linux-stable/drivers/bus/mvebu-mbus.c
Arnd Bergmann 77644ad86a bus: mvebu-mbus: use %pa to print phys_addr_t
A recent change to the mbus driver added a warning printk that
prints a phys_addr_t using the %x format string, which fails in
case we build with 64-bit phys_addr_t:

drivers/bus/mvebu-mbus.c: In function 'mvebu_mbus_get_dram_win_info':
drivers/bus/mvebu-mbus.c:975:9: error: format '%x' expects argument of type 'unsigned int', but argument 2 has type 'phys_addr_t {aka long long unsigned int}' [-Werror=format=]

This uses the special %pa format string instead, so we always
print the correct type.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: f2900acea801 ("bus: mvebu-mbus: provide api for obtaining IO and DRAM window information")
Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
2016-03-30 11:36:01 +02:00

1379 lines
36 KiB
C

/*
* Address map functions for Marvell EBU SoCs (Kirkwood, Armada
* 370/XP, Dove, Orion5x and MV78xx0)
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*
* The Marvell EBU SoCs have a configurable physical address space:
* the physical address at which certain devices (PCIe, NOR, NAND,
* etc.) sit can be configured. The configuration takes place through
* two sets of registers:
*
* - One to configure the access of the CPU to the devices. Depending
* on the families, there are between 8 and 20 configurable windows,
* each can be use to create a physical memory window that maps to a
* specific device. Devices are identified by a tuple (target,
* attribute).
*
* - One to configure the access to the CPU to the SDRAM. There are
* either 2 (for Dove) or 4 (for other families) windows to map the
* SDRAM into the physical address space.
*
* This driver:
*
* - Reads out the SDRAM address decoding windows at initialization
* time, and fills the mvebu_mbus_dram_info structure with these
* informations. The exported function mv_mbus_dram_info() allow
* device drivers to get those informations related to the SDRAM
* address decoding windows. This is because devices also have their
* own windows (configured through registers that are part of each
* device register space), and therefore the drivers for Marvell
* devices have to configure those device -> SDRAM windows to ensure
* that DMA works properly.
*
* - Provides an API for platform code or device drivers to
* dynamically add or remove address decoding windows for the CPU ->
* device accesses. This API is mvebu_mbus_add_window_by_id(),
* mvebu_mbus_add_window_remap_by_id() and
* mvebu_mbus_del_window().
*
* - Provides a debugfs interface in /sys/kernel/debug/mvebu-mbus/ to
* see the list of CPU -> SDRAM windows and their configuration
* (file 'sdram') and the list of CPU -> devices windows and their
* configuration (file 'devices').
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mbus.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/debugfs.h>
#include <linux/log2.h>
#include <linux/memblock.h>
#include <linux/syscore_ops.h>
/*
* DDR target is the same on all platforms.
*/
#define TARGET_DDR 0
/*
* CPU Address Decode Windows registers
*/
#define WIN_CTRL_OFF 0x0000
#define WIN_CTRL_ENABLE BIT(0)
/* Only on HW I/O coherency capable platforms */
#define WIN_CTRL_SYNCBARRIER BIT(1)
#define WIN_CTRL_TGT_MASK 0xf0
#define WIN_CTRL_TGT_SHIFT 4
#define WIN_CTRL_ATTR_MASK 0xff00
#define WIN_CTRL_ATTR_SHIFT 8
#define WIN_CTRL_SIZE_MASK 0xffff0000
#define WIN_CTRL_SIZE_SHIFT 16
#define WIN_BASE_OFF 0x0004
#define WIN_BASE_LOW 0xffff0000
#define WIN_BASE_HIGH 0xf
#define WIN_REMAP_LO_OFF 0x0008
#define WIN_REMAP_LOW 0xffff0000
#define WIN_REMAP_HI_OFF 0x000c
#define UNIT_SYNC_BARRIER_OFF 0x84
#define UNIT_SYNC_BARRIER_ALL 0xFFFF
#define ATTR_HW_COHERENCY (0x1 << 4)
#define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
#define DDR_BASE_CS_HIGH_MASK 0xf
#define DDR_BASE_CS_LOW_MASK 0xff000000
#define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
#define DDR_SIZE_ENABLED BIT(0)
#define DDR_SIZE_CS_MASK 0x1c
#define DDR_SIZE_CS_SHIFT 2
#define DDR_SIZE_MASK 0xff000000
#define DOVE_DDR_BASE_CS_OFF(n) ((n) << 4)
/* Relative to mbusbridge_base */
#define MBUS_BRIDGE_CTRL_OFF 0x0
#define MBUS_BRIDGE_BASE_OFF 0x4
/* Maximum number of windows, for all known platforms */
#define MBUS_WINS_MAX 20
struct mvebu_mbus_state;
struct mvebu_mbus_soc_data {
unsigned int num_wins;
bool has_mbus_bridge;
unsigned int (*win_cfg_offset)(const int win);
unsigned int (*win_remap_offset)(const int win);
void (*setup_cpu_target)(struct mvebu_mbus_state *s);
int (*save_cpu_target)(struct mvebu_mbus_state *s,
u32 *store_addr);
int (*show_cpu_target)(struct mvebu_mbus_state *s,
struct seq_file *seq, void *v);
};
/*
* Used to store the state of one MBus window accross suspend/resume.
