mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 06:33:34 +00:00
0411d6ee50
Commit449c796768
("mm: teach release_pages() to take an array of encoded page pointers too") added the kernel doc comment for release_pages() on top of 'union release_pages_arg', so making 'make htmldocs' complains as below: ./include/linux/mm.h:1268: warning: cannot understand function prototype: 'typedef union ' The kernel doc comment for the function is already on top of the function's definition in mm/swap.c, and the new comment is actually not for the function but indeed release_pages_arg. Fixing the comment to reflect the intent would be one option. But, kernel doc cannot parse the union as below due to the attribute. ./include/linux/mm.h:1272: error: Cannot parse struct or union! Modify the comment to reflect the intent but do not mark it as a kernel doc comment. Link: https://lkml.kernel.org/r/20230106203331.127532-1-sj@kernel.org Fixes:449c796768
("mm: teach release_pages() to take an array of encoded page pointers too") Signed-off-by: SeongJae Park <sj@kernel.org> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
3660 lines
113 KiB
C
3660 lines
113 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MM_H
|
|
#define _LINUX_MM_H
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/mmdebug.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/mmap_lock.h>
|
|
#include <linux/range.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/percpu-refcount.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/err.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/page_ref.h>
|
|
#include <linux/overflow.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/memremap.h>
|
|
|
|
struct mempolicy;
|
|
struct anon_vma;
|
|
struct anon_vma_chain;
|
|
struct user_struct;
|
|
struct pt_regs;
|
|
|
|
extern int sysctl_page_lock_unfairness;
|
|
|
|
void init_mm_internals(void);
|
|
|
|
#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
|
|
extern unsigned long max_mapnr;
|
|
|
|
static inline void set_max_mapnr(unsigned long limit)
|
|
{
|
|
max_mapnr = limit;
|
|
}
|
|
#else
|
|
static inline void set_max_mapnr(unsigned long limit) { }
|
|
#endif
|
|
|
|
extern atomic_long_t _totalram_pages;
|
|
static inline unsigned long totalram_pages(void)
|
|
{
|
|
return (unsigned long)atomic_long_read(&_totalram_pages);
|
|
}
|
|
|
|
static inline void totalram_pages_inc(void)
|
|
{
|
|
atomic_long_inc(&_totalram_pages);
|
|
}
|
|
|
|
static inline void totalram_pages_dec(void)
|
|
{
|
|
atomic_long_dec(&_totalram_pages);
|
|
}
|
|
|
|
static inline void totalram_pages_add(long count)
|
|
{
|
|
atomic_long_add(count, &_totalram_pages);
|
|
}
|
|
|
|
extern void * high_memory;
|
|
extern int page_cluster;
|
|
extern const int page_cluster_max;
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
extern int sysctl_legacy_va_layout;
|
|
#else
|
|
#define sysctl_legacy_va_layout 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
|
|
extern const int mmap_rnd_bits_min;
|
|
extern const int mmap_rnd_bits_max;
|
|
extern int mmap_rnd_bits __read_mostly;
|
|
#endif
|
|
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
|
|
extern const int mmap_rnd_compat_bits_min;
|
|
extern const int mmap_rnd_compat_bits_max;
|
|
extern int mmap_rnd_compat_bits __read_mostly;
|
|
#endif
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
|
|
/*
|
|
* Architectures that support memory tagging (assigning tags to memory regions,
|
|
* embedding these tags into addresses that point to these memory regions, and
|
|
* checking that the memory and the pointer tags match on memory accesses)
|
|
* redefine this macro to strip tags from pointers.
|
|
* It's defined as noop for architectures that don't support memory tagging.
|
|
*/
|
|
#ifndef untagged_addr
|
|
#define untagged_addr(addr) (addr)
|
|
#endif
|
|
|
|
#ifndef __pa_symbol
|
|
#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
|
|
#endif
|
|
|
|
#ifndef page_to_virt
|
|
#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
|
|
#endif
|
|
|
|
#ifndef lm_alias
|
|
#define lm_alias(x) __va(__pa_symbol(x))
|
|
#endif
|
|
|
|
/*
|
|
* To prevent common memory management code establishing
|
|
* a zero page mapping on a read fault.
|
|
* This macro should be defined within <asm/pgtable.h>.
|
|
* s390 does this to prevent multiplexing of hardware bits
|
|
* related to the physical page in case of virtualization.
|
|
*/
|
|
#ifndef mm_forbids_zeropage
|
|
#define mm_forbids_zeropage(X) (0)
|
|
#endif
|
|
|
|
/*
|
|
* On some architectures it is expensive to call memset() for small sizes.
|
|
* If an architecture decides to implement their own version of
|
|
* mm_zero_struct_page they should wrap the defines below in a #ifndef and
|
|
* define their own version of this macro in <asm/pgtable.h>
|
|
*/
|
|
#if BITS_PER_LONG == 64
|
|
/* This function must be updated when the size of struct page grows above 80
|
|
* or reduces below 56. The idea that compiler optimizes out switch()
|
|
* statement, and only leaves move/store instructions. Also the compiler can
|
|
* combine write statements if they are both assignments and can be reordered,
|
|
* this can result in several of the writes here being dropped.
|
|
*/
|
|
#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
|
|
static inline void __mm_zero_struct_page(struct page *page)
|
|
{
|
|
unsigned long *_pp = (void *)page;
|
|
|
|
/* Check that struct page is either 56, 64, 72, or 80 bytes */
|
|
BUILD_BUG_ON(sizeof(struct page) & 7);
|
|
BUILD_BUG_ON(sizeof(struct page) < 56);
|
|
BUILD_BUG_ON(sizeof(struct page) > 80);
|
|
|
|
switch (sizeof(struct page)) {
|
|
case 80:
|
|
_pp[9] = 0;
|
|
fallthrough;
|
|
case 72:
|
|
_pp[8] = 0;
|
|
fallthrough;
|
|
case 64:
|
|
_pp[7] = 0;
|
|
fallthrough;
|
|
case 56:
|
|
_pp[6] = 0;
|
|
_pp[5] = 0;
|
|
_pp[4] = 0;
|
|
_pp[3] = 0;
|
|
_pp[2] = 0;
|
|
_pp[1] = 0;
|
|
_pp[0] = 0;
|
|
}
|
|
}
|
|
#else
|
|
#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
|
|
#endif
|
|
|
|
/*
|
|
* Default maximum number of active map areas, this limits the number of vmas
|
|
* per mm struct. Users can overwrite this number by sysctl but there is a
|
|
* problem.
|
|
*
|
|
* When a program's coredump is generated as ELF format, a section is created
|
|
* per a vma. In ELF, the number of sections is represented in unsigned short.
|
|
* This means the number of sections should be smaller than 65535 at coredump.
|
|
* Because the kernel adds some informative sections to a image of program at
|
|
* generating coredump, we need some margin. The number of extra sections is
|
|
* 1-3 now and depends on arch. We use "5" as safe margin, here.
|
|
*
|
|
* ELF extended numbering allows more than 65535 sections, so 16-bit bound is
|
|
* not a hard limit any more. Although some userspace tools can be surprised by
|
|
* that.
|
|
*/
|
|
#define MAPCOUNT_ELF_CORE_MARGIN (5)
|
|
#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
|
|
|
|
extern int sysctl_max_map_count;
|
|
|
|
extern unsigned long sysctl_user_reserve_kbytes;
|
|
extern unsigned long sysctl_admin_reserve_kbytes;
|
|
|
|
extern int sysctl_overcommit_memory;
|
|
extern int sysctl_overcommit_ratio;
|
|
extern unsigned long sysctl_overcommit_kbytes;
|
|
|
|
int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
|
|
loff_t *);
|
|
int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
|
|
loff_t *);
|
|
int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
|
|
loff_t *);
|
|
|
|
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
|
|
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
|
|
#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
|
|
#else
|
|
#define nth_page(page,n) ((page) + (n))
|
|
#define folio_page_idx(folio, p) ((p) - &(folio)->page)
|
|
#endif
|
|
|
|
/* to align the pointer to the (next) page boundary */
|
|
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
|
|
|
|
/* to align the pointer to the (prev) page boundary */
|
|
#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
|
|
|
|
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
|
|
#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
|
|
|
|
#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
|
|
static inline struct folio *lru_to_folio(struct list_head *head)
|
|
{
|
|
return list_entry((head)->prev, struct folio, lru);
|
|
}
|
|
|
|
void setup_initial_init_mm(void *start_code, void *end_code,
|
|
void *end_data, void *brk);
|
|
|
|
/*
|
|
* Linux kernel virtual memory manager primitives.
|
|
* The idea being to have a "virtual" mm in the same way
|
|
* we have a virtual fs - giving a cleaner interface to the
|
|
* mm details, and allowing different kinds of memory mappings
|
|
* (from shared memory to executable loading to arbitrary
|
|
* mmap() functions).
|
|
*/
|
|
|
|
struct vm_area_struct *vm_area_alloc(struct mm_struct *);
|
|
struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
|
|
void vm_area_free(struct vm_area_struct *);
|
|
|
|
#ifndef CONFIG_MMU
|
|
extern struct rb_root nommu_region_tree;
|
|
extern struct rw_semaphore nommu_region_sem;
|
|
|
|
extern unsigned int kobjsize(const void *objp);
|
|
#endif
|
|
|
|
/*
|
|
* vm_flags in vm_area_struct, see mm_types.h.
|
|
* When changing, update also include/trace/events/mmflags.h
|
|
*/
|
|
#define VM_NONE 0x00000000
|
|
|
|
#define VM_READ 0x00000001 /* currently active flags */
|
|
#define VM_WRITE 0x00000002
|
|
#define VM_EXEC 0x00000004
|
|
#define VM_SHARED 0x00000008
|
|
|
|
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
|
|
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
|
|
#define VM_MAYWRITE 0x00000020
|
|
#define VM_MAYEXEC 0x00000040
|
|
#define VM_MAYSHARE 0x00000080
|
|
|
|
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
|
|
#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
|
|
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
|
|
#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
|
|
|
|
#define VM_LOCKED 0x00002000
|
|
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
|
|
|
|
/* Used by sys_madvise() */
|
|
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
|
|
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
|
|
|
|
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
|
|
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
|
|
#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
|
|
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
|
|
#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
|
|
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
|
|
#define VM_SYNC 0x00800000 /* Synchronous page faults */
|
|
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
|
|
#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
|
|
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
|
|
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
|
|
#else
|
|
# define VM_SOFTDIRTY 0
|
|
#endif
|
|
|
|
#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
|
|
#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
|
|
#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
|
|
#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
|
|
|
|
#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
|
|
#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
|
|
#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
|
|
#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
|
|
#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
|
|
#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
|
|
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
|
|
|
|
#ifdef CONFIG_ARCH_HAS_PKEYS
|
|
# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
|
|
# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
|
|
# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
|
|
# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
|
|
# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
|
|
#ifdef CONFIG_PPC
|
|
# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
|
|
#else
|
|
# define VM_PKEY_BIT4 0
|
|
#endif
|
|
#endif /* CONFIG_ARCH_HAS_PKEYS */
|
|
|
|
#if defined(CONFIG_X86)
|
|
# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
|
|
#elif defined(CONFIG_PPC)
|
|
# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
|
|
#elif defined(CONFIG_PARISC)
|
|
# define VM_GROWSUP VM_ARCH_1
|
|
#elif defined(CONFIG_IA64)
|
|
# define VM_GROWSUP VM_ARCH_1
|
|
#elif defined(CONFIG_SPARC64)
|
|
# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
|
|
# define VM_ARCH_CLEAR VM_SPARC_ADI
|
|
#elif defined(CONFIG_ARM64)
|
|
# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
|
|
# define VM_ARCH_CLEAR VM_ARM64_BTI
|
|
#elif !defined(CONFIG_MMU)
|
|
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
|
|
#endif
|
|
|
|
#if defined(CONFIG_ARM64_MTE)
|
|
# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
|
|
# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
|
|
#else
|
|
# define VM_MTE VM_NONE
|
|
# define VM_MTE_ALLOWED VM_NONE
|
|
#endif
|
|
|
|
#ifndef VM_GROWSUP
|
|
# define VM_GROWSUP VM_NONE
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
|
|
# define VM_UFFD_MINOR_BIT 37
|
|
# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
|
|
#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
|
|
# define VM_UFFD_MINOR VM_NONE
|
|
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
|
|
|
|
/* Bits set in the VMA until the stack is in its final location */
|
|
#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
|
|
|
|
#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
|
|
|
|
/* Common data flag combinations */
|
|
#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
|
|
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
|
|
#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
|
|
VM_MAYWRITE | VM_MAYEXEC)
|
|
#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
|
|
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
|
|
|
|
#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
|
|
#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
|
|
#endif
|
|
|
|
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
|
|
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
|
|
#endif
|
|
|
|
#ifdef CONFIG_STACK_GROWSUP
|
|
#define VM_STACK VM_GROWSUP
|
|
#else
|
|
#define VM_STACK VM_GROWSDOWN
|
|
#endif
|
|
|
|
#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
|
|
|
|
/* VMA basic access permission flags */
|
|
#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
|
|
|
|
|
|
/*
|
|
* Special vmas that are non-mergable, non-mlock()able.
