linux-stable/fs/Kconfig
Alexey Dobriyan 2a22783be0 fs/Kconfig: move cramfs out
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
2009-01-22 13:15:58 +03:00

896 lines
29 KiB
Plaintext

#
# File system configuration
#
menu "File systems"
if BLOCK
source "fs/ext2/Kconfig"
source "fs/ext3/Kconfig"
source "fs/ext4/Kconfig"
config FS_XIP
# execute in place
bool
depends on EXT2_FS_XIP
default y
source "fs/jbd/Kconfig"
source "fs/jbd2/Kconfig"
config FS_MBCACHE
# Meta block cache for Extended Attributes (ext2/ext3/ext4)
tristate
default y if EXT2_FS=y && EXT2_FS_XATTR
default y if EXT3_FS=y && EXT3_FS_XATTR
default y if EXT4_FS=y && EXT4_FS_XATTR
default m if EXT2_FS_XATTR || EXT3_FS_XATTR || EXT4_FS_XATTR
source "fs/reiserfs/Kconfig"
source "fs/jfs/Kconfig"
config FS_POSIX_ACL
# Posix ACL utility routines (for now, only ext2/ext3/jfs/reiserfs/nfs4)
#
# NOTE: you can implement Posix ACLs without these helpers (XFS does).
# Never use this symbol for ifdefs.
#
bool
default n
config FILE_LOCKING
bool "Enable POSIX file locking API" if EMBEDDED
default y
help
This option enables standard file locking support, required
for filesystems like NFS and for the flock() system
call. Disabling this option saves about 11k.
source "fs/xfs/Kconfig"
source "fs/gfs2/Kconfig"
source "fs/ocfs2/Kconfig"
source "fs/btrfs/Kconfig"
endif # BLOCK
source "fs/notify/Kconfig"
config QUOTA
bool "Quota support"
help
If you say Y here, you will be able to set per user limits for disk
usage (also called disk quotas). Currently, it works for the
ext2, ext3, and reiserfs file system. ext3 also supports journalled
quotas for which you don't need to run quotacheck(8) after an unclean
shutdown.
For further details, read the Quota mini-HOWTO, available from
<http://www.tldp.org/docs.html#howto>, or the documentation provided
with the quota tools. Probably the quota support is only useful for
multi user systems. If unsure, say N.
config QUOTA_NETLINK_INTERFACE
bool "Report quota messages through netlink interface"
depends on QUOTA && NET
help
If you say Y here, quota warnings (about exceeding softlimit, reaching
hardlimit, etc.) will be reported through netlink interface. If unsure,
say Y.
config PRINT_QUOTA_WARNING
bool "Print quota warnings to console (OBSOLETE)"
depends on QUOTA
default y
help
If you say Y here, quota warnings (about exceeding softlimit, reaching
hardlimit, etc.) will be printed to the process' controlling terminal.
Note that this behavior is currently deprecated and may go away in
future. Please use notification via netlink socket instead.
# Generic support for tree structured quota files. Seleted when needed.
config QUOTA_TREE
tristate
config QFMT_V1
tristate "Old quota format support"
depends on QUOTA
help
This quota format was (is) used by kernels earlier than 2.4.22. If
you have quota working and you don't want to convert to new quota
format say Y here.
config QFMT_V2
tristate "Quota format v2 support"
depends on QUOTA
select QUOTA_TREE
help
This quota format allows using quotas with 32-bit UIDs/GIDs. If you
need this functionality say Y here.
config QUOTACTL
bool
depends on XFS_QUOTA || QUOTA
default y
source "fs/autofs/Kconfig"
source "fs/autofs4/Kconfig"
source "fs/fuse/Kconfig"
config GENERIC_ACL
bool
select FS_POSIX_ACL
if BLOCK
menu "CD-ROM/DVD Filesystems"
source "fs/isofs/Kconfig"
source "fs/udf/Kconfig"
endmenu
endif # BLOCK
if BLOCK
menu "DOS/FAT/NT Filesystems"
source "fs/fat/Kconfig"
source "fs/ntfs/Kconfig"
endmenu
endif # BLOCK
menu "Pseudo filesystems"
source "fs/proc/Kconfig"
source "fs/sysfs/Kconfig"
config TMPFS
bool "Virtual memory file system support (former shm fs)"
help
Tmpfs is a file system which keeps all files in virtual memory.