*/
struct mvebu_mbus_win_data {
u32 ctrl;
u32 base;
u32 remap_lo;
u32 remap_hi;
};
struct mvebu_mbus_state {
void __iomem *mbuswins_base;
void __iomem *sdramwins_base;
void __iomem *mbusbridge_base;
phys_addr_t sdramwins_phys_base;
struct dentry *debugfs_root;
struct dentry *debugfs_sdram;
struct dentry *debugfs_devs;
struct resource pcie_mem_aperture;
struct resource pcie_io_aperture;
const struct mvebu_mbus_soc_data *soc;
int hw_io_coherency;
/* Used during suspend/resume */
u32 mbus_bridge_ctrl;
u32 mbus_bridge_base;
struct mvebu_mbus_win_data wins[MBUS_WINS_MAX];
};
static struct mvebu_mbus_state mbus_state;
/*
* We provide two variants of the mv_mbus_dram_info() function:
*
* - The normal one, where the described DRAM ranges may overlap with
* the I/O windows, but for which the DRAM ranges are guaranteed to
* have a power of two size. Such ranges are suitable for the DMA
* masters that only DMA between the RAM and the device, which is
* actually all devices except the crypto engines.
*
* - The 'nooverlap' one, where the described DRAM ranges are
* guaranteed to not overlap with the I/O windows, but for which the
* DRAM ranges will not have power of two sizes. They will only be
* aligned on a 64 KB boundary, and have a size multiple of 64
* KB. Such ranges are suitable for the DMA masters that DMA between
* the crypto SRAM (which is mapped through an I/O window) and a
* device. This is the case for the crypto engines.
*/
static struct mbus_dram_target_info mvebu_mbus_dram_info;
static struct mbus_dram_target_info mvebu_mbus_dram_info_nooverlap;
const struct mbus_dram_target_info *mv_mbus_dram_info(void)
{
return &mvebu_mbus_dram_info;
}
EXPORT_SYMBOL_GPL(mv_mbus_dram_info);
const struct mbus_dram_target_info *mv_mbus_dram_info_nooverlap(void)
{
return &mvebu_mbus_dram_info_nooverlap;
}
EXPORT_SYMBOL_GPL(mv_mbus_dram_info_nooverlap);
/* Checks whether the given window has remap capability */
static bool mvebu_mbus_window_is_remappable(struct mvebu_mbus_state *mbus,
const int win)
{
return mbus->soc->win_remap_offset(win) != MVEBU_MBUS_NO_REMAP;
}
/*
* Functions to manipulate the address decoding windows
*/
static void mvebu_mbus_read_window(struct mvebu_mbus_state *mbus,
int win, int *enabled, u64 *base,
u32 *size, u8 *target, u8 *attr,
u64 *remap)
{
void __iomem *addr = mbus->mbuswins_base +
mbus->soc->win_cfg_offset(win);
u32 basereg = readl(addr + WIN_BASE_OFF);
u32 ctrlreg = readl(addr + WIN_CTRL_OFF);
if (!(ctrlreg & WIN_CTRL_ENABLE)) {
*enabled = 0;
return;
}
*enabled = 1;
*base = ((u64)basereg & WIN_BASE_HIGH) << 32;
*base |= (basereg & WIN_BASE_LOW);
*size = (ctrlreg | ~WIN_CTRL_SIZE_MASK) + 1;
if (target)
*target = (ctrlreg & WIN_CTRL_TGT_MASK) >> WIN_CTRL_TGT_SHIFT;
if (attr)
*attr = (ctrlreg & WIN_CTRL_ATTR_MASK) >> WIN_CTRL_ATTR_SHIFT;
if (remap) {
if (mvebu_mbus_window_is_remappable(mbus, win)) {
u32 remap_low, remap_hi;
void __iomem *addr_rmp = mbus->mbuswins_base +
mbus->soc->win_remap_offset(win);
remap_low = readl(addr_rmp + WIN_REMAP_LO_OFF);
remap_hi = readl(addr_rmp + WIN_REMAP_HI_OFF);
*remap = ((u64)remap_hi << 32) | remap_low;
} else
*remap = 0;
}
}
static void mvebu_mbus_disable_window(struct mvebu_mbus_state *mbus,
int win)
{
void __iomem *addr;
addr = mbus->mbuswins_base + mbus->soc->win_cfg_offset(win);
writel(0, addr + WIN_BASE_OFF);
writel(0, addr + WIN_CTRL_OFF);
if (mvebu_mbus_window_is_remappable(mbus, win)) {
addr = mbus->mbuswins_base + mbus->soc->win_remap_offset(win);
writel(0, addr + WIN_REMAP_LO_OFF);
writel(0, addr + WIN_REMAP_HI_OFF);
}
}
/* Checks whether the given window number is available */
static int mvebu_mbus_window_is_free(struct mvebu_mbus_state *mbus,
const int win)
{
void __iomem *addr = mbus->mbuswins_base +
mbus->soc->win_cfg_offset(win);
u32 ctrl = readl(addr + WIN_CTRL_OFF);
return !(ctrl & WIN_CTRL_ENABLE);
}
/*
* Checks whether the given (base, base+size) area doesn't overlap an
* existing region
*/
static int mvebu_mbus_window_conflicts(struct mvebu_mbus_state *mbus,
phys_addr_t base, size_t size,
u8 target, u8 attr)
{
u64 end = (u64)base + size;
int win;
for (win = 0; win < mbus->soc->num_wins; win++) {
u64 wbase, wend;
u32 wsize;
u8 wtarget, wattr;