|
|
*/
|
|
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
|
|
|
|
/* This mask prevents VMA from being scanned with khugepaged */
|
|
#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
|
|
|
|
/* This mask defines which mm->def_flags a process can inherit its parent */
|
|
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
|
|
|
|
/* This mask is used to clear all the VMA flags used by mlock */
|
|
#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
|
|
|
|
/* Arch-specific flags to clear when updating VM flags on protection change */
|
|
#ifndef VM_ARCH_CLEAR
|
|
# define VM_ARCH_CLEAR VM_NONE
|
|
#endif
|
|
#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
|
|
|
|
/*
|
|
* mapping from the currently active vm_flags protection bits (the
|
|
* low four bits) to a page protection mask..
|
|
*/
|
|
|
|
/*
|
|
* The default fault flags that should be used by most of the
|
|
* arch-specific page fault handlers.
|
|
*/
|
|
#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
|
|
FAULT_FLAG_KILLABLE | \
|
|
FAULT_FLAG_INTERRUPTIBLE)
|
|
|
|
/**
|
|
* fault_flag_allow_retry_first - check ALLOW_RETRY the first time
|
|
* @flags: Fault flags.
|
|
*
|
|
* This is mostly used for places where we want to try to avoid taking
|
|
* the mmap_lock for too long a time when waiting for another condition
|
|
* to change, in which case we can try to be polite to release the
|
|
* mmap_lock in the first round to avoid potential starvation of other
|
|
* processes that would also want the mmap_lock.
|
|
*
|
|
* Return: true if the page fault allows retry and this is the first
|
|
* attempt of the fault handling; false otherwise.
|
|
*/
|
|
static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
|
|
{
|
|
return (flags & FAULT_FLAG_ALLOW_RETRY) &&
|
|
(!(flags & FAULT_FLAG_TRIED));
|
|
}
|
|
|
|
#define FAULT_FLAG_TRACE \
|
|
{ FAULT_FLAG_WRITE, "WRITE" }, \
|
|
{ FAULT_FLAG_MKWRITE, "MKWRITE" }, \
|
|
{ FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
|
|
{ FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
|
|
{ FAULT_FLAG_KILLABLE, "KILLABLE" }, \
|
|
{ FAULT_FLAG_TRIED, "TRIED" }, \
|
|
{ FAULT_FLAG_USER, "USER" }, \
|
|
{ FAULT_FLAG_REMOTE, "REMOTE" }, \
|
|
{ FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
|
|
{ FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
|
|
|
|
/*
|
|
* vm_fault is filled by the pagefault handler and passed to the vma's
|
|
* ->fault function. The vma's ->fault is responsible for returning a bitmask
|
|
* of VM_FAULT_xxx flags that give details about how the fault was handled.
|
|
*
|
|
* MM layer fills up gfp_mask for page allocations but fault handler might
|
|
* alter it if its implementation requires a different allocation context.
|
|
*
|
|
* pgoff should be used in favour of virtual_address, if possible.
|
|
*/
|
|
struct vm_fault {
|
|
const struct {
|
|
struct vm_area_struct *vma; /* Target VMA */
|
|
gfp_t gfp_mask; /* gfp mask to be used for allocations */
|
|
pgoff_t pgoff; /* Logical page offset based on vma */
|
|
unsigned long address; /* Faulting virtual address - masked */
|
|
unsigned long real_address; /* Faulting virtual address - unmasked */
|
|
};
|
|
enum fault_flag flags; /* FAULT_FLAG_xxx flags
|
|
* XXX: should really be 'const' */
|
|
pmd_t *pmd; /* Pointer to pmd entry matching
|
|
* the 'address' */
|
|
pud_t *pud; /* Pointer to pud entry matching
|
|
* the 'address'
|
|
*/
|
|
union {
|
|
pte_t orig_pte; /* Value of PTE at the time of fault */
|
|
pmd_t orig_pmd; /* Value of PMD at the time of fault,
|
|
* used by PMD fault only.
|
|
*/
|
|
};
|
|
|
|
struct page *cow_page; /* Page handler may use for COW fault */
|
|
struct page *page; /* ->fault handlers should return a
|
|
* page here, unless VM_FAULT_NOPAGE
|
|
* is set (which is also implied by
|
|
* VM_FAULT_ERROR).
|
|
*/
|
|
/* These three entries are valid only while holding ptl lock */
|
|
pte_t *pte; /* Pointer to pte entry matching
|
|
* the 'address'. NULL if the page
|
|
* table hasn't been allocated.
|
|
*/
|
|
spinlock_t *ptl; /* Page table lock.
|
|
* Protects pte page table if 'pte'
|
|
* is not NULL, otherwise pmd.
|
|
*/
|
|
pgtable_t prealloc_pte; /* Pre-allocated pte page table.
|
|
* vm_ops->map_pages() sets up a page
|
|
* table from atomic context.
|
|
* do_fault_around() pre-allocates
|
|
* page table to avoid allocation from
|
|
* atomic context.
|
|
*/
|
|
};
|
|
|
|
/* page entry size for vm->huge_fault() */
|
|
enum page_entry_size {
|
|
PE_SIZE_PTE = 0,
|
|
PE_SIZE_PMD,
|
|
PE_SIZE_PUD,
|
|
};
|
|
|
|
/*
|
|
* These are the virtual MM functions - opening of an area, closing and
|
|
* unmapping it (needed to keep files on disk up-to-date etc), pointer
|
|
* to the functions called when a no-page or a wp-page exception occurs.
|
|
*/
|
|
struct vm_operations_struct {
|
|
void (*open)(struct vm_area_struct * area);
|
|
/**
|
|
* @close: Called when the VMA is being removed from the MM.
|
|
* Context: User context. May sleep. Caller holds mmap_lock.
|
|
*/
|
|
void (*close)(struct vm_area_struct * area);
|
|
/* Called any time before splitting to check if it's allowed */
|
|
int (*may_split)(struct vm_area_struct *area, unsigned long addr);
|
|
int (*mremap)(struct vm_area_struct *area);
|
|
/*
|
|
* Called by mprotect() to make driver-specific permission
|
|
* checks before mprotect() is finalised. The VMA must not
|
|
* be modified. Returns 0 if mprotect() can proceed.
|
|
*/
|
|
int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, unsigned long newflags);
|
|
vm_fault_t (*fault)(struct vm_fault *vmf);
|
|
vm_fault_t (*huge_fault)(struct vm_fault *vmf,
|
|
enum page_entry_size pe_size);
|
|
vm_fault_t (*map_pages)(struct vm_fault *vmf,
|
|
pgoff_t start_pgoff, pgoff_t end_pgoff);
|
|
unsigned long (*pagesize)(struct vm_area_struct * area);
|
|
|
|
/* notification that a previously read-only page is about to become
|
|
* writable, if an error is returned it will cause a SIGBUS */
|
|
vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
|
|
|
|
/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
|
|
vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
|
|
|
|
/* called by access_process_vm when get_user_pages() fails, typically
|
|
* for use by special VMAs. See also generic_access_phys() for a generic
|
|
* implementation useful for any iomem mapping.
|
|
*/
|
|
int (*access)(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write);
|
|
|
|
/* Called by the /proc/PID/maps code to ask the vma whether it
|
|
* has a special name. Returning non-NULL will also cause this
|
|
* vma to be dumped unconditionally. */
|
|
const char *(*name)(struct vm_area_struct *vma);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* set_policy() op must add a reference to any non-NULL @new mempolicy
|
|
* to hold the policy upon return. Caller should pass NULL @new to
|
|
* remove a policy and fall back to surrounding context--i.e. do not
|
|
* install a MPOL_DEFAULT policy, nor the task or system default
|
|
* mempolicy.
|
|
*/
|
|
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
|
|
|
|
/*
|
|
* get_policy() op must add reference [mpol_get()] to any policy at
|
|
* (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
|
|
* in mm/mempolicy.c will do this automatically.
|
|
* get_policy() must NOT add a ref if the policy at (vma,addr) is not
|
|
* marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
|
|
* If no [shared/vma] mempolicy exists at the addr, get_policy() op
|
|
* must return NULL--i.e., do not "fallback" to task or system default
|
|
* policy.
|
|
*/
|
|
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
#endif
|
|
/*
|
|
* Called by vm_normal_page() for special PTEs to find the
|
|
* page for @addr. This is useful if the default behavior
|
|
* (using pte_page()) would not find the correct page.
|
|
*/
|
|
struct page *(*find_special_page)(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
};
|
|
|
|
static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
|
|
{
|
|
static const struct vm_operations_struct dummy_vm_ops = {};
|
|
|
|
memset(vma, 0, sizeof(*vma));
|
|
vma->vm_mm = mm;
|
|
vma->vm_ops = &dummy_vm_ops;
|
|
INIT_LIST_HEAD(&vma->anon_vma_chain);
|
|
}
|
|
|
|
static inline void vma_set_anonymous(struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_ops = NULL;
|
|
}
|
|
|
|
static inline bool vma_is_anonymous(struct vm_area_struct *vma)
|
|
{
|
|
return !vma->vm_ops;
|
|
}
|
|
|
|
static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
|
|
{
|
|
int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
|
|
|
|
if (!maybe_stack)
|
|
return false;
|
|
|
|
if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
|
|
VM_STACK_INCOMPLETE_SETUP)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool vma_is_foreign(struct vm_area_struct *vma)
|
|
{
|
|
if (!current->mm)
|
|
return true;
|
|
|
|
if (current->mm != vma->vm_mm)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool vma_is_accessible(struct vm_area_struct *vma)
|
|
{
|
|
return vma->vm_flags & VM_ACCESS_FLAGS;
|
|
}
|
|
|
|
static inline
|
|
struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
|
|
{
|
|
return mas_find(&vmi->mas, max);
|
|
}
|
|
|
|
static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
|
|
{
|
|
/*
|
|
* Uses vma_find() to get the first VMA when the iterator starts.
|
|
* Calling mas_next() could skip the first entry.
|
|
*/
|
|
return vma_find(vmi, ULONG_MAX);
|
|
}
|
|
|
|
static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
|
|
{
|
|
return mas_prev(&vmi->mas, 0);
|
|
}
|
|
|
|
static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
|
|
{
|
|
return vmi->mas.index;
|
|
}
|
|
|
|
#define for_each_vma(__vmi, __vma) \
|
|
while (((__vma) = vma_next(&(__vmi))) != NULL)
|
|
|
|
/* The MM code likes to work with exclusive end addresses */
|
|
#define for_each_vma_range(__vmi, __vma, __end) \
|
|
while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
|
|
|
|
#ifdef CONFIG_SHMEM
|
|
/*
|
|
* The vma_is_shmem is not inline because it is used only by slow
|
|
* paths in userfault.
|
|
*/
|
|
bool vma_is_shmem(struct vm_area_struct *vma);
|
|
bool vma_is_anon_shmem(struct vm_area_struct *vma);
|
|
#else
|
|
static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
|
|
static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
|
|
#endif
|
|
|
|
int vma_is_stack_for_current(struct vm_area_struct *vma);
|
|
|
|
/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
|
|
#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
|
|
|
|
struct mmu_gather;
|
|
struct inode;
|
|
|
|
static inline unsigned int compound_order(struct page *page)
|
|
{
|
|
if (!PageHead(page))
|
|
return 0;
|
|
return page[1].compound_order;
|
|
}
|
|
|
|
/**
|
|
* folio_order - The allocation order of a folio.
|
|
* @folio: The folio.
|
|
*
|
|
* A folio is composed of 2^order pages. See get_order() for the definition
|
|
* of order.
|
|
*
|
|
* Return: The order of the folio.
|
|
*/
|
|
static inline unsigned int folio_order(struct folio *folio)
|
|
{
|
|
if (!folio_test_large(folio))
|
|
return 0;
|
|
return folio->_folio_order;
|
|
}
|
|
|
|
#include <linux/huge_mm.h>
|
|
|
|
/*
|
|
* Methods to modify the page usage count.
|
|
*
|
|
* What counts for a page usage:
|
|
* - cache mapping (page->mapping)
|
|
* - private data (page->private)
|
|
* - page mapped in a task's page tables, each mapping
|
|
* is counted separately
|
|
*
|
|
* Also, many kernel routines increase the page count before a critical
|
|
* routine so they can be sure the page doesn't go away from under them.
|
|
*/
|
|
|
|
/*
|
|
* Drop a ref, return true if the refcount fell to zero (the page has no users)
|
|
*/
|
|
static inline int put_page_testzero(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
|
|
return page_ref_dec_and_test(page);
|
|
}
|
|
|
|
static inline int folio_put_testzero(struct folio *folio)
|
|
{
|
|
return put_page_testzero(&folio->page);
|
|
}
|
|
|
|
/*
|
|
* Try to grab a ref unless the page has a refcount of zero, return false if
|
|
* that is the case.
|
|
* This can be called when MMU is off so it must not access
|
|
* any of the virtual mappings.
|
|
*/
|
|
static inline bool get_page_unless_zero(struct page *page)
|
|
{
|
|
return page_ref_add_unless(page, 1, 0);
|
|
}
|
|
|
|
extern int page_is_ram(unsigned long pfn);
|
|
|
|
enum {
|
|
REGION_INTERSECTS,
|
|
REGION_DISJOINT,
|
|
REGION_MIXED,
|
|
};
|
|
|
|
int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
|
|
unsigned long desc);
|
|
|
|
/* Support for virtually mapped pages */
|
|
struct page *vmalloc_to_page(const void *addr);
|
|
unsigned long vmalloc_to_pfn(const void *addr);
|
|
|
|
/*
|
|
* Determine if an address is within the vmalloc range
|
|
*
|
|
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
|
|
* is no special casing required.
