_reconfig_chain,
ACPI_RECONFIG_DEVICE_ADD, device);
}
}
static const struct acpi_device_id generic_device_ids[] = {
{ACPI_DT_NAMESPACE_HID, },
{"", },
};
static int acpi_generic_device_attach(struct acpi_device *adev,
const struct acpi_device_id *not_used)
{
/*
* Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
* below can be unconditional.
*/
if (adev->data.of_compatible)
acpi_default_enumeration(adev);
return 1;
}
static struct acpi_scan_handler generic_device_handler = {
.ids = generic_device_ids,
.attach = acpi_generic_device_attach,
};
static int acpi_scan_attach_handler(struct acpi_device *device)
{
struct acpi_hardware_id *hwid;
int ret = 0;
list_for_each_entry(hwid, &device->pnp.ids, list) {
const struct acpi_device_id *devid;
struct acpi_scan_handler *handler;
handler = acpi_scan_match_handler(hwid->id, &devid);
if (handler) {
if (!handler->attach) {
device->pnp.type.platform_id = 0;
continue;
}
device->handler = handler;
ret = handler->attach(device, devid);
if (ret > 0)
break;
device->handler = NULL;
if (ret < 0)
break;
}
}
return ret;
}
static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
{
bool skip = !first_pass && device->flags.visited;
acpi_handle ejd;
int ret;
if (skip)
goto ok;
if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
register_dock_dependent_device(device, ejd);
acpi_bus_get_status(device);
/* Skip devices that are not ready for enumeration (e.g. not present) */
if (!acpi_dev_ready_for_enumeration(device)) {
device->flags.initialized = false;
acpi_device_clear_enumerated(device);
device->flags.power_manageable = 0;
return 0;
}
if (device->handler)
goto ok;
if (!device->flags.initialized) {
device->flags.power_manageable =
device->power.states[ACPI_STATE_D0].flags.valid;
if (acpi_bus_init_power(device))
device->flags.power_manageable = 0;
device->flags.initialized = true;
} else if (device->flags.visited) {
goto ok;
}
ret = acpi_scan_attach_handler(device);
if (ret < 0)
return 0;
device->flags.match_driver = true;
if (ret > 0 && !device->flags.enumeration_by_parent) {
acpi_device_set_enumerated(device);
goto ok;
}
ret = device_attach(&device->dev);
if (ret < 0)
return 0;
if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
acpi_default_enumeration(device);
else
acpi_device_set_enumerated(device);
ok:
acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
if (!skip && device->handler && device->handler->hotplug.notify_online)
device->handler->hotplug.notify_online(device);
return 0;
}
static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
{
struct acpi_device **adev_p = data;
struct acpi_device *adev = *adev_p;
/*
* If we're passed a 'previous' consumer device then we need to skip
* any consumers until we meet the previous one, and then NULL @data
* so the next one can be returned.
*/
if (adev) {
if (dep->consumer == adev->handle)
*adev_p = NULL;
return 0;
}
adev = acpi_get_acpi_dev(dep->consumer);
if (adev) {
*(struct acpi_device **)data = adev;
return 1;
}
/* Continue parsing if the device object is not present. */
return 0;
}
struct acpi_scan_clear_dep_work {
struct work_struct work;
struct acpi_device *adev;
};
static void acpi_scan_clear_dep_fn(struct work_struct *work)
{
struct acpi_scan_clear_dep_work *cdw;
cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
acpi_scan_lock_acquire();
acpi_bus_attach(cdw->adev, (void *)true);
acpi_scan_lock_release();
acpi_dev_put(cdw->adev);
kfree(cdw);
}
static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
{
struct acpi_scan_clear_dep_work *cdw;
if (adev->dep_unmet)
return false;
cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
if (!cdw)
return false;
cdw->adev = adev;
INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
/*
* Since the work function may block on the lock until the entire
* initial enumeration of devices is complete, put it into the unbound
* workqueue.
*/
queue_work(system_unbound_wq, &cdw->work);
return true;
}
static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
{
list_del(&dep->node);
kfree(dep);
}
static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
{
struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
if (adev) {
adev->dep_unmet--;
if (!acpi_scan_clear_dep_queue(adev))
acpi_dev_put(adev);
}
if (dep->free_when_met)
acpi_scan_delete_dep_data(dep);
else
dep->met = true;
return 0;
}
/**
* acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
* @handle: The ACPI handle of the supplier device
* @callback: Pointer to the callback function to apply
* @data: Pointer to some data to pass to the callback
*
* The return value of the callback determines this function's behaviour. If 0
* is returned we continue to iterate over acpi_dep_list. If a positive value
* is returned then the loop is broken but this function returns 0. If a
* negative value is returned by the callback then the loop is broken and that
* value is returned as the final error.