int enabled;
mvebu_mbus_read_window(mbus, win,
&enabled, &wbase, &wsize,
&wtarget, &wattr, NULL);
if (!enabled)
continue;
wend = wbase + wsize;
/*
* Check if the current window overlaps with the
* proposed physical range
*/
if ((u64)base < wend && end > wbase)
return 0;
}
return 1;
}
static int mvebu_mbus_find_window(struct mvebu_mbus_state *mbus,
phys_addr_t base, size_t size)
{
int win;
for (win = 0; win < mbus->soc->num_wins; win++) {
u64 wbase;
u32 wsize;
int enabled;
mvebu_mbus_read_window(mbus, win,
&enabled, &wbase, &wsize,
NULL, NULL, NULL);
if (!enabled)
continue;
if (base == wbase && size == wsize)
return win;
}
return -ENODEV;
}
static int mvebu_mbus_setup_window(struct mvebu_mbus_state *mbus,
int win, phys_addr_t base, size_t size,
phys_addr_t remap, u8 target,
u8 attr)
{
void __iomem *addr = mbus->mbuswins_base +
mbus->soc->win_cfg_offset(win);
u32 ctrl, remap_addr;
if (!is_power_of_2(size)) {
WARN(true, "Invalid MBus window size: 0x%zx\n", size);
return -EINVAL;
}
if ((base & (phys_addr_t)(size - 1)) != 0) {
WARN(true, "Invalid MBus base/size: %pa len 0x%zx\n", &base,
size);
return -EINVAL;
}
ctrl = ((size - 1) & WIN_CTRL_SIZE_MASK) |
(attr << WIN_CTRL_ATTR_SHIFT) |
(target << WIN_CTRL_TGT_SHIFT) |
WIN_CTRL_ENABLE;
if (mbus->hw_io_coherency)
ctrl |= WIN_CTRL_SYNCBARRIER;
writel(base & WIN_BASE_LOW, addr + WIN_BASE_OFF);
writel(ctrl, addr + WIN_CTRL_OFF);
if (mvebu_mbus_window_is_remappable(mbus, win)) {
void __iomem *addr_rmp = mbus->mbuswins_base +
mbus->soc->win_remap_offset(win);
if (remap == MVEBU_MBUS_NO_REMAP)
remap_addr = base;
else
remap_addr = remap;
writel(remap_addr & WIN_REMAP_LOW, addr_rmp + WIN_REMAP_LO_OFF);
writel(0, addr_rmp + WIN_REMAP_HI_OFF);
}
return 0;
}
static int mvebu_mbus_alloc_window(struct mvebu_mbus_state *mbus,
phys_addr_t base, size_t size,
phys_addr_t remap, u8 target,
u8 attr)
{
int win;
if (remap == MVEBU_MBUS_NO_REMAP) {
for (win = 0; win < mbus->soc->num_wins; win++) {
if (mvebu_mbus_window_is_remappable(mbus, win))
continue;
if (mvebu_mbus_window_is_free(mbus, win))
return mvebu_mbus_setup_window(mbus, win, base,
size, remap,
target, attr);
}
}
for (win = 0; win < mbus->soc->num_wins; win++) {
/* Skip window if need remap but is not supported */
if ((remap != MVEBU_MBUS_NO_REMAP) &&
!mvebu_mbus_window_is_remappable(mbus, win))
continue;
if (mvebu_mbus_window_is_free(mbus, win))
return mvebu_mbus_setup_window(mbus, win, base, size,
remap, target, attr);
}
return -ENOMEM;
}
/*
* Debugfs debugging
*/
/* Common function used for Dove, Kirkwood, Armada 370/XP and Orion 5x */
static int mvebu_sdram_debug_show_orion(struct mvebu_mbus_state *mbus,
struct seq_file *seq, void *v)
{
int i;
for (i = 0; i < 4; i++) {
u32 basereg = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i));
u32 sizereg = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i));
u64 base;
u32 size;
if (!(sizereg & DDR_SIZE_ENABLED)) {
seq_printf(seq, "[%d] disabled\n", i);
continue;
}
base = ((u64)basereg & DDR_BASE_CS_HIGH_MASK) << 32;
base |= basereg & DDR_BASE_CS_LOW_MASK;
size = (sizereg | ~DDR_SIZE_MASK);
seq_printf(seq, "[%d] %016llx - %016llx : cs%d\n",
i, (unsigned long long)base,
(unsigned long long)base + size + 1,
(sizereg & DDR_SIZE_CS_MASK) >> DDR_SIZE_CS_SHIFT);
}
return 0;
}
/* Special function for Dove */
static int mvebu_sdram_debug_show_dove(struct mvebu_mbus_state *mbus,
struct seq_file *seq, void *v)
{
int i;
for (i = 0; i < 2; i++) {
u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i));
u64 base;
u32 size;
if (!(map & 1)) {
seq_printf(seq, "[%d] disabled\n", i);
continue;
}
base = map & 0xff800000;
size = 0x100000 << (((map & 0x000f0000) >> 16) - 4);
seq_printf(seq, "[%d] %016llx - %016llx : cs%d\n",
i, (unsigned long long)base,
(unsigned long long)base + size, i);
}
return 0;
}
static int mvebu_sdram_debug_show(struct seq_file *seq, void *v)
{
struct mvebu_mbus_state *mbus = &mbus_state;
return mbus->soc->show_cpu_target(mbus, seq, v);
}
static int mvebu_sdram_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, mvebu_sdram_debug_show, inode->i_private);
}
static const struct file_operations mvebu_sdram_debug_fops = {