Everything in tmpfs is temporary in the sense that no files will be
created on your hard drive. The files live in memory and swap
space. If you unmount a tmpfs instance, everything stored therein is
lost.
See <file:Documentation/filesystems/tmpfs.txt> for details.
config TMPFS_POSIX_ACL
bool "Tmpfs POSIX Access Control Lists"
depends on TMPFS
select GENERIC_ACL
help
POSIX Access Control Lists (ACLs) support permissions for users and
groups beyond the owner/group/world scheme.
To learn more about Access Control Lists, visit the POSIX ACLs for
Linux website <http://acl.bestbits.at/>.
If you don't know what Access Control Lists are, say N.
config HUGETLBFS
bool "HugeTLB file system support"
depends on X86 || IA64 || PPC64 || SPARC64 || (SUPERH && MMU) || \
(S390 && 64BIT) || BROKEN
help
hugetlbfs is a filesystem backing for HugeTLB pages, based on
ramfs. For architectures that support it, say Y here and read
<file:Documentation/vm/hugetlbpage.txt> for details.
If unsure, say N.
config HUGETLB_PAGE
def_bool HUGETLBFS
source "fs/configfs/Kconfig"
endmenu
menuconfig MISC_FILESYSTEMS
bool "Miscellaneous filesystems"
default y
---help---
Say Y here to get to see options for various miscellaneous
filesystems, such as filesystems that came from other
operating systems.
This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and
disabled; if unsure, say Y here.
if MISC_FILESYSTEMS
source "fs/adfs/Kconfig"
source "fs/affs/Kconfig"
source "fs/ecryptfs/Kconfig"
source "fs/hfs/Kconfig"
source "fs/hfsplus/Kconfig"
source "fs/befs/Kconfig"
source "fs/bfs/Kconfig"
source "fs/efs/Kconfig"
source "fs/jffs2/Kconfig"
# UBIFS File system configuration
source "fs/ubifs/Kconfig"
source "fs/cramfs/Kconfig"
config SQUASHFS
tristate "SquashFS 4.0 - Squashed file system support"
depends on BLOCK
select ZLIB_INFLATE
help
Saying Y here includes support for SquashFS 4.0 (a Compressed
Read-Only File System). Squashfs is a highly compressed read-only
filesystem for Linux. It uses zlib compression to compress both
files, inodes and directories. Inodes in the system are very small
and all blocks are packed to minimise data overhead. Block sizes
greater than 4K are supported up to a maximum of 1 Mbytes (default
block size 128K). SquashFS 4.0 supports 64 bit filesystems and files
(larger than 4GB), full uid/gid information, hard links and
timestamps.
Squashfs is intended for general read-only filesystem use, for
archival use (i.e. in cases where a .tar.gz file may be used), and in
embedded systems where low overhead is needed. Further information
and tools are available from http://squashfs.sourceforge.net.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called squashfs. Note that the root file system (the one
containing the directory /) cannot be compiled as a module.
If unsure, say N.
config SQUASHFS_EMBEDDED
bool "Additional option for memory-constrained systems"
depends on SQUASHFS
default n
help
Saying Y here allows you to specify cache size.
If unsure, say N.
config SQUASHFS_FRAGMENT_CACHE_SIZE
int "Number of fragments cached" if SQUASHFS_EMBEDDED
depends on SQUASHFS
default "3"
help
By default SquashFS caches the last 3 fragments read from
the filesystem. Increasing this amount may mean SquashFS
has to re-read fragments less often from disk, at the expense
of extra system memory. Decreasing this amount will mean
SquashFS uses less memory at the expense of extra reads from disk.