|
|
*/
|
|
|
|
#ifndef is_ioremap_addr
|
|
#define is_ioremap_addr(x) is_vmalloc_addr(x)
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern bool is_vmalloc_addr(const void *x);
|
|
extern int is_vmalloc_or_module_addr(const void *x);
|
|
#else
|
|
static inline bool is_vmalloc_addr(const void *x)
|
|
{
|
|
return false;
|
|
}
|
|
static inline int is_vmalloc_or_module_addr(const void *x)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* How many times the entire folio is mapped as a single unit (eg by a
|
|
* PMD or PUD entry). This is probably not what you want, except for
|
|
* debugging purposes - it does not include PTE-mapped sub-pages; look
|
|
* at folio_mapcount() or page_mapcount() or total_mapcount() instead.
|
|
*/
|
|
static inline int folio_entire_mapcount(struct folio *folio)
|
|
{
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
return atomic_read(folio_mapcount_ptr(folio)) + 1;
|
|
}
|
|
|
|
/*
|
|
* Mapcount of compound page as a whole, does not include mapped sub-pages.
|
|
* Must be called only on head of compound page.
|
|
*/
|
|
static inline int head_compound_mapcount(struct page *head)
|
|
{
|
|
return atomic_read(compound_mapcount_ptr(head)) + 1;
|
|
}
|
|
|
|
/*
|
|
* If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
|
|
* its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
|
|
* above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
|
|
* leaves subpages_mapcount at 0, but avoid surprise if it participates later.
|
|
*/
|
|
#define COMPOUND_MAPPED 0x800000
|
|
#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1)
|
|
|
|
/*
|
|
* Number of sub-pages mapped by PTE, does not include compound mapcount.
|
|
* Must be called only on head of compound page.
|
|
*/
|
|
static inline int head_subpages_mapcount(struct page *head)
|
|
{
|
|
return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
|
|
}
|
|
|
|
/*
|
|
* The atomic page->_mapcount, starts from -1: so that transitions
|
|
* both from it and to it can be tracked, using atomic_inc_and_test
|
|
* and atomic_add_negative(-1).
|
|
*/
|
|
static inline void page_mapcount_reset(struct page *page)
|
|
{
|
|
atomic_set(&(page)->_mapcount, -1);
|
|
}
|
|
|
|
/*
|
|
* Mapcount of 0-order page; when compound sub-page, includes
|
|
* compound_mapcount of compound_head of page.
|
|
*
|
|
* Result is undefined for pages which cannot be mapped into userspace.
|
|
* For example SLAB or special types of pages. See function page_has_type().
|
|
* They use this place in struct page differently.
|
|
*/
|
|
static inline int page_mapcount(struct page *page)
|
|
{
|
|
int mapcount = atomic_read(&page->_mapcount) + 1;
|
|
|
|
if (likely(!PageCompound(page)))
|
|
return mapcount;
|
|
page = compound_head(page);
|
|
return head_compound_mapcount(page) + mapcount;
|
|
}
|
|
|
|
int total_compound_mapcount(struct page *head);
|
|
|
|
/**
|
|
* folio_mapcount() - Calculate the number of mappings of this folio.
|
|
* @folio: The folio.
|
|
*
|
|
* A large folio tracks both how many times the entire folio is mapped,
|
|
* and how many times each individual page in the folio is mapped.
|
|
* This function calculates the total number of times the folio is
|
|
* mapped.
|
|
*
|
|
* Return: The number of times this folio is mapped.
|
|
*/
|
|
static inline int folio_mapcount(struct folio *folio)
|
|
{
|
|
if (likely(!folio_test_large(folio)))
|
|
return atomic_read(&folio->_mapcount) + 1;
|
|
return total_compound_mapcount(&folio->page);
|
|
}
|
|
|
|
static inline int total_mapcount(struct page *page)
|
|
{
|
|
if (likely(!PageCompound(page)))
|
|
return atomic_read(&page->_mapcount) + 1;
|
|
return total_compound_mapcount(compound_head(page));
|
|
}
|
|
|
|
static inline bool folio_large_is_mapped(struct folio *folio)
|
|
{
|
|
/*
|
|
* Reading folio_mapcount_ptr() below could be omitted if hugetlb
|
|
* participated in incrementing subpages_mapcount when compound mapped.
|
|
*/
|
|
return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
|
|
atomic_read(folio_mapcount_ptr(folio)) >= 0;
|
|
}
|
|
|
|
/**
|
|
* folio_mapped - Is this folio mapped into userspace?
|
|
* @folio: The folio.
|
|
*
|
|
* Return: True if any page in this folio is referenced by user page tables.
|
|
*/
|
|
static inline bool folio_mapped(struct folio *folio)
|
|
{
|
|
if (likely(!folio_test_large(folio)))
|
|
return atomic_read(&folio->_mapcount) >= 0;
|
|
return folio_large_is_mapped(folio);
|
|
}
|
|
|
|
/*
|
|
* Return true if this page is mapped into pagetables.
|
|
* For compound page it returns true if any sub-page of compound page is mapped,
|
|
* even if this particular sub-page is not itself mapped by any PTE or PMD.
|
|
*/
|
|
static inline bool page_mapped(struct page *page)
|
|
{
|
|
if (likely(!PageCompound(page)))
|
|
return atomic_read(&page->_mapcount) >= 0;
|
|
return folio_large_is_mapped(page_folio(page));
|
|
}
|
|
|
|
static inline struct page *virt_to_head_page(const void *x)
|
|
{
|
|
struct page *page = virt_to_page(x);
|
|
|
|
return compound_head(page);
|
|
}
|
|
|
|
static inline struct folio *virt_to_folio(const void *x)
|
|
{
|
|
struct page *page = virt_to_page(x);
|
|
|
|
return page_folio(page);
|
|
}
|
|
|
|
void __folio_put(struct folio *folio);
|
|
|
|
void put_pages_list(struct list_head *pages);
|
|
|
|
void split_page(struct page *page, unsigned int order);
|
|
void folio_copy(struct folio *dst, struct folio *src);
|
|
|
|
unsigned long nr_free_buffer_pages(void);
|
|
|
|
/*
|
|
* Compound pages have a destructor function. Provide a
|
|
* prototype for that function and accessor functions.
|
|
* These are _only_ valid on the head of a compound page.
|
|
*/
|
|
typedef void compound_page_dtor(struct page *);
|
|
|
|
/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
|
|
enum compound_dtor_id {
|
|
NULL_COMPOUND_DTOR,
|
|
COMPOUND_PAGE_DTOR,
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
HUGETLB_PAGE_DTOR,
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
TRANSHUGE_PAGE_DTOR,
|
|
#endif
|
|
NR_COMPOUND_DTORS,
|
|
};
|
|
extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
|
|
|
|
static inline void set_compound_page_dtor(struct page *page,
|
|
enum compound_dtor_id compound_dtor)
|
|
{
|
|
VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
|
|
page[1].compound_dtor = compound_dtor;
|
|
}
|
|
|
|
static inline void folio_set_compound_dtor(struct folio *folio,
|
|
enum compound_dtor_id compound_dtor)
|
|
{
|
|
VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
|
|
folio->_folio_dtor = compound_dtor;
|
|
}
|
|
|
|
void destroy_large_folio(struct folio *folio);
|
|
|
|
static inline int head_compound_pincount(struct page *head)
|
|
{
|
|
return atomic_read(compound_pincount_ptr(head));
|
|
}
|
|
|
|
static inline void set_compound_order(struct page *page, unsigned int order)
|
|
{
|
|
page[1].compound_order = order;
|
|
#ifdef CONFIG_64BIT
|
|
page[1].compound_nr = 1U << order;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* folio_set_compound_order is generally passed a non-zero order to
|
|
* initialize a large folio. However, hugetlb code abuses this by
|
|
* passing in zero when 'dissolving' a large folio.
|
|
*/
|
|
static inline void folio_set_compound_order(struct folio *folio,
|
|
unsigned int order)
|
|
{
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
folio->_folio_order = order;
|
|
#ifdef CONFIG_64BIT
|
|
folio->_folio_nr_pages = order ? 1U << order : 0;
|
|
#endif
|
|
}
|
|
|
|
/* Returns the number of pages in this potentially compound page. */
|
|
static inline unsigned long compound_nr(struct page *page)
|
|
{
|
|
if (!PageHead(page))
|
|
return 1;
|
|
#ifdef CONFIG_64BIT
|
|
return page[1].compound_nr;
|
|
#else
|
|
return 1UL << compound_order(page);
|
|
#endif
|
|
}
|
|
|
|
/* Returns the number of bytes in this potentially compound page. */
|
|
static inline unsigned long page_size(struct page *page)
|
|
{
|
|
return PAGE_SIZE << compound_order(page);
|
|
}
|
|
|
|
/* Returns the number of bits needed for the number of bytes in a page */
|
|
static inline unsigned int page_shift(struct page *page)
|
|
{
|
|
return PAGE_SHIFT + compound_order(page);
|
|
}
|
|
|
|
/**
|
|
* thp_order - Order of a transparent huge page.
|
|
* @page: Head page of a transparent huge page.
|
|
*/
|
|
static inline unsigned int thp_order(struct page *page)
|
|
{
|
|
VM_BUG_ON_PGFLAGS(PageTail(page), page);
|
|
return compound_order(page);
|
|
}
|
|
|
|
/**
|
|
* thp_nr_pages - The number of regular pages in this huge page.
|
|
* @page: The head page of a huge page.
|
|
*/
|
|
static inline int thp_nr_pages(struct page *page)
|
|
{
|
|
VM_BUG_ON_PGFLAGS(PageTail(page), page);
|
|
return compound_nr(page);
|
|
}
|
|
|
|
/**
|
|
* thp_size - Size of a transparent huge page.
|
|
* @page: Head page of a transparent huge page.
|
|
*
|
|
* Return: Number of bytes in this page.
|
|
*/
|
|
static inline unsigned long thp_size(struct page *page)
|
|
{
|
|
return PAGE_SIZE << thp_order(page);
|
|
}
|
|
|
|
void free_compound_page(struct page *page);
|
|
|
|
#ifdef CONFIG_MMU
|
|
/*
|
|
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
|
|
* servicing faults for write access. In the normal case, do always want
|
|
* pte_mkwrite. But get_user_pages can cause write faults for mappings
|
|
* that do not have writing enabled, when used by access_process_vm.
|
|
*/
|
|
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pte = pte_mkwrite(pte);
|
|
return pte;
|
|
}
|
|
|
|
vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
|
|
void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
|
|
|
|
vm_fault_t finish_fault(struct vm_fault *vmf);
|
|
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
|
|
#endif
|
|
|
|
/*
|
|
* Multiple processes may "see" the same page. E.g. for untouched
|
|
* mappings of /dev/null, all processes see the same page full of
|
|
* zeroes, and text pages of executables and shared libraries have
|
|
* only one copy in memory, at most, normally.
|
|
*
|
|
* For the non-reserved pages, page_count(page) denotes a reference count.
|
|
* page_count() == 0 means the page is free. page->lru is then used for
|
|
* freelist management in the buddy allocator.
|
|
* page_count() > 0 means the page has been allocated.
|
|
*
|
|
* Pages are allocated by the slab allocator in order to provide memory
|
|
* to kmalloc and kmem_cache_alloc. In this case, the management of the
|
|
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
|
|
* unless a particular usage is carefully commented. (the responsibility of
|
|
* freeing the kmalloc memory is the caller's, of course).
|
|
*
|
|
* A page may be used by anyone else who does a __get_free_page().
|
|
* In this case, page_count still tracks the references, and should only
|
|
* be used through the normal accessor functions. The top bits of page->flags
|
|
* and page->virtual store page management information, but all other fields
|
|
* are unused and could be used privately, carefully. The management of this
|
|
* page is the responsibility of the one who allocated it, and those who have
|
|
* subsequently been given references to it.
|
|
*
|
|
* The other pages (we may call them "pagecache pages") are completely
|
|
* managed by the Linux memory manager: I/O, buffers, swapping etc.
|
|
* The following discussion applies only to them.
|
|
*
|
|
* A pagecache page contains an opaque `private' member, which belongs to the
|
|
* page's address_space. Usually, this is the address of a circular list of
|
|
* the page's disk buffers. PG_private must be set to tell the VM to call
|
|
* into the filesystem to release these pages.
|
|
*
|
|
* A page may belong to an inode's memory mapping. In this case, page->mapping
|
|
* is the pointer to the inode, and page->index is the file offset of the page,
|
|
* in units of PAGE_SIZE.
|
|
*
|
|
* If pagecache pages are not associated with an inode, they are said to be
|
|
* anonymous pages. These may become associated with the swapcache, and in that
|
|
* case PG_swapcache is set, and page->private is an offset into the swapcache.
|
|
*
|
|
* In either case (swapcache or inode backed), the pagecache itself holds one
|
|
* reference to the page. Setting PG_private should also increment the
|
|
* refcount. The each user mapping also has a reference to the page.
|
|
*
|
|
* The pagecache pages are stored in a per-mapping radix tree, which is
|
|
* rooted at mapping->i_pages, and indexed by offset.
|
|
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
|
|
* lists, we instead now tag pages as dirty/writeback in the radix tree.
|
|
*
|
|
* All pagecache pages may be subject to I/O:
|
|
* - inode pages may need to be read from disk,
|
|
* - inode pages which have been modified and are MAP_SHARED may need
|
|
* to be written back to the inode on disk,
|
|
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
|
|
* modified may need to be swapped out to swap space and (later) to be read
|
|
* back into memory.