.open = mvebu_sdram_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int mvebu_devs_debug_show(struct seq_file *seq, void *v)
{
struct mvebu_mbus_state *mbus = &mbus_state;
int win;
for (win = 0; win < mbus->soc->num_wins; win++) {
u64 wbase, wremap;
u32 wsize;
u8 wtarget, wattr;
int enabled;
mvebu_mbus_read_window(mbus, win,
&enabled, &wbase, &wsize,
&wtarget, &wattr, &wremap);
if (!enabled) {
seq_printf(seq, "[%02d] disabled\n", win);
continue;
}
seq_printf(seq, "[%02d] %016llx - %016llx : %04x:%04x",
win, (unsigned long long)wbase,
(unsigned long long)(wbase + wsize), wtarget, wattr);
if (!is_power_of_2(wsize) ||
((wbase & (u64)(wsize - 1)) != 0))
seq_puts(seq, " (Invalid base/size!!)");
if (mvebu_mbus_window_is_remappable(mbus, win)) {
seq_printf(seq, " (remap %016llx)\n",
(unsigned long long)wremap);
} else
seq_printf(seq, "\n");
}
return 0;
}
static int mvebu_devs_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, mvebu_devs_debug_show, inode->i_private);
}
static const struct file_operations mvebu_devs_debug_fops = {
.open = mvebu_devs_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* SoC-specific functions and definitions
*/
static unsigned int generic_mbus_win_cfg_offset(int win)
{
return win << 4;
}
static unsigned int armada_370_xp_mbus_win_cfg_offset(int win)
{
/* The register layout is a bit annoying and the below code
* tries to cope with it.
* - At offset 0x0, there are the registers for the first 8
* windows, with 4 registers of 32 bits per window (ctrl,
* base, remap low, remap high)
* - Then at offset 0x80, there is a hole of 0x10 bytes for
* the internal registers base address and internal units
* sync barrier register.
* - Then at offset 0x90, there the registers for 12
* windows, with only 2 registers of 32 bits per window
* (ctrl, base).
*/
if (win < 8)
return win << 4;
else
return 0x90 + ((win - 8) << 3);
}
static unsigned int mv78xx0_mbus_win_cfg_offset(int win)
{
if (win < 8)
return win << 4;
else
return 0x900 + ((win - 8) << 4);
}
static unsigned int generic_mbus_win_remap_2_offset(int win)
{
if (win < 2)
return generic_mbus_win_cfg_offset(win);
else
return MVEBU_MBUS_NO_REMAP;
}
static unsigned int generic_mbus_win_remap_4_offset(int win)
{
if (win < 4)
return generic_mbus_win_cfg_offset(win);
else
return MVEBU_MBUS_NO_REMAP;
}
static unsigned int generic_mbus_win_remap_8_offset(int win)
{
if (win < 8)
return generic_mbus_win_cfg_offset(win);
else
return MVEBU_MBUS_NO_REMAP;
}
static unsigned int armada_xp_mbus_win_remap_offset(int win)
{
if (win < 8)
return generic_mbus_win_cfg_offset(win);
else if (win == 13)
return 0xF0 - WIN_REMAP_LO_OFF;
else
return MVEBU_MBUS_NO_REMAP;
}
/*
* Use the memblock information to find the MBus bridge hole in the
* physical address space.
*/
static void __init
mvebu_mbus_find_bridge_hole(uint64_t *start, uint64_t *end)
{
struct memblock_region *r;
uint64_t s = 0;
for_each_memblock(memory, r) {
/*
* This part of the memory is above 4 GB, so we don't
* care for the MBus bridge hole.
*/
if (r->base >= 0x100000000ULL)
continue;
/*
* The MBus bridge hole is at the end of the RAM under
* the 4 GB limit.
*/
if (r->base + r->size > s)
s = r->base + r->size;
}
*start = s;
*end = 0x100000000ULL;
}
/*
* This function fills in the mvebu_mbus_dram_info_nooverlap data
* structure, by looking at the mvebu_mbus_dram_info data, and
* removing the parts of it that overlap with I/O windows.
*/
static void __init
mvebu_mbus_setup_cpu_target_nooverlap(struct mvebu_mbus_state *mbus)
{
uint64_t mbus_bridge_base, mbus_bridge_end;
int cs_nooverlap = 0;
int i;
mvebu_mbus_find_bridge_hole(&mbus_bridge_base, &mbus_bridge_end);
for (i = 0; i < mvebu_mbus_dram_info.num_cs; i++) {
struct mbus_dram_window *w;
u64 base, size, end;
w = &mvebu_mbus_dram_info.cs[i];
base = w->base;
size = w->size;
end = base + size;
/*
* The CS is fully enclosed inside the MBus bridge
* area, so ignore it.
*/
if (base >= mbus_bridge_base && end <= mbus_bridge_end)
continue;
/*
* Beginning of CS overlaps with end of MBus, raise CS
* base address, and shrink its size.
*/
if (base >= mbus_bridge_base && end > mbus_bridge_end) {
size -= mbus_bridge_end - base;
base = mbus_bridge_end;
}
/*
* End of CS overlaps with beginning of MBus, shrink
* CS size.