Note there must be at least one cached fragment. Anything
much more than three will probably not make much difference.
config VXFS_FS
tristate "FreeVxFS file system support (VERITAS VxFS(TM) compatible)"
depends on BLOCK
help
FreeVxFS is a file system driver that support the VERITAS VxFS(TM)
file system format. VERITAS VxFS(TM) is the standard file system
of SCO UnixWare (and possibly others) and optionally available
for Sunsoft Solaris, HP-UX and many other operating systems.
Currently only readonly access is supported.
NOTE: the file system type as used by mount(1), mount(2) and
fstab(5) is 'vxfs' as it describes the file system format, not
the actual driver.
To compile this as a module, choose M here: the module will be
called freevxfs. If unsure, say N.
config MINIX_FS
tristate "Minix file system support"
depends on BLOCK
help
Minix is a simple operating system used in many classes about OS's.
The minix file system (method to organize files on a hard disk
partition or a floppy disk) was the original file system for Linux,
but has been superseded by the second extended file system ext2fs.
You don't want to use the minix file system on your hard disk
because of certain built-in restrictions, but it is sometimes found
on older Linux floppy disks. This option will enlarge your kernel
by about 28 KB. If unsure, say N.
To compile this file system support as a module, choose M here: the
module will be called minix. Note that the file system of your root
partition (the one containing the directory /) cannot be compiled as
a module.
config OMFS_FS
tristate "SonicBlue Optimized MPEG File System support"
depends on BLOCK
select CRC_ITU_T
help
This is the proprietary file system used by the Rio Karma music
player and ReplayTV DVR. Despite the name, this filesystem is not
more efficient than a standard FS for MPEG files, in fact likely
the opposite is true. Say Y if you have either of these devices
and wish to mount its disk.
To compile this file system support as a module, choose M here: the
module will be called omfs. If unsure, say N.
config HPFS_FS
tristate "OS/2 HPFS file system support"
depends on BLOCK
help
OS/2 is IBM's operating system for PC's, the same as Warp, and HPFS
is the file system used for organizing files on OS/2 hard disk
partitions. Say Y if you want to be able to read files from and
write files to an OS/2 HPFS partition on your hard drive. OS/2
floppies however are in regular MSDOS format, so you don't need this
option in order to be able to read them. Read
<file:Documentation/filesystems/hpfs.txt>.
To compile this file system support as a module, choose M here: the
module will be called hpfs. If unsure, say N.
config QNX4FS_FS
tristate "QNX4 file system support (read only)"
depends on BLOCK
help
This is the file system used by the real-time operating systems
QNX 4 and QNX 6 (the latter is also called QNX RTP).
Further information is available at <http://www.qnx.com/>.
Say Y if you intend to mount QNX hard disks or floppies.
Unless you say Y to "QNX4FS read-write support" below, you will
only be able to read these file systems.
To compile this file system support as a module, choose M here: the
module will be called qnx4.
If you don't know whether you need it, then you don't need it:
answer N.
config QNX4FS_RW
bool "QNX4FS write support (DANGEROUS)"
depends on QNX4FS_FS && EXPERIMENTAL && BROKEN
help
Say Y if you want to test write support for QNX4 file systems.
It's currently broken, so for now:
answer N.
config ROMFS_FS
tristate "ROM file system support"
depends on BLOCK
---help---
This is a very small read-only file system mainly intended for
initial ram disks of installation disks, but it could be used for
other read-only media as well. Read
<file:Documentation/filesystems/romfs.txt> for details.
To compile this file system support as a module, choose M here: the
module will be called romfs. Note that the file system of your
root partition (the one containing the directory /) cannot be a
module.
If you don't know whether you need it, then you don't need it:
answer N.
config SYSV_FS
tristate "System V/Xenix/V7/Coherent file system support"
depends on BLOCK
help
SCO, Xenix and Coherent are commercial Unix systems for Intel
machines, and Version 7 was used on the DEC PDP-11. Saying Y
here would allow you to read from their floppies and hard disk
partitions.