|
|
*/
|
|
|
|
#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
|
|
DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
|
|
|
|
bool __put_devmap_managed_page_refs(struct page *page, int refs);
|
|
static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
|
|
{
|
|
if (!static_branch_unlikely(&devmap_managed_key))
|
|
return false;
|
|
if (!is_zone_device_page(page))
|
|
return false;
|
|
return __put_devmap_managed_page_refs(page, refs);
|
|
}
|
|
#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
|
|
static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
|
|
|
|
static inline bool put_devmap_managed_page(struct page *page)
|
|
{
|
|
return put_devmap_managed_page_refs(page, 1);
|
|
}
|
|
|
|
/* 127: arbitrary random number, small enough to assemble well */
|
|
#define folio_ref_zero_or_close_to_overflow(folio) \
|
|
((unsigned int) folio_ref_count(folio) + 127u <= 127u)
|
|
|
|
/**
|
|
* folio_get - Increment the reference count on a folio.
|
|
* @folio: The folio.
|
|
*
|
|
* Context: May be called in any context, as long as you know that
|
|
* you have a refcount on the folio. If you do not already have one,
|
|
* folio_try_get() may be the right interface for you to use.
|
|
*/
|
|
static inline void folio_get(struct folio *folio)
|
|
{
|
|
VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
|
|
folio_ref_inc(folio);
|
|
}
|
|
|
|
static inline void get_page(struct page *page)
|
|
{
|
|
folio_get(page_folio(page));
|
|
}
|
|
|
|
int __must_check try_grab_page(struct page *page, unsigned int flags);
|
|
|
|
static inline __must_check bool try_get_page(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
if (WARN_ON_ONCE(page_ref_count(page) <= 0))
|
|
return false;
|
|
page_ref_inc(page);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* folio_put - Decrement the reference count on a folio.
|
|
* @folio: The folio.
|
|
*
|
|
* If the folio's reference count reaches zero, the memory will be
|
|
* released back to the page allocator and may be used by another
|
|
* allocation immediately. Do not access the memory or the struct folio
|
|
* after calling folio_put() unless you can be sure that it wasn't the
|
|
* last reference.
|
|
*
|
|
* Context: May be called in process or interrupt context, but not in NMI
|
|
* context. May be called while holding a spinlock.
|
|
*/
|
|
static inline void folio_put(struct folio *folio)
|
|
{
|
|
if (folio_put_testzero(folio))
|
|
__folio_put(folio);
|
|
}
|
|
|
|
/**
|
|
* folio_put_refs - Reduce the reference count on a folio.
|
|
* @folio: The folio.
|
|
* @refs: The amount to subtract from the folio's reference count.
|
|
*
|
|
* If the folio's reference count reaches zero, the memory will be
|
|
* released back to the page allocator and may be used by another
|
|
* allocation immediately. Do not access the memory or the struct folio
|
|
* after calling folio_put_refs() unless you can be sure that these weren't
|
|
* the last references.
|
|
*
|
|
* Context: May be called in process or interrupt context, but not in NMI
|
|
* context. May be called while holding a spinlock.
|
|
*/
|
|
static inline void folio_put_refs(struct folio *folio, int refs)
|
|
{
|
|
if (folio_ref_sub_and_test(folio, refs))
|
|
__folio_put(folio);
|
|
}
|
|
|
|
/*
|
|
* union release_pages_arg - an array of pages or folios
|
|
*
|
|
* release_pages() releases a simple array of multiple pages, and
|
|
* accepts various different forms of said page array: either
|
|
* a regular old boring array of pages, an array of folios, or
|
|
* an array of encoded page pointers.
|
|
*
|
|
* The transparent union syntax for this kind of "any of these
|
|
* argument types" is all kinds of ugly, so look away.
|
|
*/
|
|
typedef union {
|
|
struct page **pages;
|
|
struct folio **folios;
|
|
struct encoded_page **encoded_pages;
|
|
} release_pages_arg __attribute__ ((__transparent_union__));
|
|
|
|
void release_pages(release_pages_arg, int nr);
|
|
|
|
/**
|
|
* folios_put - Decrement the reference count on an array of folios.
|
|
* @folios: The folios.
|
|
* @nr: How many folios there are.
|
|
*
|
|
* Like folio_put(), but for an array of folios. This is more efficient
|
|
* than writing the loop yourself as it will optimise the locks which
|
|
* need to be taken if the folios are freed.
|
|
*
|
|
* Context: May be called in process or interrupt context, but not in NMI
|
|
* context. May be called while holding a spinlock.
|
|
*/
|
|
static inline void folios_put(struct folio **folios, unsigned int nr)
|
|
{
|
|
release_pages(folios, nr);
|
|
}
|
|
|
|
static inline void put_page(struct page *page)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
|
|
/*
|
|
* For some devmap managed pages we need to catch refcount transition
|
|
* from 2 to 1:
|
|
*/
|
|
if (put_devmap_managed_page(&folio->page))
|
|
return;
|
|
folio_put(folio);
|
|
}
|
|
|
|
/*
|
|
* GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
|
|
* the page's refcount so that two separate items are tracked: the original page
|
|
* reference count, and also a new count of how many pin_user_pages() calls were
|
|
* made against the page. ("gup-pinned" is another term for the latter).
|
|
*
|
|
* With this scheme, pin_user_pages() becomes special: such pages are marked as
|
|
* distinct from normal pages. As such, the unpin_user_page() call (and its
|
|
* variants) must be used in order to release gup-pinned pages.
|
|
*
|
|
* Choice of value:
|
|
*
|
|
* By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
|
|
* counts with respect to pin_user_pages() and unpin_user_page() becomes
|
|
* simpler, due to the fact that adding an even power of two to the page
|
|
* refcount has the effect of using only the upper N bits, for the code that
|
|
* counts up using the bias value. This means that the lower bits are left for
|
|
* the exclusive use of the original code that increments and decrements by one
|
|
* (or at least, by much smaller values than the bias value).
|
|
*
|
|
* Of course, once the lower bits overflow into the upper bits (and this is
|
|
* OK, because subtraction recovers the original values), then visual inspection
|
|
* no longer suffices to directly view the separate counts. However, for normal
|
|
* applications that don't have huge page reference counts, this won't be an
|
|
* issue.
|
|
*
|
|
* Locking: the lockless algorithm described in folio_try_get_rcu()
|
|
* provides safe operation for get_user_pages(), page_mkclean() and
|
|
* other calls that race to set up page table entries.
|
|
*/
|
|
#define GUP_PIN_COUNTING_BIAS (1U << 10)
|
|
|
|
void unpin_user_page(struct page *page);
|
|
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
|
|
bool make_dirty);
|
|
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
|
|
bool make_dirty);
|
|
void unpin_user_pages(struct page **pages, unsigned long npages);
|
|
|
|
static inline bool is_cow_mapping(vm_flags_t flags)
|
|
{
|
|
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
|
}
|
|
|
|
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
|
|
#define SECTION_IN_PAGE_FLAGS
|
|
#endif
|
|
|
|
/*
|
|
* The identification function is mainly used by the buddy allocator for
|
|
* determining if two pages could be buddies. We are not really identifying
|
|
* the zone since we could be using the section number id if we do not have
|
|
* node id available in page flags.
|
|
* We only guarantee that it will return the same value for two combinable
|
|
* pages in a zone.
|
|
*/
|
|
static inline int page_zone_id(struct page *page)
|
|
{
|
|
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
|
|
}
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
extern int page_to_nid(const struct page *page);
|
|
#else
|
|
static inline int page_to_nid(const struct page *page)
|
|
{
|
|
struct page *p = (struct page *)page;
|
|
|
|
return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
|
|
}
|
|
#endif
|
|
|
|
static inline int folio_nid(const struct folio *folio)
|
|
{
|
|
return page_to_nid(&folio->page);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/* page access time bits needs to hold at least 4 seconds */
|
|
#define PAGE_ACCESS_TIME_MIN_BITS 12
|
|
#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
|
|
#define PAGE_ACCESS_TIME_BUCKETS \
|
|
(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
|
|
#else
|
|
#define PAGE_ACCESS_TIME_BUCKETS 0
|
|
#endif
|
|
|
|
#define PAGE_ACCESS_TIME_MASK \
|
|
(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
|
|
|
|
static inline int cpu_pid_to_cpupid(int cpu, int pid)
|
|
{
|
|
return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
|
|
}
|
|
|
|
static inline int cpupid_to_pid(int cpupid)
|
|
{
|
|
return cpupid & LAST__PID_MASK;
|
|
}
|
|
|
|
static inline int cpupid_to_cpu(int cpupid)
|
|
{
|
|
return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
|
|
}
|
|
|
|
static inline int cpupid_to_nid(int cpupid)
|
|
{
|
|
return cpu_to_node(cpupid_to_cpu(cpupid));
|
|
}
|
|
|
|
static inline bool cpupid_pid_unset(int cpupid)
|
|
{
|
|
return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
|
|
}
|
|
|
|
static inline bool cpupid_cpu_unset(int cpupid)
|
|
{
|
|
return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
|
|
}
|
|
|
|
static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
|
|
{
|
|
return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
|
|
}
|
|
|
|
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
|
|
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
|
|
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
|
|
{
|
|
return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
|
|
}
|
|
|
|
static inline int page_cpupid_last(struct page *page)
|
|
{
|
|
return page->_last_cpupid;
|
|
}
|
|
static inline void page_cpupid_reset_last(struct page *page)
|
|
{
|
|
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
|
|
}
|
|
#else
|
|
static inline int page_cpupid_last(struct page *page)
|
|
{
|
|
return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
|
|
}
|
|
|
|
extern int page_cpupid_xchg_last(struct page *page, int cpupid);
|
|
|
|
static inline void page_cpupid_reset_last(struct page *page)
|
|
{
|
|
page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
|
|
}
|
|
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
|
|
|
|
static inline int xchg_page_access_time(struct page *page, int time)
|
|
{
|
|
int last_time;
|
|
|
|
last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
|
|
return last_time << PAGE_ACCESS_TIME_BUCKETS;
|
|
}
|
|
#else /* !CONFIG_NUMA_BALANCING */
|
|
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
|
|
{
|
|
return page_to_nid(page); /* XXX */
|
|
}
|
|
|
|
static inline int xchg_page_access_time(struct page *page, int time)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int page_cpupid_last(struct page *page)
|
|
{
|
|
return page_to_nid(page); /* XXX */
|
|
}
|
|
|
|
static inline int cpupid_to_nid(int cpupid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int cpupid_to_pid(int cpupid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int cpupid_to_cpu(int cpupid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int cpu_pid_to_cpupid(int nid, int pid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline bool cpupid_pid_unset(int cpupid)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void page_cpupid_reset_last(struct page *page)
|
|
{
|
|
}
|
|
|
|
static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
|
|
|
|
/*
|
|
* KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
|
|
* setting tags for all pages to native kernel tag value 0xff, as the default
|
|
* value 0x00 maps to 0xff.
|
|
*/
|
|
|
|
static inline u8 page_kasan_tag(const struct page *page)
|
|
{
|
|
u8 tag = 0xff;
|
|
|
|
if (kasan_enabled()) {
|
|
tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
|
|
tag ^= 0xff;
|
|
}
|
|
|
|
return tag;
|
|
}
|
|
|
|
static inline void page_kasan_tag_set(struct page *page, u8 tag)
|
|
{
|
|
unsigned long old_flags, flags;
|
|
|
|
if (!kasan_enabled())
|
|
return;
|
|
|
|
tag ^= 0xff;
|
|
old_flags = READ_ONCE(page->flags);
|
|
do {
|
|
flags = old_flags;
|
|
flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
|
|
flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
|
|
} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
|
|
}
|
|
|
|
static inline void page_kasan_tag_reset(struct page *page)
|
|
{
|
|
if (kasan_enabled())
|
|
page_kasan_tag_set(page, 0xff);
|
|
}
|
|
|
|
#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
|
|
|
|
static inline u8 page_kasan_tag(const struct page *page)
|
|
{
|
|
return 0xff;
|
|
}
|
|
|
|
static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
|
|
static inline void page_kasan_tag_reset(struct page *page) { }
|
|
|
|
#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
|
|
|
|
static inline struct zone *page_zone(const struct page *page)
|
|
{
|
|
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
|
|
}
|
|
|
|
static inline pg_data_t *page_pgdat(const struct page *page)
|
|
{
|
|
return NODE_DATA(page_to_nid(page));
|
|
}
|
|
|
|
static inline struct zone *folio_zone(const struct folio *folio)
|
|
{
|
|
return page_zone(&folio->page);
|
|
}
|
|
|
|
static inline pg_data_t *folio_pgdat(const struct folio *folio)
|
|
{
|
|
return page_pgdat(&folio->page);
|
|
}
|
|
|
|
#ifdef SECTION_IN_PAGE_FLAGS
|
|
static inline void set_page_section(struct page *page, unsigned long section)
|
|
{
|
|
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
|
|
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
|
|
}
|
|
|
|
static inline unsigned long page_to_section(const struct page *page)
|
|
{
|
|
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* folio_pfn - Return the Page Frame Number of a folio.
|
|
* @folio: The folio.
|
|
*
|
|
* A folio may contain multiple pages. The pages have consecutive
|
|
* Page Frame Numbers.
|
|
*
|
|
* Return: The Page Frame Number of the first page in the folio.