*/
if (base < mbus_bridge_base && end > mbus_bridge_base)
size -= end - mbus_bridge_base;
w = &mvebu_mbus_dram_info_nooverlap.cs[cs_nooverlap++];
w->cs_index = i;
w->mbus_attr = 0xf & ~(1 << i);
if (mbus->hw_io_coherency)
w->mbus_attr |= ATTR_HW_COHERENCY;
w->base = base;
w->size = size;
}
mvebu_mbus_dram_info_nooverlap.mbus_dram_target_id = TARGET_DDR;
mvebu_mbus_dram_info_nooverlap.num_cs = cs_nooverlap;
}
static void __init
mvebu_mbus_default_setup_cpu_target(struct mvebu_mbus_state *mbus)
{
int i;
int cs;
mvebu_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
for (i = 0, cs = 0; i < 4; i++) {
u32 base = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i));
u32 size = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i));
/*
* We only take care of entries for which the chip
* select is enabled, and that don't have high base
* address bits set (devices can only access the first
* 32 bits of the memory).
*/
if ((size & DDR_SIZE_ENABLED) &&
!(base & DDR_BASE_CS_HIGH_MASK)) {
struct mbus_dram_window *w;
w = &mvebu_mbus_dram_info.cs[cs++];
w->cs_index = i;
w->mbus_attr = 0xf & ~(1 << i);
if (mbus->hw_io_coherency)
w->mbus_attr |= ATTR_HW_COHERENCY;
w->base = base & DDR_BASE_CS_LOW_MASK;
w->size = (size | ~DDR_SIZE_MASK) + 1;
}
}
mvebu_mbus_dram_info.num_cs = cs;
}
static int
mvebu_mbus_default_save_cpu_target(struct mvebu_mbus_state *mbus,
u32 *store_addr)
{
int i;
for (i = 0; i < 4; i++) {
u32 base = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i));
u32 size = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i));
writel(mbus->sdramwins_phys_base + DDR_BASE_CS_OFF(i),
store_addr++);
writel(base, store_addr++);
writel(mbus->sdramwins_phys_base + DDR_SIZE_CS_OFF(i),
store_addr++);
writel(size, store_addr++);
}
/* We've written 16 words to the store address */
return 16;
}
static void __init
mvebu_mbus_dove_setup_cpu_target(struct mvebu_mbus_state *mbus)
{
int i;
int cs;
mvebu_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
for (i = 0, cs = 0; i < 2; i++) {
u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i));
/*
* Chip select enabled?
*/
if (map & 1) {
struct mbus_dram_window *w;
w = &mvebu_mbus_dram_info.cs[cs++];
w->cs_index = i;
w->mbus_attr = 0; /* CS address decoding done inside */
/* the DDR controller, no need to */
/* provide attributes */
w->base = map & 0xff800000;
w->size = 0x100000 << (((map & 0x000f0000) >> 16) - 4);
}
}
mvebu_mbus_dram_info.num_cs = cs;
}
static int
mvebu_mbus_dove_save_cpu_target(struct mvebu_mbus_state *mbus,
u32 *store_addr)
{
int i;
for (i = 0; i < 2; i++) {
u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i));
writel(mbus->sdramwins_phys_base + DOVE_DDR_BASE_CS_OFF(i),
store_addr++);
writel(map, store_addr++);
}
/* We've written 4 words to the store address */
return 4;
}
int mvebu_mbus_save_cpu_target(u32 *store_addr)
{
return mbus_state.soc->save_cpu_target(&mbus_state, store_addr);
}
static const struct mvebu_mbus_soc_data armada_370_mbus_data = {
.num_wins = 20,
.has_mbus_bridge = true,
.win_cfg_offset = armada_370_xp_mbus_win_cfg_offset,
.win_remap_offset = generic_mbus_win_remap_8_offset,
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_orion,
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
};
static const struct mvebu_mbus_soc_data armada_xp_mbus_data = {
.num_wins = 20,
.has_mbus_bridge = true,
.win_cfg_offset = armada_370_xp_mbus_win_cfg_offset,
.win_remap_offset = armada_xp_mbus_win_remap_offset,
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_orion,
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
};
static const struct mvebu_mbus_soc_data kirkwood_mbus_data = {
.num_wins = 8,
.win_cfg_offset = generic_mbus_win_cfg_offset,
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
.win_remap_offset = generic_mbus_win_remap_4_offset,
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_orion,
};
static const struct mvebu_mbus_soc_data dove_mbus_data = {
.num_wins = 8,
.win_cfg_offset = generic_mbus_win_cfg_offset,
.save_cpu_target = mvebu_mbus_dove_save_cpu_target,
.win_remap_offset = generic_mbus_win_remap_4_offset,
.setup_cpu_target = mvebu_mbus_dove_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_dove,
};
/*
* Some variants of Orion5x have 4 remappable windows, some other have
* only two of them.