If you have floppies or hard disk partitions like that, it is likely
that they contain binaries from those other Unix systems; in order
to run these binaries, you will want to install linux-abi which is
a set of kernel modules that lets you run SCO, Xenix, Wyse,
UnixWare, Dell Unix and System V programs under Linux. It is
available via FTP (user: ftp) from
<ftp://ftp.openlinux.org/pub/people/hch/linux-abi/>).
NOTE: that will work only for binaries from Intel-based systems;
PDP ones will have to wait until somebody ports Linux to -11 ;-)
If you only intend to mount files from some other Unix over the
network using NFS, you don't need the System V file system support
(but you need NFS file system support obviously).
Note that this option is generally not needed for floppies, since a
good portable way to transport files and directories between unixes
(and even other operating systems) is given by the tar program ("man
tar" or preferably "info tar"). Note also that this option has
nothing whatsoever to do with the option "System V IPC". Read about
the System V file system in
<file:Documentation/filesystems/sysv-fs.txt>.
Saying Y here will enlarge your kernel by about 27 KB.
To compile this as a module, choose M here: the module will be called
sysv.
If you haven't heard about all of this before, it's safe to say N.
config UFS_FS
tristate "UFS file system support (read only)"
depends on BLOCK
help
BSD and derivate versions of Unix (such as SunOS, FreeBSD, NetBSD,
OpenBSD and NeXTstep) use a file system called UFS. Some System V
Unixes can create and mount hard disk partitions and diskettes using
this file system as well. Saying Y here will allow you to read from
these partitions; if you also want to write to them, say Y to the
experimental "UFS file system write support", below. Please read the
file <file:Documentation/filesystems/ufs.txt> for more information.
The recently released UFS2 variant (used in FreeBSD 5.x) is
READ-ONLY supported.
Note that this option is generally not needed for floppies, since a
good portable way to transport files and directories between unixes
(and even other operating systems) is given by the tar program ("man
tar" or preferably "info tar").
When accessing NeXTstep files, you may need to convert them from the
NeXT character set to the Latin1 character set; use the program
recode ("info recode") for this purpose.
To compile the UFS file system support as a module, choose M here: the
module will be called ufs.
If you haven't heard about all of this before, it's safe to say N.
config UFS_FS_WRITE
bool "UFS file system write support (DANGEROUS)"
depends on UFS_FS && EXPERIMENTAL
help
Say Y here if you want to try writing to UFS partitions. This is
experimental, so you should back up your UFS partitions beforehand.
config UFS_DEBUG
bool "UFS debugging"
depends on UFS_FS
help
If you are experiencing any problems with the UFS filesystem, say
Y here. This will result in _many_ additional debugging messages to be
written to the system log.
endif # MISC_FILESYSTEMS
menuconfig NETWORK_FILESYSTEMS
bool "Network File Systems"
default y
depends on NET
---help---
Say Y here to get to see options for network filesystems and
filesystem-related networking code, such as NFS daemon and
RPCSEC security modules.
This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and
disabled; if unsure, say Y here.
if NETWORK_FILESYSTEMS
config NFS_FS
tristate "NFS client support"
depends on INET
select LOCKD
select SUNRPC
select NFS_ACL_SUPPORT if NFS_V3_ACL
help
Choose Y here if you want to access files residing on other
computers using Sun's Network File System protocol. To compile
this file system support as a module, choose M here: the module
will be called nfs.
To mount file systems exported by NFS servers, you also need to
install the user space mount.nfs command which can be found in
the Linux nfs-utils package, available from http://linux-nfs.org/.
Information about using the mount command is available in the
mount(8) man page. More detail about the Linux NFS client
implementation is available via the nfs(5) man page.
Below you can choose which versions of the NFS protocol are
available in the kernel to mount NFS servers. Support for NFS
version 2 (RFC 1094) is always available when NFS_FS is selected.
To configure a system which mounts its root file system via NFS
at boot time, say Y here, select "Kernel level IP
autoconfiguration" in the NETWORK menu, and select "Root file
system on NFS" below. You cannot compile this file system as a
module in this case.
If unsure, say N.
config NFS_V3
bool "NFS client support for NFS version 3"
depends on NFS_FS
help
This option enables support for version 3 of the NFS protocol
(RFC 1813) in the kernel's NFS client.