|
|
*/
|
|
static inline unsigned long folio_pfn(struct folio *folio)
|
|
{
|
|
return page_to_pfn(&folio->page);
|
|
}
|
|
|
|
static inline struct folio *pfn_folio(unsigned long pfn)
|
|
{
|
|
return page_folio(pfn_to_page(pfn));
|
|
}
|
|
|
|
static inline atomic_t *folio_pincount_ptr(struct folio *folio)
|
|
{
|
|
return &folio_page(folio, 1)->compound_pincount;
|
|
}
|
|
|
|
/**
|
|
* folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
|
|
* @folio: The folio.
|
|
*
|
|
* This function checks if a folio has been pinned via a call to
|
|
* a function in the pin_user_pages() family.
|
|
*
|
|
* For small folios, the return value is partially fuzzy: false is not fuzzy,
|
|
* because it means "definitely not pinned for DMA", but true means "probably
|
|
* pinned for DMA, but possibly a false positive due to having at least
|
|
* GUP_PIN_COUNTING_BIAS worth of normal folio references".
|
|
*
|
|
* False positives are OK, because: a) it's unlikely for a folio to
|
|
* get that many refcounts, and b) all the callers of this routine are
|
|
* expected to be able to deal gracefully with a false positive.
|
|
*
|
|
* For large folios, the result will be exactly correct. That's because
|
|
* we have more tracking data available: the compound_pincount is used
|
|
* instead of the GUP_PIN_COUNTING_BIAS scheme.
|
|
*
|
|
* For more information, please see Documentation/core-api/pin_user_pages.rst.
|
|
*
|
|
* Return: True, if it is likely that the page has been "dma-pinned".
|
|
* False, if the page is definitely not dma-pinned.
|
|
*/
|
|
static inline bool folio_maybe_dma_pinned(struct folio *folio)
|
|
{
|
|
if (folio_test_large(folio))
|
|
return atomic_read(folio_pincount_ptr(folio)) > 0;
|
|
|
|
/*
|
|
* folio_ref_count() is signed. If that refcount overflows, then
|
|
* folio_ref_count() returns a negative value, and callers will avoid
|
|
* further incrementing the refcount.
|
|
*
|
|
* Here, for that overflow case, use the sign bit to count a little
|
|
* bit higher via unsigned math, and thus still get an accurate result.
|
|
*/
|
|
return ((unsigned int)folio_ref_count(folio)) >=
|
|
GUP_PIN_COUNTING_BIAS;
|
|
}
|
|
|
|
static inline bool page_maybe_dma_pinned(struct page *page)
|
|
{
|
|
return folio_maybe_dma_pinned(page_folio(page));
|
|
}
|
|
|
|
/*
|
|
* This should most likely only be called during fork() to see whether we
|
|
* should break the cow immediately for an anon page on the src mm.
|
|
*
|
|
* The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
|
|
*/
|
|
static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
|
|
struct page *page)
|
|
{
|
|
VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
|
|
|
|
if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
|
|
return false;
|
|
|
|
return page_maybe_dma_pinned(page);
|
|
}
|
|
|
|
/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
|
|
#ifdef CONFIG_MIGRATION
|
|
static inline bool is_longterm_pinnable_page(struct page *page)
|
|
{
|
|
#ifdef CONFIG_CMA
|
|
int mt = get_pageblock_migratetype(page);
|
|
|
|
if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
|
|
return false;
|
|
#endif
|
|
/* The zero page may always be pinned */
|
|
if (is_zero_pfn(page_to_pfn(page)))
|
|
return true;
|
|
|
|
/* Coherent device memory must always allow eviction. */
|
|
if (is_device_coherent_page(page))
|
|
return false;
|
|
|
|
/* Otherwise, non-movable zone pages can be pinned. */
|
|
return !is_zone_movable_page(page);
|
|
}
|
|
#else
|
|
static inline bool is_longterm_pinnable_page(struct page *page)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static inline bool folio_is_longterm_pinnable(struct folio *folio)
|
|
{
|
|
return is_longterm_pinnable_page(&folio->page);
|
|
}
|
|
|
|
static inline void set_page_zone(struct page *page, enum zone_type zone)
|
|
{
|
|
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
|
|
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_node(struct page *page, unsigned long node)
|
|
{
|
|
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
|
|
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_links(struct page *page, enum zone_type zone,
|
|
unsigned long node, unsigned long pfn)
|
|
{
|
|
set_page_zone(page, zone);
|
|
set_page_node(page, node);
|
|
#ifdef SECTION_IN_PAGE_FLAGS
|
|
set_page_section(page, pfn_to_section_nr(pfn));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* folio_nr_pages - The number of pages in the folio.
|
|
* @folio: The folio.
|
|
*
|
|
* Return: A positive power of two.
|
|
*/
|
|
static inline long folio_nr_pages(struct folio *folio)
|
|
{
|
|
if (!folio_test_large(folio))
|
|
return 1;
|
|
#ifdef CONFIG_64BIT
|
|
return folio->_folio_nr_pages;
|
|
#else
|
|
return 1L << folio->_folio_order;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* folio_next - Move to the next physical folio.
|
|
* @folio: The folio we're currently operating on.
|
|
*
|
|
* If you have physically contiguous memory which may span more than
|
|
* one folio (eg a &struct bio_vec), use this function to move from one
|
|
* folio to the next. Do not use it if the memory is only virtually
|
|
* contiguous as the folios are almost certainly not adjacent to each
|
|
* other. This is the folio equivalent to writing ``page++``.
|
|
*
|
|
* Context: We assume that the folios are refcounted and/or locked at a
|
|
* higher level and do not adjust the reference counts.
|
|
* Return: The next struct folio.
|
|
*/
|
|
static inline struct folio *folio_next(struct folio *folio)
|
|
{
|
|
return (struct folio *)folio_page(folio, folio_nr_pages(folio));
|
|
}
|
|
|
|
/**
|
|
* folio_shift - The size of the memory described by this folio.
|
|
* @folio: The folio.
|
|
*
|
|
* A folio represents a number of bytes which is a power-of-two in size.
|
|
* This function tells you which power-of-two the folio is. See also
|
|
* folio_size() and folio_order().
|
|
*
|
|
* Context: The caller should have a reference on the folio to prevent
|
|
* it from being split. It is not necessary for the folio to be locked.
|
|
* Return: The base-2 logarithm of the size of this folio.
|
|
*/
|
|
static inline unsigned int folio_shift(struct folio *folio)
|
|
{
|
|
return PAGE_SHIFT + folio_order(folio);
|
|
}
|
|
|
|
/**
|
|
* folio_size - The number of bytes in a folio.
|
|
* @folio: The folio.
|
|
*
|
|
* Context: The caller should have a reference on the folio to prevent
|
|
* it from being split. It is not necessary for the folio to be locked.
|
|
* Return: The number of bytes in this folio.
|
|
*/
|
|
static inline size_t folio_size(struct folio *folio)
|
|
{
|
|
return PAGE_SIZE << folio_order(folio);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
|
|
static inline int arch_make_page_accessible(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
|
|
static inline int arch_make_folio_accessible(struct folio *folio)
|
|
{
|
|
int ret;
|
|
long i, nr = folio_nr_pages(folio);
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
ret = arch_make_page_accessible(folio_page(folio, i));
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some inline functions in vmstat.h depend on page_zone()
|
|
*/
|
|
#include <linux/vmstat.h>
|
|
|
|
static __always_inline void *lowmem_page_address(const struct page *page)
|
|
{
|
|
return page_to_virt(page);
|
|
}
|
|
|
|
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define HASHED_PAGE_VIRTUAL
|
|
#endif
|
|
|
|
#if defined(WANT_PAGE_VIRTUAL)
|
|
static inline void *page_address(const struct page *page)
|
|
{
|
|
return page->virtual;
|
|
}
|
|
static inline void set_page_address(struct page *page, void *address)
|
|
{
|
|
page->virtual = address;
|
|
}
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
void *page_address(const struct page *page);
|
|
void set_page_address(struct page *page, void *virtual);
|
|
void page_address_init(void);
|
|
#endif
|
|
|
|
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define page_address(page) lowmem_page_address(page)
|
|
#define set_page_address(page, address) do { } while(0)
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
static inline void *folio_address(const struct folio *folio)
|
|
{
|
|
return page_address(&folio->page);
|
|
}
|
|
|
|
extern void *page_rmapping(struct page *page);
|
|
extern pgoff_t __page_file_index(struct page *page);
|
|
|
|
/*
|
|
* Return the pagecache index of the passed page. Regular pagecache pages
|
|
* use ->index whereas swapcache pages use swp_offset(->private)
|
|
*/
|
|
static inline pgoff_t page_index(struct page *page)
|
|
{
|
|
if (unlikely(PageSwapCache(page)))
|
|
return __page_file_index(page);
|
|
return page->index;
|
|
}
|
|
|
|
/*
|
|
* Return true only if the page has been allocated with
|
|
* ALLOC_NO_WATERMARKS and the low watermark was not
|
|
* met implying that the system is under some pressure.
|
|
*/
|
|
static inline bool page_is_pfmemalloc(const struct page *page)
|
|
{
|
|
/*
|
|
* lru.next has bit 1 set if the page is allocated from the
|
|
* pfmemalloc reserves. Callers may simply overwrite it if
|
|
* they do not need to preserve that information.
|
|
*/
|
|
return (uintptr_t)page->lru.next & BIT(1);
|
|
}
|
|
|
|
/*
|
|
* Only to be called by the page allocator on a freshly allocated
|
|
* page.
|
|
*/
|
|
static inline void set_page_pfmemalloc(struct page *page)
|
|
{
|
|
page->lru.next = (void *)BIT(1);
|
|
}
|
|
|
|
static inline void clear_page_pfmemalloc(struct page *page)
|
|
{
|
|
page->lru.next = NULL;
|
|
}
|
|
|
|
/*
|
|
* Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
|
|
*/
|
|
extern void pagefault_out_of_memory(void);
|
|
|
|
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
|
|
#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
|
|
#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
|
|
|
|
/*
|
|
* Flags passed to show_mem() and show_free_areas() to suppress output in
|
|
* various contexts.
|
|
*/
|
|
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
|
|
|
|
extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
|
|
static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
|
|
{
|
|
__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
|
|
}
|
|
|
|
/*
|
|
* Parameter block passed down to zap_pte_range in exceptional cases.
|
|
*/
|
|
struct zap_details {
|
|
struct folio *single_folio; /* Locked folio to be unmapped */
|
|
bool even_cows; /* Zap COWed private pages too? */
|
|
zap_flags_t zap_flags; /* Extra flags for zapping */
|
|
};
|
|
|
|
/*
|
|
* Whether to drop the pte markers, for example, the uffd-wp information for
|
|
* file-backed memory. This should only be specified when we will completely
|
|
* drop the page in the mm, either by truncation or unmapping of the vma. By
|
|
* default, the flag is not set.
|
|
*/
|
|
#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
|
|
/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
|
|
#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern bool can_do_mlock(void);
|
|
#else
|
|
static inline bool can_do_mlock(void) { return false; }
|
|
#endif
|
|
extern int user_shm_lock(size_t, struct ucounts *);
|
|
extern void user_shm_unlock(size_t, struct ucounts *);
|
|
|
|
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte);
|
|
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t pmd);
|
|
|
|
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size);
|
|
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size);
|
|
void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size, struct zap_details *details);
|
|
void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
|
|
struct vm_area_struct *start_vma, unsigned long start,
|
|
unsigned long end);
|
|
|
|
struct mmu_notifier_range;
|
|
|
|
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
|
|
unsigned long end, unsigned long floor, unsigned long ceiling);
|
|
int
|
|
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
|
|
int follow_pte(struct mm_struct *mm, unsigned long address,
|
|
pte_t **ptepp, spinlock_t **ptlp);
|
|
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long *pfn);
|
|
int follow_phys(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int flags, unsigned long *prot, resource_size_t *phys);
|
|
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write);
|
|
|
|
extern void truncate_pagecache(struct inode *inode, loff_t new);
|
|
extern void truncate_setsize(struct inode *inode, loff_t newsize);
|
|
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
|
|
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
|
|
int generic_error_remove_page(struct address_space *mapping, struct page *page);
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags,
|
|
struct pt_regs *regs);
|
|
extern int fixup_user_fault(struct mm_struct *mm,
|
|
unsigned long address, unsigned int fault_flags,
|
|
bool *unlocked);
|
|
void unmap_mapping_pages(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t nr, bool even_cows);
|
|
void unmap_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen, int even_cows);
|
|
#else
|
|
static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags,
|
|
struct pt_regs *regs)
|
|
{
|
|
/* should never happen if there's no MMU */
|
|
BUG();
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
|
|
unsigned int fault_flags, bool *unlocked)
|
|
{
|
|
/* should never happen if there's no MMU */
|
|
BUG();
|
|
return -EFAULT;
|
|
}
|
|
static inline void unmap_mapping_pages(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t nr, bool even_cows) { }
|
|
static inline void unmap_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen, int even_cows) { }
|
|
#endif
|
|
|
|
static inline void unmap_shared_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen)
|
|
{
|
|
unmap_mapping_range(mapping, holebegin, holelen, 0);
|
|
}
|
|
|
|
extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
|
|
void *buf, int len, unsigned int gup_flags);
|
|
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
|
|
void *buf, int len, unsigned int gup_flags);
|
|
extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
|
|
void *buf, int len, unsigned int gup_flags);
|
|
|
|
long get_user_pages_remote(struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked);
|
|
long pin_user_pages_remote(struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked);
|
|
long get_user_pages(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas);
|
|
long pin_user_pages(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas);
|
|
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
|
|
struct page **pages, unsigned int gup_flags);
|
|
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
|
|
struct page **pages, unsigned int gup_flags);
|
|
|
|
int get_user_pages_fast(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages);
|
|
int pin_user_pages_fast(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages);
|
|
|
|
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
|
|
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
|
|
struct task_struct *task, bool bypass_rlim);
|
|
|
|
struct kvec;
|
|
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
|
|
struct page **pages);
|
|
struct page *get_dump_page(unsigned long addr);
|
|
|
|
bool folio_mark_dirty(struct folio *folio);
|
|
bool set_page_dirty(struct page *page);
|
|
int set_page_dirty_lock(struct page *page);
|
|
|
|
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
|
|
|
|
extern unsigned long move_page_tables(struct vm_area_struct *vma,
|
|
unsigned long old_addr, struct vm_area_struct *new_vma,
|
|
unsigned long new_addr, unsigned long len,
|
|
bool need_rmap_locks);
|
|
|
|
/*
|
|
* Flags used by change_protection(). For now we make it a bitmap so
|
|
* that we can pass in multiple flags just like parameters. However
|
|
* for now all the callers are only use one of the flags at the same
|
|
* time.