*/
static int acpi_walk_dep_device_list(acpi_handle handle,
int (*callback)(struct acpi_dep_data *, void *),
void *data)
{
struct acpi_dep_data *dep, *tmp;
int ret = 0;
mutex_lock(&acpi_dep_list_lock);
list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
if (dep->supplier == handle) {
ret = callback(dep, data);
if (ret)
break;
}
}
mutex_unlock(&acpi_dep_list_lock);
return ret > 0 ? 0 : ret;
}
/**
* acpi_dev_clear_dependencies - Inform consumers that the device is now active
* @supplier: Pointer to the supplier &struct acpi_device
*
* Clear dependencies on the given device.
*/
void acpi_dev_clear_dependencies(struct acpi_device *supplier)
{
acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
}
EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
/**
* acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
* @device: Pointer to the &struct acpi_device to check
*
* Check if the device is present and has no unmet dependencies.
*
* Return true if the device is ready for enumeratino. Otherwise, return false.
*/
bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
{
if (device->flags.honor_deps && device->dep_unmet)
return false;
return acpi_device_is_present(device);
}
EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
/**
* acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
* @supplier: Pointer to the dependee device
* @start: Pointer to the current dependent device
*
* Returns the next &struct acpi_device which declares itself dependent on
* @supplier via the _DEP buffer, parsed from the acpi_dep_list.
*
* If the returned adev is not passed as @start to this function, the caller is
* responsible for putting the reference to adev when it is no longer needed.
*/
struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
struct acpi_device *start)
{
struct acpi_device *adev = start;
acpi_walk_dep_device_list(supplier->handle,
acpi_dev_get_next_consumer_dev_cb, &adev);
acpi_dev_put(start);
if (adev == start)
return NULL;
return adev;
}
EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
static void acpi_scan_postponed_branch(acpi_handle handle)
{
struct acpi_device *adev = NULL;
if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
return;
acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
/*
* Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
* have been added above.
*/
acpi_mipi_init_crs_csi2_swnodes();
acpi_bus_attach(adev, NULL);
}
static void acpi_scan_postponed(void)
{
struct acpi_dep_data *dep, *tmp;
mutex_lock(&acpi_dep_list_lock);
list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
acpi_handle handle = dep->consumer;
/*
* In case there are multiple acpi_dep_list entries with the
* same consumer, skip the current entry if the consumer device
* object corresponding to it is present already.
*/
if (!acpi_fetch_acpi_dev(handle)) {
/*
* Even though the lock is released here, tmp is
* guaranteed to be valid, because none of the list
* entries following dep is marked as "free when met"
* and so they cannot be deleted.
*/
mutex_unlock(&acpi_dep_list_lock);
acpi_scan_postponed_branch(handle);
mutex_lock(&acpi_dep_list_lock);
}
if (dep->met)
acpi_scan_delete_dep_data(dep);
else
dep->free_when_met = true;
}
mutex_unlock(&acpi_dep_list_lock);
}
/**
* acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
* @handle: Root of the namespace scope to scan.
*
* Scan a given ACPI tree (probably recently hot-plugged) and create and add
* found devices.
*
* If no devices were found, -ENODEV is returned, but it does not mean that
* there has been a real error. There just have been no suitable ACPI objects
* in the table trunk from which the kernel could create a device and add an
* appropriate driver.
*
* Must be called under acpi_scan_lock.
*/
int acpi_bus_scan(acpi_handle handle)
{
struct acpi_device *device = NULL;
/* Pass 1: Avoid enumerating devices with missing dependencies. */
if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
acpi_bus_check_add_1, NULL, NULL,
(void **)&device);
if (!device)
return -ENODEV;
/*
* Set up ACPI _CRS CSI-2 software nodes using information extracted
* from the _CRS CSI-2 resource descriptors during the ACPI namespace
* walk above and MIPI DisCo for Imaging device properties.
*/
acpi_mipi_scan_crs_csi2();
acpi_mipi_init_crs_csi2_swnodes();
acpi_bus_attach(device, (void *)true);
/* Pass 2: Enumerate all of the remaining devices. */
acpi_scan_postponed();
acpi_mipi_crs_csi2_cleanup();
return 0;
}
EXPORT_SYMBOL(acpi_bus_scan);
/**
* acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
* @adev: Root of the ACPI namespace scope to walk.
*
* Must be called under acpi_scan_lock.