If unsure, say Y.
config NFS_V3_ACL
bool "NFS client support for the NFSv3 ACL protocol extension"
depends on NFS_V3
help
Some NFS servers support an auxiliary NFSv3 ACL protocol that
Sun added to Solaris but never became an official part of the
NFS version 3 protocol. This protocol extension allows
applications on NFS clients to manipulate POSIX Access Control
Lists on files residing on NFS servers. NFS servers enforce
ACLs on local files whether this protocol is available or not.
Choose Y here if your NFS server supports the Solaris NFSv3 ACL
protocol extension and you want your NFS client to allow
applications to access and modify ACLs on files on the server.
Most NFS servers don't support the Solaris NFSv3 ACL protocol
extension. You can choose N here or specify the "noacl" mount
option to prevent your NFS client from trying to use the NFSv3
ACL protocol.
If unsure, say N.
config NFS_V4
bool "NFS client support for NFS version 4 (EXPERIMENTAL)"
depends on NFS_FS && EXPERIMENTAL
select RPCSEC_GSS_KRB5
help
This option enables support for version 4 of the NFS protocol
(RFC 3530) in the kernel's NFS client.
To mount NFS servers using NFSv4, you also need to install user
space programs which can be found in the Linux nfs-utils package,
available from http://linux-nfs.org/.
If unsure, say N.
config ROOT_NFS
bool "Root file system on NFS"
depends on NFS_FS=y && IP_PNP
help
If you want your system to mount its root file system via NFS,
choose Y here. This is common practice for managing systems
without local permanent storage. For details, read
<file:Documentation/filesystems/nfsroot.txt>.
Most people say N here.
config NFSD
tristate "NFS server support"
depends on INET
select LOCKD
select SUNRPC
select EXPORTFS
select NFS_ACL_SUPPORT if NFSD_V2_ACL
help
Choose Y here if you want to allow other computers to access
files residing on this system using Sun's Network File System
protocol. To compile the NFS server support as a module,
choose M here: the module will be called nfsd.
You may choose to use a user-space NFS server instead, in which
case you can choose N here.
To export local file systems using NFS, you also need to install
user space programs which can be found in the Linux nfs-utils
package, available from http://linux-nfs.org/. More detail about
the Linux NFS server implementation is available via the
exports(5) man page.
Below you can choose which versions of the NFS protocol are
available to clients mounting the NFS server on this system.
Support for NFS version 2 (RFC 1094) is always available when
CONFIG_NFSD is selected.
If unsure, say N.
config NFSD_V2_ACL
bool
depends on NFSD
config NFSD_V3
bool "NFS server support for NFS version 3"
depends on NFSD
help
This option enables support in your system's NFS server for
version 3 of the NFS protocol (RFC 1813).
If unsure, say Y.
config NFSD_V3_ACL
bool "NFS server support for the NFSv3 ACL protocol extension"
depends on NFSD_V3
select NFSD_V2_ACL
help
Solaris NFS servers support an auxiliary NFSv3 ACL protocol that
never became an official part of the NFS version 3 protocol.
This protocol extension allows applications on NFS clients to
manipulate POSIX Access Control Lists on files residing on NFS
servers. NFS servers enforce POSIX ACLs on local files whether
this protocol is available or not.
This option enables support in your system's NFS server for the
NFSv3 ACL protocol extension allowing NFS clients to manipulate
POSIX ACLs on files exported by your system's NFS server. NFS
clients which support the Solaris NFSv3 ACL protocol can then
access and modify ACLs on your NFS server.
To store ACLs on your NFS server, you also need to enable ACL-
related CONFIG options for your local file systems of choice.
If unsure, say N.
config NFSD_V4
bool "NFS server support for NFS version 4 (EXPERIMENTAL)"
depends on NFSD && PROC_FS && EXPERIMENTAL
select NFSD_V3
select FS_POSIX_ACL
select RPCSEC_GSS_KRB5
help
This option enables support in your system's NFS server for
version 4 of the NFS protocol (RFC 3530).