|
|
*/
|
|
/*
|
|
* Whether we should manually check if we can map individual PTEs writable,
|
|
* because something (e.g., COW, uffd-wp) blocks that from happening for all
|
|
* PTEs automatically in a writable mapping.
|
|
*/
|
|
#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
|
|
/* Whether this protection change is for NUMA hints */
|
|
#define MM_CP_PROT_NUMA (1UL << 1)
|
|
/* Whether this change is for write protecting */
|
|
#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
|
|
#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
|
|
#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
|
|
MM_CP_UFFD_WP_RESOLVE)
|
|
|
|
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
|
|
static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* We want to check manually if we can change individual PTEs writable
|
|
* if we can't do that automatically for all PTEs in a mapping. For
|
|
* private mappings, that's always the case when we have write
|
|
* permissions as we properly have to handle COW.
|
|
*/
|
|
if (vma->vm_flags & VM_SHARED)
|
|
return vma_wants_writenotify(vma, vma->vm_page_prot);
|
|
return !!(vma->vm_flags & VM_WRITE);
|
|
|
|
}
|
|
bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte);
|
|
extern unsigned long change_protection(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgprot_t newprot,
|
|
unsigned long cp_flags);
|
|
extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
struct vm_area_struct **pprev, unsigned long start,
|
|
unsigned long end, unsigned long newflags);
|
|
|
|
/*
|
|
* doesn't attempt to fault and will return short.
|
|
*/
|
|
int get_user_pages_fast_only(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages);
|
|
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
|
|
unsigned int gup_flags, struct page **pages);
|
|
|
|
static inline bool get_user_page_fast_only(unsigned long addr,
|
|
unsigned int gup_flags, struct page **pagep)
|
|
{
|
|
return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
|
|
}
|
|
/*
|
|
* per-process(per-mm_struct) statistics.
|
|
*/
|
|
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
return percpu_counter_read_positive(&mm->rss_stat[member]);
|
|
}
|
|
|
|
void mm_trace_rss_stat(struct mm_struct *mm, int member);
|
|
|
|
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
percpu_counter_add(&mm->rss_stat[member], value);
|
|
|
|
mm_trace_rss_stat(mm, member);
|
|
}
|
|
|
|
static inline void inc_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
percpu_counter_inc(&mm->rss_stat[member]);
|
|
|
|
mm_trace_rss_stat(mm, member);
|
|
}
|
|
|
|
static inline void dec_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
percpu_counter_dec(&mm->rss_stat[member]);
|
|
|
|
mm_trace_rss_stat(mm, member);
|
|
}
|
|
|
|
/* Optimized variant when page is already known not to be PageAnon */
|
|
static inline int mm_counter_file(struct page *page)
|
|
{
|
|
if (PageSwapBacked(page))
|
|
return MM_SHMEMPAGES;
|
|
return MM_FILEPAGES;
|
|
}
|
|
|
|
static inline int mm_counter(struct page *page)
|
|
{
|
|
if (PageAnon(page))
|
|
return MM_ANONPAGES;
|
|
return mm_counter_file(page);
|
|
}
|
|
|
|
static inline unsigned long get_mm_rss(struct mm_struct *mm)
|
|
{
|
|
return get_mm_counter(mm, MM_FILEPAGES) +
|
|
get_mm_counter(mm, MM_ANONPAGES) +
|
|
get_mm_counter(mm, MM_SHMEMPAGES);
|
|
}
|
|
|
|
static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
return max(mm->hiwater_rss, get_mm_rss(mm));
|
|
}
|
|
|
|
static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
|
|
{
|
|
return max(mm->hiwater_vm, mm->total_vm);
|
|
}
|
|
|
|
static inline void update_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
unsigned long _rss = get_mm_rss(mm);
|
|
|
|
if ((mm)->hiwater_rss < _rss)
|
|
(mm)->hiwater_rss = _rss;
|
|
}
|
|
|
|
static inline void update_hiwater_vm(struct mm_struct *mm)
|
|
{
|
|
if (mm->hiwater_vm < mm->total_vm)
|
|
mm->hiwater_vm = mm->total_vm;
|
|
}
|
|
|
|
static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
mm->hiwater_rss = get_mm_rss(mm);
|
|
}
|
|
|
|
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
|
|
struct mm_struct *mm)
|
|
{
|
|
unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
|
|
|
|
if (*maxrss < hiwater_rss)
|
|
*maxrss = hiwater_rss;
|
|
}
|
|
|
|
#if defined(SPLIT_RSS_COUNTING)
|
|
void sync_mm_rss(struct mm_struct *mm);
|
|
#else
|
|
static inline void sync_mm_rss(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
|
|
static inline int pte_special(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t pte_mkspecial(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
|
|
static inline int pte_devmap(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
|
|
spinlock_t **ptl);
|
|
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
|
|
spinlock_t **ptl)
|
|
{
|
|
pte_t *ptep;
|
|
__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
|
|
return ptep;
|
|
}
|
|
|
|
#ifdef __PAGETABLE_P4D_FOLDED
|
|
static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
|
|
#endif
|
|
|
|
#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
|
|
static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
|
|
static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
|
|
|
|
#else
|
|
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
|
|
|
|
static inline void mm_inc_nr_puds(struct mm_struct *mm)
|
|
{
|
|
if (mm_pud_folded(mm))
|
|
return;
|
|
atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
|
|
}
|
|
|
|
static inline void mm_dec_nr_puds(struct mm_struct *mm)
|
|
{
|
|
if (mm_pud_folded(mm))
|
|
return;
|
|
atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
|
|
}
|
|
#endif
|
|
|
|
#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
|
|
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
|
|
static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
|
|
|
|
#else
|
|
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
|
|
|
|
static inline void mm_inc_nr_pmds(struct mm_struct *mm)
|
|
{
|
|
if (mm_pmd_folded(mm))
|
|
return;
|
|
atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
|
|
}
|
|
|
|
static inline void mm_dec_nr_pmds(struct mm_struct *mm)
|
|
{
|
|
if (mm_pmd_folded(mm))
|
|
return;
|
|
atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
|
|
{
|
|
atomic_long_set(&mm->pgtables_bytes, 0);
|
|
}
|
|
|
|
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
|
|
{
|
|
return atomic_long_read(&mm->pgtables_bytes);
|
|
}
|
|
|
|
static inline void mm_inc_nr_ptes(struct mm_struct *mm)
|
|
{
|
|
atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
|
|
}
|
|
|
|
static inline void mm_dec_nr_ptes(struct mm_struct *mm)
|
|
{
|
|
atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
|
|
}
|
|
#else
|
|
|
|
static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
|
|
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
|
|
static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
|
|
#endif
|
|
|
|
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
|
|
int __pte_alloc_kernel(pmd_t *pmd);
|
|
|
|
#if defined(CONFIG_MMU)
|
|
|
|
static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long address)
|
|
{
|
|
return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
|
|
NULL : p4d_offset(pgd, address);
|
|
}
|
|
|
|
static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
|
|
unsigned long address)
|
|
{
|
|
return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
|
|
NULL : pud_offset(p4d, address);
|
|
}
|
|
|
|
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
|
{
|
|
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
|
|
NULL: pmd_offset(pud, address);
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
#if USE_SPLIT_PTE_PTLOCKS
|
|
#if ALLOC_SPLIT_PTLOCKS
|
|
void __init ptlock_cache_init(void);
|
|
extern bool ptlock_alloc(struct page *page);
|
|
extern void ptlock_free(struct page *page);
|
|
|
|
static inline spinlock_t *ptlock_ptr(struct page *page)
|
|
{
|
|
return page->ptl;
|
|
}
|
|
#else /* ALLOC_SPLIT_PTLOCKS */
|
|
static inline void ptlock_cache_init(void)
|
|
{
|
|
}
|
|
|
|
static inline bool ptlock_alloc(struct page *page)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void ptlock_free(struct page *page)
|
|
{
|
|
}
|
|
|
|
static inline spinlock_t *ptlock_ptr(struct page *page)
|
|
{
|
|
return &page->ptl;
|
|
}
|
|
#endif /* ALLOC_SPLIT_PTLOCKS */
|
|
|
|
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return ptlock_ptr(pmd_page(*pmd));
|
|
}
|
|
|
|
static inline bool ptlock_init(struct page *page)
|
|
{
|
|
/*
|
|
* prep_new_page() initialize page->private (and therefore page->ptl)
|
|
* with 0. Make sure nobody took it in use in between.
|
|
*
|
|
* It can happen if arch try to use slab for page table allocation:
|
|
* slab code uses page->slab_cache, which share storage with page->ptl.
|
|
*/
|
|
VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
|
|
if (!ptlock_alloc(page))
|
|
return false;
|
|
spin_lock_init(ptlock_ptr(page));
|
|
return true;
|
|
}
|
|
|
|
#else /* !USE_SPLIT_PTE_PTLOCKS */
|
|
/*
|
|
* We use mm->page_table_lock to guard all pagetable pages of the mm.
|
|
*/
|
|
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return &mm->page_table_lock;
|
|
}
|
|
static inline void ptlock_cache_init(void) {}
|
|
static inline bool ptlock_init(struct page *page) { return true; }
|
|
static inline void ptlock_free(struct page *page) {}
|
|
#endif /* USE_SPLIT_PTE_PTLOCKS */
|
|
|
|
static inline void pgtable_init(void)
|
|
{
|
|
ptlock_cache_init();
|
|
pgtable_cache_init();
|
|
}
|
|
|
|
static inline bool pgtable_pte_page_ctor(struct page *page)
|
|
{
|
|
if (!ptlock_init(page))
|
|
return false;
|
|
__SetPageTable(page);
|
|
inc_lruvec_page_state(page, NR_PAGETABLE);
|
|
return true;
|
|
}
|
|
|
|
static inline void pgtable_pte_page_dtor(struct page *page)
|
|
{
|
|
ptlock_free(page);
|
|
__ClearPageTable(page);
|
|
dec_lruvec_page_state(page, NR_PAGETABLE);
|
|
}
|
|
|
|
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
|
|
({ \
|
|
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
|
|
pte_t *__pte = pte_offset_map(pmd, address); \
|
|
*(ptlp) = __ptl; \
|
|
spin_lock(__ptl); \
|
|
__pte; \
|
|
})
|
|
|
|
#define pte_unmap_unlock(pte, ptl) do { \
|
|
spin_unlock(ptl); \
|
|
pte_unmap(pte); \
|
|
} while (0)
|
|
|
|
#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
|
|
|
|
#define pte_alloc_map(mm, pmd, address) \
|
|
(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
|
|
|
|
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
|
|
(pte_alloc(mm, pmd) ? \
|
|
NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
|
|
|
|
#define pte_alloc_kernel(pmd, address) \
|
|
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
|
|
NULL: pte_offset_kernel(pmd, address))
|
|
|
|
#if USE_SPLIT_PMD_PTLOCKS
|
|
|
|
static inline struct page *pmd_pgtable_page(pmd_t *pmd)
|
|
{
|
|
unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
|
|
return virt_to_page((void *)((unsigned long) pmd & mask));
|
|
}
|
|
|
|
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return ptlock_ptr(pmd_pgtable_page(pmd));
|
|
}
|
|
|
|
static inline bool pmd_ptlock_init(struct page *page)
|
|
{
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
page->pmd_huge_pte = NULL;
|
|
#endif
|
|
return ptlock_init(page);
|
|
}
|
|
|
|
static inline void pmd_ptlock_free(struct page *page)
|
|
{
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
|
|
#endif
|
|
ptlock_free(page);
|
|
}
|
|
|
|
#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
|
|
|
|
#else
|
|
|
|
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return &mm->page_table_lock;
|
|
}
|
|
|
|
static inline bool pmd_ptlock_init(struct page *page) { return true; }
|
|
static inline void pmd_ptlock_free(struct page *page) {}
|
|
|
|
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
|
|
|
|
#endif
|
|
|
|
static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
spinlock_t *ptl = pmd_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
return ptl;
|
|
}
|
|
|
|
static inline bool pgtable_pmd_page_ctor(struct page *page)
|
|
{
|
|
if (!pmd_ptlock_init(page))
|
|
return false;
|
|
__SetPageTable(page);
|
|
inc_lruvec_page_state(page, NR_PAGETABLE);
|
|
return true;
|
|
}
|
|
|
|
static inline void pgtable_pmd_page_dtor(struct page *page)
|
|
{
|
|
pmd_ptlock_free(page);
|
|
__ClearPageTable(page);
|
|
dec_lruvec_page_state(page, NR_PAGETABLE);
|
|
}
|
|
|
|
/*
|
|
* No scalability reason to split PUD locks yet, but follow the same pattern
|
|
* as the PMD locks to make it easier if we decide to. The VM should not be
|
|
* considered ready to switch to split PUD locks yet; there may be places
|
|
* which need to be converted from page_table_lock.