*/
static const struct mvebu_mbus_soc_data orion5x_4win_mbus_data = {
.num_wins = 8,
.win_cfg_offset = generic_mbus_win_cfg_offset,
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
.win_remap_offset = generic_mbus_win_remap_4_offset,
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_orion,
};
static const struct mvebu_mbus_soc_data orion5x_2win_mbus_data = {
.num_wins = 8,
.win_cfg_offset = generic_mbus_win_cfg_offset,
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
.win_remap_offset = generic_mbus_win_remap_2_offset,
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_orion,
};
static const struct mvebu_mbus_soc_data mv78xx0_mbus_data = {
.num_wins = 14,
.win_cfg_offset = mv78xx0_mbus_win_cfg_offset,
.save_cpu_target = mvebu_mbus_default_save_cpu_target,
.win_remap_offset = generic_mbus_win_remap_8_offset,
.setup_cpu_target = mvebu_mbus_default_setup_cpu_target,
.show_cpu_target = mvebu_sdram_debug_show_orion,
};
static const struct of_device_id of_mvebu_mbus_ids[] = {
{ .compatible = "marvell,armada370-mbus",
.data = &armada_370_mbus_data, },
{ .compatible = "marvell,armada375-mbus",
.data = &armada_xp_mbus_data, },
{ .compatible = "marvell,armada380-mbus",
.data = &armada_xp_mbus_data, },
{ .compatible = "marvell,armadaxp-mbus",
.data = &armada_xp_mbus_data, },
{ .compatible = "marvell,kirkwood-mbus",
.data = &kirkwood_mbus_data, },
{ .compatible = "marvell,dove-mbus",
.data = &dove_mbus_data, },
{ .compatible = "marvell,orion5x-88f5281-mbus",
.data = &orion5x_4win_mbus_data, },
{ .compatible = "marvell,orion5x-88f5182-mbus",
.data = &orion5x_2win_mbus_data, },
{ .compatible = "marvell,orion5x-88f5181-mbus",
.data = &orion5x_2win_mbus_data, },
{ .compatible = "marvell,orion5x-88f6183-mbus",
.data = &orion5x_4win_mbus_data, },
{ .compatible = "marvell,mv78xx0-mbus",
.data = &mv78xx0_mbus_data, },
{ },
};
/*
* Public API of the driver
*/
int mvebu_mbus_add_window_remap_by_id(unsigned int target,
unsigned int attribute,
phys_addr_t base, size_t size,
phys_addr_t remap)
{
struct mvebu_mbus_state *s = &mbus_state;
if (!mvebu_mbus_window_conflicts(s, base, size, target, attribute)) {
pr_err("cannot add window '%x:%x', conflicts with another window\n",
target, attribute);
return -EINVAL;
}
return mvebu_mbus_alloc_window(s, base, size, remap, target, attribute);
}
int mvebu_mbus_add_window_by_id(unsigned int target, unsigned int attribute,
phys_addr_t base, size_t size)
{
return mvebu_mbus_add_window_remap_by_id(target, attribute, base,
size, MVEBU_MBUS_NO_REMAP);
}
int mvebu_mbus_del_window(phys_addr_t base, size_t size)
{
int win;
win = mvebu_mbus_find_window(&mbus_state, base, size);
if (win < 0)
return win;
mvebu_mbus_disable_window(&mbus_state, win);
return 0;
}
void mvebu_mbus_get_pcie_mem_aperture(struct resource *res)
{
if (!res)
return;
*res = mbus_state.pcie_mem_aperture;
}
void mvebu_mbus_get_pcie_io_aperture(struct resource *res)
{
if (!res)
return;
*res = mbus_state.pcie_io_aperture;
}
int mvebu_mbus_get_dram_win_info(phys_addr_t phyaddr, u8 *target, u8 *attr)
{
const struct mbus_dram_target_info *dram;
int i;
/* Get dram info */
dram = mv_mbus_dram_info();
if (!dram) {
pr_err("missing DRAM information\n");
return -ENODEV;
}
/* Try to find matching DRAM window for phyaddr */
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
if (cs->base <= phyaddr &&
phyaddr <= (cs->base + cs->size - 1)) {
*target = dram->mbus_dram_target_id;
*attr = cs->mbus_attr;
return 0;
}
}
pr_err("invalid dram address %pa\n", &phyaddr);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(mvebu_mbus_get_dram_win_info);
int mvebu_mbus_get_io_win_info(phys_addr_t phyaddr, u32 *size, u8 *target,
u8 *attr)
{
int win;
for (win = 0; win < mbus_state.soc->num_wins; win++) {
u64 wbase;
int enabled;
mvebu_mbus_read_window(&mbus_state, win, &enabled, &wbase,
size, target, attr, NULL);
if (!enabled)
continue;
if (wbase <= phyaddr && phyaddr <= wbase + *size)
return win;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(mvebu_mbus_get_io_win_info);
static __init int mvebu_mbus_debugfs_init(void)
{
struct mvebu_mbus_state *s = &mbus_state;
/*
* If no base has been initialized, doesn't make sense to
* register the debugfs entries. We may be on a multiplatform
* kernel that isn't running a Marvell EBU SoC.