To export files using NFSv4, you need to install additional user
space programs which can be found in the Linux nfs-utils package,
available from http://linux-nfs.org/.
If unsure, say N.
config LOCKD
tristate
config LOCKD_V4
bool
depends on NFSD_V3 || NFS_V3
default y
config EXPORTFS
tristate
config NFS_ACL_SUPPORT
tristate
select FS_POSIX_ACL
config NFS_COMMON
bool
depends on NFSD || NFS_FS
default y
config SUNRPC
tristate
config SUNRPC_GSS
tristate
config SUNRPC_XPRT_RDMA
tristate
depends on SUNRPC && INFINIBAND && EXPERIMENTAL
default SUNRPC && INFINIBAND
help
This option enables an RPC client transport capability that
allows the NFS client to mount servers via an RDMA-enabled
transport.
To compile RPC client RDMA transport support as a module,
choose M here: the module will be called xprtrdma.
If unsure, say N.
config SUNRPC_REGISTER_V4
bool "Register local RPC services via rpcbind v4 (EXPERIMENTAL)"
depends on SUNRPC && EXPERIMENTAL
default n
help
Sun added support for registering RPC services at an IPv6
address by creating two new versions of the rpcbind protocol
(RFC 1833).
This option enables support in the kernel RPC server for
registering kernel RPC services via version 4 of the rpcbind
protocol. If you enable this option, you must run a portmapper
daemon that supports rpcbind protocol version 4.
Serving NFS over IPv6 from knfsd (the kernel's NFS server)
requires that you enable this option and use a portmapper that
supports rpcbind version 4.
If unsure, say N to get traditional behavior (register kernel
RPC services using only rpcbind version 2). Distributions
using the legacy Linux portmapper daemon must say N here.
config RPCSEC_GSS_KRB5
tristate "Secure RPC: Kerberos V mechanism (EXPERIMENTAL)"
depends on SUNRPC && EXPERIMENTAL
select SUNRPC_GSS
select CRYPTO
select CRYPTO_MD5
select CRYPTO_DES
select CRYPTO_CBC
help
Choose Y here to enable Secure RPC using the Kerberos version 5
GSS-API mechanism (RFC 1964).
Secure RPC calls with Kerberos require an auxiliary user-space
daemon which may be found in the Linux nfs-utils package
available from http://linux-nfs.org/. In addition, user-space
Kerberos support should be installed.
If unsure, say N.
config RPCSEC_GSS_SPKM3
tristate "Secure RPC: SPKM3 mechanism (EXPERIMENTAL)"
depends on SUNRPC && EXPERIMENTAL
select SUNRPC_GSS
select CRYPTO
select CRYPTO_MD5
select CRYPTO_DES
select CRYPTO_CAST5
select CRYPTO_CBC
help
Choose Y here to enable Secure RPC using the SPKM3 public key
GSS-API mechansim (RFC 2025).
Secure RPC calls with SPKM3 require an auxiliary userspace
daemon which may be found in the Linux nfs-utils package
available from http://linux-nfs.org/.
If unsure, say N.
config SMB_FS
tristate "SMB file system support (OBSOLETE, please use CIFS)"
depends on INET
select NLS
help
SMB (Server Message Block) is the protocol Windows for Workgroups
(WfW), Windows 95/98, Windows NT and OS/2 Lan Manager use to share
files and printers over local networks. Saying Y here allows you to
mount their file systems (often called "shares" in this context) and
access them just like any other Unix directory. Currently, this
works only if the Windows machines use TCP/IP as the underlying
transport protocol, and not NetBEUI. For details, read
<file:Documentation/filesystems/smbfs.txt> and the SMB-HOWTO,
available from <http://www.tldp.org/docs.html#howto>.
Note: if you just want your box to act as an SMB *server* and make
files and printing services available to Windows clients (which need
to have a TCP/IP stack), you don't need to say Y here; you can use
the program SAMBA (available from <ftp://ftp.samba.org/pub/samba/>)
for that.
General information about how to connect Linux, Windows machines and
Macs is on the WWW at <http://www.eats.com/linux_mac_win.html>.