|
|
*/
|
|
static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
|
|
{
|
|
return &mm->page_table_lock;
|
|
}
|
|
|
|
static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
|
|
{
|
|
spinlock_t *ptl = pud_lockptr(mm, pud);
|
|
|
|
spin_lock(ptl);
|
|
return ptl;
|
|
}
|
|
|
|
extern void __init pagecache_init(void);
|
|
extern void free_initmem(void);
|
|
|
|
/*
|
|
* Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
|
|
* into the buddy system. The freed pages will be poisoned with pattern
|
|
* "poison" if it's within range [0, UCHAR_MAX].
|
|
* Return pages freed into the buddy system.
|
|
*/
|
|
extern unsigned long free_reserved_area(void *start, void *end,
|
|
int poison, const char *s);
|
|
|
|
extern void adjust_managed_page_count(struct page *page, long count);
|
|
extern void mem_init_print_info(void);
|
|
|
|
extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
|
|
|
|
/* Free the reserved page into the buddy system, so it gets managed. */
|
|
static inline void free_reserved_page(struct page *page)
|
|
{
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
adjust_managed_page_count(page, 1);
|
|
}
|
|
#define free_highmem_page(page) free_reserved_page(page)
|
|
|
|
static inline void mark_page_reserved(struct page *page)
|
|
{
|
|
SetPageReserved(page);
|
|
adjust_managed_page_count(page, -1);
|
|
}
|
|
|
|
/*
|
|
* Default method to free all the __init memory into the buddy system.
|
|
* The freed pages will be poisoned with pattern "poison" if it's within
|
|
* range [0, UCHAR_MAX].
|
|
* Return pages freed into the buddy system.
|
|
*/
|
|
static inline unsigned long free_initmem_default(int poison)
|
|
{
|
|
extern char __init_begin[], __init_end[];
|
|
|
|
return free_reserved_area(&__init_begin, &__init_end,
|
|
poison, "unused kernel image (initmem)");
|
|
}
|
|
|
|
static inline unsigned long get_num_physpages(void)
|
|
{
|
|
int nid;
|
|
unsigned long phys_pages = 0;
|
|
|
|
for_each_online_node(nid)
|
|
phys_pages += node_present_pages(nid);
|
|
|
|
return phys_pages;
|
|
}
|
|
|
|
/*
|
|
* Using memblock node mappings, an architecture may initialise its
|
|
* zones, allocate the backing mem_map and account for memory holes in an
|
|
* architecture independent manner.
|
|
*
|
|
* An architecture is expected to register range of page frames backed by
|
|
* physical memory with memblock_add[_node]() before calling
|
|
* free_area_init() passing in the PFN each zone ends at. At a basic
|
|
* usage, an architecture is expected to do something like
|
|
*
|
|
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
|
|
* max_highmem_pfn};
|
|
* for_each_valid_physical_page_range()
|
|
* memblock_add_node(base, size, nid, MEMBLOCK_NONE)
|
|
* free_area_init(max_zone_pfns);
|
|
*/
|
|
void free_area_init(unsigned long *max_zone_pfn);
|
|
unsigned long node_map_pfn_alignment(void);
|
|
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern void get_pfn_range_for_nid(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn);
|
|
|
|
#ifndef CONFIG_NUMA
|
|
static inline int early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
/* please see mm/page_alloc.c */
|
|
extern int __meminit early_pfn_to_nid(unsigned long pfn);
|
|
#endif
|
|
|
|
extern void set_dma_reserve(unsigned long new_dma_reserve);
|
|
extern void memmap_init_range(unsigned long, int, unsigned long,
|
|
unsigned long, unsigned long, enum meminit_context,
|
|
struct vmem_altmap *, int migratetype);
|
|
extern void setup_per_zone_wmarks(void);
|
|
extern void calculate_min_free_kbytes(void);
|
|
extern int __meminit init_per_zone_wmark_min(void);
|
|
extern void mem_init(void);
|
|
extern void __init mmap_init(void);
|
|
|
|
extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
|
|
static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
|
|
{
|
|
__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
|
|
}
|
|
extern long si_mem_available(void);
|
|
extern void si_meminfo(struct sysinfo * val);
|
|
extern void si_meminfo_node(struct sysinfo *val, int nid);
|
|
#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
|
|
extern unsigned long arch_reserved_kernel_pages(void);
|
|
#endif
|
|
|
|
extern __printf(3, 4)
|
|
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
|
|
|
|
extern void setup_per_cpu_pageset(void);
|
|
|
|
/* page_alloc.c */
|
|
extern int min_free_kbytes;
|
|
extern int watermark_boost_factor;
|
|
extern int watermark_scale_factor;
|
|
extern bool arch_has_descending_max_zone_pfns(void);
|
|
|
|
/* nommu.c */
|
|
extern atomic_long_t mmap_pages_allocated;
|
|
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
|
|
|
|
/* interval_tree.c */
|
|
void vma_interval_tree_insert(struct vm_area_struct *node,
|
|
struct rb_root_cached *root);
|
|
void vma_interval_tree_insert_after(struct vm_area_struct *node,
|
|
struct vm_area_struct *prev,
|
|
struct rb_root_cached *root);
|
|
void vma_interval_tree_remove(struct vm_area_struct *node,
|
|
struct rb_root_cached *root);
|
|
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
|
|
unsigned long start, unsigned long last);
|
|
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
|
|
unsigned long start, unsigned long last);
|
|
|
|
#define vma_interval_tree_foreach(vma, root, start, last) \
|
|
for (vma = vma_interval_tree_iter_first(root, start, last); \
|
|
vma; vma = vma_interval_tree_iter_next(vma, start, last))
|
|
|
|
void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
|
|
struct rb_root_cached *root);
|
|
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
|
|
struct rb_root_cached *root);
|
|
struct anon_vma_chain *
|
|
anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
|
|
unsigned long start, unsigned long last);
|
|
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
|
|
struct anon_vma_chain *node, unsigned long start, unsigned long last);
|
|
#ifdef CONFIG_DEBUG_VM_RB
|
|
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
|
|
#endif
|
|
|
|
#define anon_vma_interval_tree_foreach(avc, root, start, last) \
|
|
for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
|
|
avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
|
|
|
|
/* mmap.c */
|
|
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
|
|
extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
|
|
struct vm_area_struct *expand);
|
|
static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
|
|
{
|
|
return __vma_adjust(vma, start, end, pgoff, insert, NULL);
|
|
}
|
|
extern struct vm_area_struct *vma_merge(struct mm_struct *,
|
|
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
|
|
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
|
|
struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
|
|
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
|
|
extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
|
|
unsigned long addr, int new_below);
|
|
extern int split_vma(struct mm_struct *, struct vm_area_struct *,
|
|
unsigned long addr, int new_below);
|
|
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
|
|
extern void unlink_file_vma(struct vm_area_struct *);
|
|
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
|
|
unsigned long addr, unsigned long len, pgoff_t pgoff,
|
|
bool *need_rmap_locks);
|
|
extern void exit_mmap(struct mm_struct *);
|
|
|
|
void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
|
|
void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
|
|
|
|
static inline int check_data_rlimit(unsigned long rlim,
|
|
unsigned long new,
|
|
unsigned long start,
|
|
unsigned long end_data,
|
|
unsigned long start_data)
|
|
{
|
|
if (rlim < RLIM_INFINITY) {
|
|
if (((new - start) + (end_data - start_data)) > rlim)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern int mm_take_all_locks(struct mm_struct *mm);
|
|
extern void mm_drop_all_locks(struct mm_struct *mm);
|
|
|
|
extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
|
|
extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
|
|
extern struct file *get_mm_exe_file(struct mm_struct *mm);
|
|
extern struct file *get_task_exe_file(struct task_struct *task);
|
|
|
|
extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
|
|
extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
|
|
|
|
extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
|
|
const struct vm_special_mapping *sm);
|
|
extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long flags,
|
|
const struct vm_special_mapping *spec);
|
|
/* This is an obsolete alternative to _install_special_mapping. */
|
|
extern int install_special_mapping(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long flags, struct page **pages);
|
|
|
|
unsigned long randomize_stack_top(unsigned long stack_top);
|
|
unsigned long randomize_page(unsigned long start, unsigned long range);
|
|
|
|
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
|
|
|
extern unsigned long mmap_region(struct file *file, unsigned long addr,
|
|
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
|
|
struct list_head *uf);
|
|
extern unsigned long do_mmap(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot, unsigned long flags,
|
|
unsigned long pgoff, unsigned long *populate, struct list_head *uf);
|
|
extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
|
|
unsigned long start, size_t len, struct list_head *uf,
|
|
bool downgrade);
|
|
extern int do_munmap(struct mm_struct *, unsigned long, size_t,
|
|
struct list_head *uf);
|
|
extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern int __mm_populate(unsigned long addr, unsigned long len,
|
|
int ignore_errors);
|
|
static inline void mm_populate(unsigned long addr, unsigned long len)
|
|
{
|
|
/* Ignore errors */
|
|
(void) __mm_populate(addr, len, 1);
|
|
}
|
|
#else
|
|
static inline void mm_populate(unsigned long addr, unsigned long len) {}
|
|
#endif
|
|
|
|
/* These take the mm semaphore themselves */
|
|
extern int __must_check vm_brk(unsigned long, unsigned long);
|
|
extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
|
|
extern int vm_munmap(unsigned long, size_t);
|
|
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
|
|
unsigned long, unsigned long,
|
|
unsigned long, unsigned long);
|
|
|
|
struct vm_unmapped_area_info {
|
|
#define VM_UNMAPPED_AREA_TOPDOWN 1
|
|
unsigned long flags;
|
|
unsigned long length;
|
|
unsigned long low_limit;
|
|
unsigned long high_limit;
|
|
unsigned long align_mask;
|
|
unsigned long align_offset;
|
|
};
|
|
|
|
extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
|
|
|
|
/* truncate.c */
|
|
extern void truncate_inode_pages(struct address_space *, loff_t);
|
|
extern void truncate_inode_pages_range(struct address_space *,
|
|
loff_t lstart, loff_t lend);
|
|
extern void truncate_inode_pages_final(struct address_space *);
|
|
|
|
/* generic vm_area_ops exported for stackable file systems */
|
|
extern vm_fault_t filemap_fault(struct vm_fault *vmf);
|
|
extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
|
|
pgoff_t start_pgoff, pgoff_t end_pgoff);
|
|
extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
|
|
|
|
extern unsigned long stack_guard_gap;
|
|
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
|
|
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
|
|
|
|
/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
|
|
extern int expand_downwards(struct vm_area_struct *vma,
|
|
unsigned long address);
|
|
#if VM_GROWSUP
|
|
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
|
|
#else
|
|
#define expand_upwards(vma, address) (0)
|
|
#endif
|
|
|
|
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
|
|
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
|
|
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
|
|
struct vm_area_struct **pprev);
|
|
|
|
/*
|
|
* Look up the first VMA which intersects the interval [start_addr, end_addr)
|
|
* NULL if none. Assume start_addr < end_addr.
|
|
*/
|
|
struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
|
|
unsigned long start_addr, unsigned long end_addr);
|
|
|
|
/**
|
|
* vma_lookup() - Find a VMA at a specific address
|
|
* @mm: The process address space.
|
|
* @addr: The user address.
|
|
*
|
|
* Return: The vm_area_struct at the given address, %NULL otherwise.