*/
void acpi_bus_trim(struct acpi_device *adev)
{
acpi_scan_check_and_detach(adev, NULL);
}
EXPORT_SYMBOL_GPL(acpi_bus_trim);
int acpi_bus_register_early_device(int type)
{
struct acpi_device *device = NULL;
int result;
result = acpi_add_single_object(&device, NULL, type, false);
if (result)
return result;
device->flags.match_driver = true;
return device_attach(&device->dev);
}
EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
static void acpi_bus_scan_fixed(void)
{
if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
struct acpi_device *adev = NULL;
acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
false);
if (adev) {
adev->flags.match_driver = true;
if (device_attach(&adev->dev) >= 0)
device_init_wakeup(&adev->dev, true);
else
dev_dbg(&adev->dev, "No driver\n");
}
}
if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
struct acpi_device *adev = NULL;
acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
false);
if (adev) {
adev->flags.match_driver = true;
if (device_attach(&adev->dev) < 0)
dev_dbg(&adev->dev, "No driver\n");
}
}
}
static void __init acpi_get_spcr_uart_addr(void)
{
acpi_status status;
struct acpi_table_spcr *spcr_ptr;
status = acpi_get_table(ACPI_SIG_SPCR, 0,
(struct acpi_table_header **)&spcr_ptr);
if (ACPI_FAILURE(status)) {
pr_warn("STAO table present, but SPCR is missing\n");
return;
}
spcr_uart_addr = spcr_ptr->serial_port.address;
acpi_put_table((struct acpi_table_header *)spcr_ptr);
}
static bool acpi_scan_initialized;
void __init acpi_scan_init(void)
{
acpi_status status;
struct acpi_table_stao *stao_ptr;
acpi_pci_root_init();
acpi_pci_link_init();
acpi_processor_init();
acpi_platform_init();
acpi_lpss_init();
acpi_apd_init();
acpi_cmos_rtc_init();
acpi_container_init();
acpi_memory_hotplug_init();
acpi_watchdog_init();
acpi_pnp_init();
acpi_int340x_thermal_init();
acpi_init_lpit();
acpi_scan_add_handler(&generic_device_handler);
/*
* If there is STAO table, check whether it needs to ignore the UART
* device in SPCR table.
*/
status = acpi_get_table(ACPI_SIG_STAO, 0,
(struct acpi_table_header **)&stao_ptr);
if (ACPI_SUCCESS(status)) {
if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
pr_info("STAO Name List not yet supported.\n");
if (stao_ptr->ignore_uart)
acpi_get_spcr_uart_addr();
acpi_put_table((struct acpi_table_header *)stao_ptr);
}
acpi_gpe_apply_masked_gpes();
acpi_update_all_gpes();
/*
* Although we call __add_memory() that is documented to require the
* device_hotplug_lock, it is not necessary here because this is an
* early code when userspace or any other code path cannot trigger
* hotplug/hotunplug operations.
*/
mutex_lock(&acpi_scan_lock);
/*
* Enumerate devices in the ACPI namespace.
*/
if (acpi_bus_scan(ACPI_ROOT_OBJECT))
goto unlock;
acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
if (!acpi_root)
goto unlock;
/* Fixed feature devices do not exist on HW-reduced platform */
if (!acpi_gbl_reduced_hardware)
acpi_bus_scan_fixed();
acpi_turn_off_unused_power_resources();
acpi_scan_initialized = true;
unlock:
mutex_unlock(&acpi_scan_lock);
}
static struct acpi_probe_entry *ape;
static int acpi_probe_count;
static DEFINE_MUTEX(acpi_probe_mutex);
static int __init acpi_match_madt(union acpi_subtable_headers *header,
const unsigned long end)
{
if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
if (!ape->probe_subtbl(header, end))
acpi_probe_count++;
return 0;
}
int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
{
int count = 0;
if (acpi_disabled)
return 0;
mutex_lock(&acpi_probe_mutex);
for (ape = ap_head; nr; ape++, nr--) {
if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
acpi_probe_count = 0;
acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
count += acpi_probe_count;
} else {
int res;
res = acpi_table_parse(ape->id, ape->probe_table);
if (!res)
count++;
}
}
mutex_unlock(&acpi_probe_mutex);
return count;
}
static void acpi_table_events_fn(struct work_struct *work)
{
acpi_scan_lock_acquire();
acpi_bus_scan(ACPI_ROOT_OBJECT);
acpi_scan_lock_release();
kfree(work);
}
void acpi_scan_table_notify(void)
{
struct work_struct *work;
if (!acpi_scan_initialized)
return;
work = kmalloc(sizeof(*work), GFP_KERNEL);
if (!work)
return;
INIT_WORK(work, acpi_table_events_fn);
schedule_work(work);
}
int acpi_reconfig_notifier_register(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
}
EXPORT_SYMBOL(acpi_reconfig_notifier_register);
int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
}
EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);