*/
if (!s->mbuswins_base)
return 0;
s->debugfs_root = debugfs_create_dir("mvebu-mbus", NULL);
if (s->debugfs_root) {
s->debugfs_sdram = debugfs_create_file("sdram", S_IRUGO,
s->debugfs_root, NULL,
&mvebu_sdram_debug_fops);
s->debugfs_devs = debugfs_create_file("devices", S_IRUGO,
s->debugfs_root, NULL,
&mvebu_devs_debug_fops);
}
return 0;
}
fs_initcall(mvebu_mbus_debugfs_init);
static int mvebu_mbus_suspend(void)
{
struct mvebu_mbus_state *s = &mbus_state;
int win;
if (!s->mbusbridge_base)
return -ENODEV;
for (win = 0; win < s->soc->num_wins; win++) {
void __iomem *addr = s->mbuswins_base +
s->soc->win_cfg_offset(win);
void __iomem *addr_rmp;
s->wins[win].base = readl(addr + WIN_BASE_OFF);
s->wins[win].ctrl = readl(addr + WIN_CTRL_OFF);
if (!mvebu_mbus_window_is_remappable(s, win))
continue;
addr_rmp = s->mbuswins_base +
s->soc->win_remap_offset(win);
s->wins[win].remap_lo = readl(addr_rmp + WIN_REMAP_LO_OFF);
s->wins[win].remap_hi = readl(addr_rmp + WIN_REMAP_HI_OFF);
}
s->mbus_bridge_ctrl = readl(s->mbusbridge_base +
MBUS_BRIDGE_CTRL_OFF);
s->mbus_bridge_base = readl(s->mbusbridge_base +
MBUS_BRIDGE_BASE_OFF);
return 0;
}
static void mvebu_mbus_resume(void)
{
struct mvebu_mbus_state *s = &mbus_state;
int win;
writel(s->mbus_bridge_ctrl,
s->mbusbridge_base + MBUS_BRIDGE_CTRL_OFF);
writel(s->mbus_bridge_base,
s->mbusbridge_base + MBUS_BRIDGE_BASE_OFF);
for (win = 0; win < s->soc->num_wins; win++) {
void __iomem *addr = s->mbuswins_base +
s->soc->win_cfg_offset(win);
void __iomem *addr_rmp;
writel(s->wins[win].base, addr + WIN_BASE_OFF);
writel(s->wins[win].ctrl, addr + WIN_CTRL_OFF);
if (!mvebu_mbus_window_is_remappable(s, win))
continue;
addr_rmp = s->mbuswins_base +
s->soc->win_remap_offset(win);
writel(s->wins[win].remap_lo, addr_rmp + WIN_REMAP_LO_OFF);
writel(s->wins[win].remap_hi, addr_rmp + WIN_REMAP_HI_OFF);
}
}
struct syscore_ops mvebu_mbus_syscore_ops = {
.suspend = mvebu_mbus_suspend,
.resume = mvebu_mbus_resume,
};
static int __init mvebu_mbus_common_init(struct mvebu_mbus_state *mbus,
phys_addr_t mbuswins_phys_base,
size_t mbuswins_size,
phys_addr_t sdramwins_phys_base,
size_t sdramwins_size,
phys_addr_t mbusbridge_phys_base,
size_t mbusbridge_size,
bool is_coherent)
{
int win;
mbus->mbuswins_base = ioremap(mbuswins_phys_base, mbuswins_size);
if (!mbus->mbuswins_base)
return -ENOMEM;
mbus->sdramwins_base = ioremap(sdramwins_phys_base, sdramwins_size);
if (!mbus->sdramwins_base) {
iounmap(mbus_state.mbuswins_base);
return -ENOMEM;
}
mbus->sdramwins_phys_base = sdramwins_phys_base;
if (mbusbridge_phys_base) {
mbus->mbusbridge_base = ioremap(mbusbridge_phys_base,
mbusbridge_size);
if (!mbus->mbusbridge_base) {
iounmap(mbus->sdramwins_base);
iounmap(mbus->mbuswins_base);
return -ENOMEM;
}
} else
mbus->mbusbridge_base = NULL;
for (win = 0; win < mbus->soc->num_wins; win++)
mvebu_mbus_disable_window(mbus, win);
mbus->soc->setup_cpu_target(mbus);
mvebu_mbus_setup_cpu_target_nooverlap(mbus);
if (is_coherent)
writel(UNIT_SYNC_BARRIER_ALL,
mbus->mbuswins_base + UNIT_SYNC_BARRIER_OFF);
register_syscore_ops(&mvebu_mbus_syscore_ops);
return 0;
}
int __init mvebu_mbus_init(const char *soc, phys_addr_t mbuswins_phys_base,
size_t mbuswins_size,
phys_addr_t sdramwins_phys_base,
size_t sdramwins_size)
{
const struct of_device_id *of_id;
for (of_id = of_mvebu_mbus_ids; of_id->compatible[0]; of_id++)
if (!strcmp(of_id->compatible, soc))
break;
if (!of_id->compatible[0]) {
pr_err("could not find a matching SoC family\n");
return -ENODEV;
}
mbus_state.soc = of_id->data;
return mvebu_mbus_common_init(&mbus_state,
mbuswins_phys_base,
mbuswins_size,
sdramwins_phys_base,
sdramwins_size, 0, 0, false);
}
#ifdef CONFIG_OF
/*
* The window IDs in the ranges DT property have the following format:
* - bits 28 to 31: MBus custom field
* - bits 24 to 27: window target ID
* - bits 16 to 23: window attribute ID
* - bits 0 to 15: unused
*/
#define CUSTOM(id) (((id) & 0xF0000000) >> 24)
#define TARGET(id) (((id) & 0x0F000000) >> 24)
#define ATTR(id) (((id) & 0x00FF0000) >> 16)
static int __init mbus_dt_setup_win(struct mvebu_mbus_state *mbus,
u32 base, u32 size,
u8 target, u8 attr)
{
if (!mvebu_mbus_window_conflicts(mbus, base, size, target, attr)) {
pr_err("cannot add window '%04x:%04x', conflicts with another window\n",
target, attr);
return -EBUSY;
}
if (mvebu_mbus_alloc_window(mbus, base, size, MVEBU_MBUS_NO_REMAP,
target, attr)) {
pr_err("cannot add window '%04x:%04x', too many windows\n",
target, attr);