To compile the SMB support as a module, choose M here:
the module will be called smbfs. Most people say N, however.
config SMB_NLS_DEFAULT
bool "Use a default NLS"
depends on SMB_FS
help
Enabling this will make smbfs use nls translations by default. You
need to specify the local charset (CONFIG_NLS_DEFAULT) in the nls
settings and you need to give the default nls for the SMB server as
CONFIG_SMB_NLS_REMOTE.
The nls settings can be changed at mount time, if your smbmount
supports that, using the codepage and iocharset parameters.
smbmount from samba 2.2.0 or later supports this.
config SMB_NLS_REMOTE
string "Default Remote NLS Option"
depends on SMB_NLS_DEFAULT
default "cp437"
help
This setting allows you to specify a default value for which
codepage the server uses. If this field is left blank no
translations will be done by default. The local codepage/charset
default to CONFIG_NLS_DEFAULT.
The nls settings can be changed at mount time, if your smbmount
supports that, using the codepage and iocharset parameters.
smbmount from samba 2.2.0 or later supports this.
source "fs/cifs/Kconfig"
config NCP_FS
tristate "NCP file system support (to mount NetWare volumes)"
depends on IPX!=n || INET
help
NCP (NetWare Core Protocol) is a protocol that runs over IPX and is
used by Novell NetWare clients to talk to file servers. It is to
IPX what NFS is to TCP/IP, if that helps. Saying Y here allows you
to mount NetWare file server volumes and to access them just like
any other Unix directory. For details, please read the file
<file:Documentation/filesystems/ncpfs.txt> in the kernel source and
the IPX-HOWTO from <http://www.tldp.org/docs.html#howto>.
You do not have to say Y here if you want your Linux box to act as a
file *server* for Novell NetWare clients.
General information about how to connect Linux, Windows machines and
Macs is on the WWW at <http://www.eats.com/linux_mac_win.html>.
To compile this as a module, choose M here: the module will be called
ncpfs. Say N unless you are connected to a Novell network.
source "fs/ncpfs/Kconfig"
config CODA_FS
tristate "Coda file system support (advanced network fs)"
depends on INET
help
Coda is an advanced network file system, similar to NFS in that it
enables you to mount file systems of a remote server and access them
with regular Unix commands as if they were sitting on your hard
disk. Coda has several advantages over NFS: support for
disconnected operation (e.g. for laptops), read/write server
replication, security model for authentication and encryption,
persistent client caches and write back caching.
If you say Y here, your Linux box will be able to act as a Coda
*client*. You will need user level code as well, both for the
client and server. Servers are currently user level, i.e. they need
no kernel support. Please read
<file:Documentation/filesystems/coda.txt> and check out the Coda
home page <http://www.coda.cs.cmu.edu/>.
To compile the coda client support as a module, choose M here: the
module will be called coda.
config AFS_FS
tristate "Andrew File System support (AFS) (EXPERIMENTAL)"
depends on INET && EXPERIMENTAL
select AF_RXRPC
help
If you say Y here, you will get an experimental Andrew File System
driver. It currently only supports unsecured read-only AFS access.
See <file:Documentation/filesystems/afs.txt> for more information.
If unsure, say N.
config AFS_DEBUG
bool "AFS dynamic debugging"
depends on AFS_FS
help
Say Y here to make runtime controllable debugging messages appear.
See <file:Documentation/filesystems/afs.txt> for more information.
If unsure, say N.
config 9P_FS
tristate "Plan 9 Resource Sharing Support (9P2000) (Experimental)"
depends on INET && NET_9P && EXPERIMENTAL
help
If you say Y here, you will get experimental support for
Plan 9 resource sharing via the 9P2000 protocol.
See <http://v9fs.sf.net> for more information.
If unsure, say N.
endif # NETWORK_FILESYSTEMS
if BLOCK
menu "Partition Types"
source "fs/partitions/Kconfig"
endmenu
endif
source "fs/nls/Kconfig"
source "fs/dlm/Kconfig"
endmenu