return -ENOMEM;
}
return 0;
}
static int __init
mbus_parse_ranges(struct device_node *node,
int *addr_cells, int *c_addr_cells, int *c_size_cells,
int *cell_count, const __be32 **ranges_start,
const __be32 **ranges_end)
{
const __be32 *prop;
int ranges_len, tuple_len;
/* Allow a node with no 'ranges' property */
*ranges_start = of_get_property(node, "ranges", &ranges_len);
if (*ranges_start == NULL) {
*addr_cells = *c_addr_cells = *c_size_cells = *cell_count = 0;
*ranges_start = *ranges_end = NULL;
return 0;
}
*ranges_end = *ranges_start + ranges_len / sizeof(__be32);
*addr_cells = of_n_addr_cells(node);
prop = of_get_property(node, "#address-cells", NULL);
*c_addr_cells = be32_to_cpup(prop);
prop = of_get_property(node, "#size-cells", NULL);
*c_size_cells = be32_to_cpup(prop);
*cell_count = *addr_cells + *c_addr_cells + *c_size_cells;
tuple_len = (*cell_count) * sizeof(__be32);
if (ranges_len % tuple_len) {
pr_warn("malformed ranges entry '%s'\n", node->name);
return -EINVAL;
}
return 0;
}
static int __init mbus_dt_setup(struct mvebu_mbus_state *mbus,
struct device_node *np)
{
int addr_cells, c_addr_cells, c_size_cells;
int i, ret, cell_count;
const __be32 *r, *ranges_start, *ranges_end;
ret = mbus_parse_ranges(np, &addr_cells, &c_addr_cells,
&c_size_cells, &cell_count,
&ranges_start, &ranges_end);
if (ret < 0)
return ret;
for (i = 0, r = ranges_start; r < ranges_end; r += cell_count, i++) {
u32 windowid, base, size;
u8 target, attr;
/*
* An entry with a non-zero custom field do not
* correspond to a static window, so skip it.
*/
windowid = of_read_number(r, 1);
if (CUSTOM(windowid))
continue;
target = TARGET(windowid);
attr = ATTR(windowid);
base = of_read_number(r + c_addr_cells, addr_cells);
size = of_read_number(r + c_addr_cells + addr_cells,
c_size_cells);
ret = mbus_dt_setup_win(mbus, base, size, target, attr);
if (ret < 0)
return ret;
}
return 0;
}
static void __init mvebu_mbus_get_pcie_resources(struct device_node *np,
struct resource *mem,
struct resource *io)
{
u32 reg[2];
int ret;
/*
* These are optional, so we make sure that resource_size(x) will
* return 0.
*/
memset(mem, 0, sizeof(struct resource));
mem->end = -1;
memset(io, 0, sizeof(struct resource));
io->end = -1;
ret = of_property_read_u32_array(np, "pcie-mem-aperture", reg, ARRAY_SIZE(reg));
if (!ret) {
mem->start = reg[0];
mem->end = mem->start + reg[1] - 1;
mem->flags = IORESOURCE_MEM;
}
ret = of_property_read_u32_array(np, "pcie-io-aperture", reg, ARRAY_SIZE(reg));
if (!ret) {
io->start = reg[0];
io->end = io->start + reg[1] - 1;
io->flags = IORESOURCE_IO;
}
}
int __init mvebu_mbus_dt_init(bool is_coherent)
{
struct resource mbuswins_res, sdramwins_res, mbusbridge_res;
struct device_node *np, *controller;
const struct of_device_id *of_id;
const __be32 *prop;
int ret;
np = of_find_matching_node_and_match(NULL, of_mvebu_mbus_ids, &of_id);
if (!np) {
pr_err("could not find a matching SoC family\n");
return -ENODEV;
}
mbus_state.soc = of_id->data;
prop = of_get_property(np, "controller", NULL);
if (!prop) {
pr_err("required 'controller' property missing\n");
return -EINVAL;
}
controller = of_find_node_by_phandle(be32_to_cpup(prop));
if (!controller) {
pr_err("could not find an 'mbus-controller' node\n");
return -ENODEV;
}
if (of_address_to_resource(controller, 0, &mbuswins_res)) {
pr_err("cannot get MBUS register address\n");
return -EINVAL;
}
if (of_address_to_resource(controller, 1, &sdramwins_res)) {
pr_err("cannot get SDRAM register address\n");
return -EINVAL;
}
/*
* Set the resource to 0 so that it can be left unmapped by
* mvebu_mbus_common_init() if the DT doesn't carry the
* necessary information. This is needed to preserve backward
* compatibility.
*/
memset(&mbusbridge_res, 0, sizeof(mbusbridge_res));
if (mbus_state.soc->has_mbus_bridge) {
if (of_address_to_resource(controller, 2, &mbusbridge_res))
pr_warn(FW_WARN "deprecated mbus-mvebu Device Tree, suspend/resume will not work\n");
}
mbus_state.hw_io_coherency = is_coherent;
/* Get optional pcie-{mem,io}-aperture properties */
mvebu_mbus_get_pcie_resources(np, &mbus_state.pcie_mem_aperture,
&mbus_state.pcie_io_aperture);
ret = mvebu_mbus_common_init(&mbus_state,
mbuswins_res.start,
resource_size(&mbuswins_res),
sdramwins_res.start,
resource_size(&sdramwins_res),
mbusbridge_res.start,
resource_size(&mbusbridge_res),
is_coherent);
if (ret)
return ret;
/* Setup statically declared windows in the DT */
return mbus_dt_setup(&mbus_state, np);
}
#endif