|
|
*/
|
|
static inline
|
|
struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return mtree_load(&mm->mm_mt, addr);
|
|
}
|
|
|
|
static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
|
|
{
|
|
unsigned long vm_start = vma->vm_start;
|
|
|
|
if (vma->vm_flags & VM_GROWSDOWN) {
|
|
vm_start -= stack_guard_gap;
|
|
if (vm_start > vma->vm_start)
|
|
vm_start = 0;
|
|
}
|
|
return vm_start;
|
|
}
|
|
|
|
static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
|
|
{
|
|
unsigned long vm_end = vma->vm_end;
|
|
|
|
if (vma->vm_flags & VM_GROWSUP) {
|
|
vm_end += stack_guard_gap;
|
|
if (vm_end < vma->vm_end)
|
|
vm_end = -PAGE_SIZE;
|
|
}
|
|
return vm_end;
|
|
}
|
|
|
|
static inline unsigned long vma_pages(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
|
|
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
|
|
unsigned long vm_start, unsigned long vm_end)
|
|
{
|
|
struct vm_area_struct *vma = vma_lookup(mm, vm_start);
|
|
|
|
if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
|
|
vma = NULL;
|
|
|
|
return vma;
|
|
}
|
|
|
|
static inline bool range_in_vma(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
return (vma && vma->vm_start <= start && end <= vma->vm_end);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
pgprot_t vm_get_page_prot(unsigned long vm_flags);
|
|
void vma_set_page_prot(struct vm_area_struct *vma);
|
|
#else
|
|
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
|
|
{
|
|
return __pgprot(0);
|
|
}
|
|
static inline void vma_set_page_prot(struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
|
|
}
|
|
#endif
|
|
|
|
void vma_set_file(struct vm_area_struct *vma, struct file *file);
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
unsigned long change_prot_numa(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end);
|
|
#endif
|
|
|
|
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
|
|
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t);
|
|
int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t prot);
|
|
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
|
|
int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
|
|
struct page **pages, unsigned long *num);
|
|
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
|
|
unsigned long num);
|
|
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
|
|
unsigned long num);
|
|
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn);
|
|
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn, pgprot_t pgprot);
|
|
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
|
|
pfn_t pfn);
|
|
vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
|
|
pfn_t pfn, pgprot_t pgprot);
|
|
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
|
|
unsigned long addr, pfn_t pfn);
|
|
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
|
|
|
|
static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
|
|
unsigned long addr, struct page *page)
|
|
{
|
|
int err = vm_insert_page(vma, addr, page);
|
|
|
|
if (err == -ENOMEM)
|
|
return VM_FAULT_OOM;
|
|
if (err < 0 && err != -EBUSY)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
|
|
#ifndef io_remap_pfn_range
|
|
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
|
|
}
|
|
#endif
|
|
|
|
static inline vm_fault_t vmf_error(int err)
|
|
{
|
|
if (err == -ENOMEM)
|
|
return VM_FAULT_OOM;
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int foll_flags);
|
|
|
|
#define FOLL_WRITE 0x01 /* check pte is writable */
|
|
#define FOLL_TOUCH 0x02 /* mark page accessed */
|
|
#define FOLL_GET 0x04 /* do get_page on page */
|
|
#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
|
|
#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
|
|
#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
|
|
* and return without waiting upon it */
|
|
#define FOLL_NOFAULT 0x80 /* do not fault in pages */
|
|
#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
|
|
#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
|
|
#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
|
|
#define FOLL_ANON 0x8000 /* don't do file mappings */
|
|
#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
|
|
#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
|
|
#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
|
|
#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
|
|
#define FOLL_PCI_P2PDMA 0x100000 /* allow returning PCI P2PDMA pages */
|
|
#define FOLL_INTERRUPTIBLE 0x200000 /* allow interrupts from generic signals */
|
|
|
|
/*
|
|
* FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
|
|
* other. Here is what they mean, and how to use them:
|
|
*
|
|
* FOLL_LONGTERM indicates that the page will be held for an indefinite time
|
|
* period _often_ under userspace control. This is in contrast to
|
|
* iov_iter_get_pages(), whose usages are transient.
|
|
*
|
|
* FIXME: For pages which are part of a filesystem, mappings are subject to the
|
|
* lifetime enforced by the filesystem and we need guarantees that longterm
|
|
* users like RDMA and V4L2 only establish mappings which coordinate usage with
|
|
* the filesystem. Ideas for this coordination include revoking the longterm
|
|
* pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
|
|
* added after the problem with filesystems was found FS DAX VMAs are
|
|
* specifically failed. Filesystem pages are still subject to bugs and use of
|
|
* FOLL_LONGTERM should be avoided on those pages.
|
|
*
|
|
* FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
|
|
* Currently only get_user_pages() and get_user_pages_fast() support this flag
|
|
* and calls to get_user_pages_[un]locked are specifically not allowed. This
|
|
* is due to an incompatibility with the FS DAX check and
|
|
* FAULT_FLAG_ALLOW_RETRY.
|
|
*
|
|
* In the CMA case: long term pins in a CMA region would unnecessarily fragment
|
|
* that region. And so, CMA attempts to migrate the page before pinning, when
|
|
* FOLL_LONGTERM is specified.
|
|
*
|
|
* FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
|
|
* but an additional pin counting system) will be invoked. This is intended for
|
|
* anything that gets a page reference and then touches page data (for example,
|
|
* Direct IO). This lets the filesystem know that some non-file-system entity is
|
|
* potentially changing the pages' data. In contrast to FOLL_GET (whose pages
|
|
* are released via put_page()), FOLL_PIN pages must be released, ultimately, by
|
|
* a call to unpin_user_page().
|
|
*
|
|
* FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
|
|
* and separate refcounting mechanisms, however, and that means that each has
|
|
* its own acquire and release mechanisms:
|
|
*
|
|
* FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
|
|
*
|
|
* FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
|
|
*
|
|
* FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
|
|
* (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
|
|
* calls applied to them, and that's perfectly OK. This is a constraint on the
|
|
* callers, not on the pages.)
|
|
*
|
|
* FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
|
|
* directly by the caller. That's in order to help avoid mismatches when
|
|
* releasing pages: get_user_pages*() pages must be released via put_page(),
|
|
* while pin_user_pages*() pages must be released via unpin_user_page().
|
|
*
|
|
* Please see Documentation/core-api/pin_user_pages.rst for more information.
|
|
*/
|
|
|
|
static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
|
|
{
|
|
if (vm_fault & VM_FAULT_OOM)
|
|
return -ENOMEM;
|
|
if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
|
|
return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
|
|
if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Indicates for which pages that are write-protected in the page table,
|
|
* whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
|
|
* GUP pin will remain consistent with the pages mapped into the page tables
|
|
* of the MM.
|
|
*
|
|
* Temporary unmapping of PageAnonExclusive() pages or clearing of
|
|
* PageAnonExclusive() has to protect against concurrent GUP:
|
|
* * Ordinary GUP: Using the PT lock
|
|
* * GUP-fast and fork(): mm->write_protect_seq
|
|
* * GUP-fast and KSM or temporary unmapping (swap, migration): see
|
|
* page_try_share_anon_rmap()
|
|
*
|
|
* Must be called with the (sub)page that's actually referenced via the
|
|
* page table entry, which might not necessarily be the head page for a
|
|
* PTE-mapped THP.
|
|
*
|
|
* If the vma is NULL, we're coming from the GUP-fast path and might have
|
|
* to fallback to the slow path just to lookup the vma.
|
|
*/
|
|
static inline bool gup_must_unshare(struct vm_area_struct *vma,
|
|
unsigned int flags, struct page *page)
|
|
{
|
|
/*
|
|
* FOLL_WRITE is implicitly handled correctly as the page table entry
|
|
* has to be writable -- and if it references (part of) an anonymous
|
|
* folio, that part is required to be marked exclusive.
|
|
*/
|
|
if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
|
|
return false;
|
|
/*
|
|
* Note: PageAnon(page) is stable until the page is actually getting
|
|
* freed.
|
|
*/
|
|
if (!PageAnon(page)) {
|
|
/*
|
|
* We only care about R/O long-term pining: R/O short-term
|
|
* pinning does not have the semantics to observe successive
|
|
* changes through the process page tables.
|
|
*/
|
|
if (!(flags & FOLL_LONGTERM))
|
|
return false;
|
|
|
|
/* We really need the vma ... */
|
|
if (!vma)
|
|
return true;
|
|
|
|
/*
|
|
* ... because we only care about writable private ("COW")
|
|
* mappings where we have to break COW early.
|
|
*/
|
|
return is_cow_mapping(vma->vm_flags);
|
|
}
|
|
|
|
/* Paired with a memory barrier in page_try_share_anon_rmap(). */
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
|
|
smp_rmb();
|
|
|
|
/*
|
|
* Note that PageKsm() pages cannot be exclusive, and consequently,
|
|
* cannot get pinned.
|
|
*/
|
|
return !PageAnonExclusive(page);
|
|
}
|
|
|
|
/*
|
|
* Indicates whether GUP can follow a PROT_NONE mapped page, or whether
|
|
* a (NUMA hinting) fault is required.
|
|
*/
|
|
static inline bool gup_can_follow_protnone(unsigned int flags)
|
|
{
|
|
/*
|
|
* FOLL_FORCE has to be able to make progress even if the VMA is
|
|
* inaccessible. Further, FOLL_FORCE access usually does not represent
|
|
* application behaviour and we should avoid triggering NUMA hinting
|
|
* faults.
|
|
*/
|
|
return flags & FOLL_FORCE;
|
|
}
|
|
|
|
typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
|
|
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
|
|
unsigned long size, pte_fn_t fn, void *data);
|
|
extern int apply_to_existing_page_range(struct mm_struct *mm,
|
|
unsigned long address, unsigned long size,
|
|
pte_fn_t fn, void *data);
|
|
|
|
extern void __init init_mem_debugging_and_hardening(void);
|
|
#ifdef CONFIG_PAGE_POISONING
|
|
extern void __kernel_poison_pages(struct page *page, int numpages);
|
|
extern void __kernel_unpoison_pages(struct page *page, int numpages);
|
|
extern bool _page_poisoning_enabled_early;
|
|
DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
|
|
static inline bool page_poisoning_enabled(void)
|
|
{
|
|
return _page_poisoning_enabled_early;
|
|
}
|
|
/*
|
|
* For use in fast paths after init_mem_debugging() has run, or when a
|
|
* false negative result is not harmful when called too early.
|
|
*/
|
|
static inline bool page_poisoning_enabled_static(void)
|
|
{
|
|
return static_branch_unlikely(&_page_poisoning_enabled);
|
|
}
|
|
static inline void kernel_poison_pages(struct page *page, int numpages)
|
|
{
|
|
if (page_poisoning_enabled_static())
|
|
__kernel_poison_pages(page, numpages);
|
|
}
|
|
static inline void kernel_unpoison_pages(struct page *page, int numpages)
|
|
{
|
|
if (page_poisoning_enabled_static())
|
|
__kernel_unpoison_pages(page, numpages);
|
|
}
|
|
#else
|
|
static inline bool page_poisoning_enabled(void) { return false; }
|
|
static inline bool page_poisoning_enabled_static(void) { return false; }
|
|
static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
|
|
static inline void kernel_poison_pages(struct page *page, int numpages) { }
|
|
static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
|
|
#endif
|
|
|
|
DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
|
|
static inline bool want_init_on_alloc(gfp_t flags)
|
|
{
|
|
if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
|
|
&init_on_alloc))
|
|
return true;
|
|
return flags & __GFP_ZERO;
|
|
}
|
|
|
|
DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
|
|
static inline bool want_init_on_free(void)
|
|
{
|
|
return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
|
|
&init_on_free);
|
|
}
|
|
|
|
extern bool _debug_pagealloc_enabled_early;
|
|
DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
|
|
|
|
static inline bool debug_pagealloc_enabled(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
|
|
_debug_pagealloc_enabled_early;
|
|
}
|
|
|
|
/*
|
|
* For use in fast paths after init_debug_pagealloc() has run, or when a
|
|
* false negative result is not harmful when called too early.
|
|
*/
|
|
static inline bool debug_pagealloc_enabled_static(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
|
|
return false;
|
|
|
|
return static_branch_unlikely(&_debug_pagealloc_enabled);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
/*
|
|
* To support DEBUG_PAGEALLOC architecture must ensure that
|
|
* __kernel_map_pages() never fails
|
|
*/
|
|
extern void __kernel_map_pages(struct page *page, int numpages, int enable);
|
|
|
|
static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
|
|
{
|
|
if (debug_pagealloc_enabled_static())
|
|
__kernel_map_pages(page, numpages, 1);
|
|
}
|
|
|
|
static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
|
|
{
|
|
if (debug_pagealloc_enabled_static())
|
|
__kernel_map_pages(page, numpages, 0);
|
|
}
|
|
#else /* CONFIG_DEBUG_PAGEALLOC */
|
|
static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
|
|
static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
|
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
|
|
|
#ifdef __HAVE_ARCH_GATE_AREA
|
|
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
|
|
extern int in_gate_area_no_mm(unsigned long addr);
|
|
extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
|
|
#else
|
|
static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
|
|
static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* __HAVE_ARCH_GATE_AREA */
|
|
|
|
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
extern int sysctl_drop_caches;
|
|
int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
|
|
loff_t *);
|
|
#endif
|
|
|
|
void drop_slab(void);
|
|
|
|
#ifndef CONFIG_MMU
|
|
#define randomize_va_space 0
|
|
#else
|
|
extern int randomize_va_space;
|
|
#endif
|
|
|
|
const char * arch_vma_name(struct vm_area_struct *vma);
|
|
#ifdef CONFIG_MMU
|
|
void print_vma_addr(char *prefix, unsigned long rip);
|
|
#else
|
|
static inline void print_vma_addr(char *prefix, unsigned long rip)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void *sparse_buffer_alloc(unsigned long size);
|
|
struct page * __populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
|
|
struct dev_pagemap *pgmap);
|
|
void pmd_init(void *addr);
|
|
void pud_init(void *addr);
|
|
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
|
|
p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
|
|
pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
|
|
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
|
|
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
|
|
struct vmem_altmap *altmap, struct page *reuse);
|
|
void *vmemmap_alloc_block(unsigned long size, int node);
|
|
struct vmem_altmap;
|
|
void *vmemmap_alloc_block_buf(unsigned long size, int node,
|
|
struct vmem_altmap *altmap);
|
|
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
|
|
void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
|
|
unsigned long addr, unsigned long next);
|
|
int vmemmap_check_pmd(pmd_t *pmd, int node,
|
|
unsigned long addr, unsigned long next);
|
|
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap);
|
|
int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap);
|
|
int vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap);
|
|
void vmemmap_populate_print_last(void);
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap);
|
|
#endif
|
|
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
|
|
unsigned long nr_pages);
|
|
|
|
enum mf_flags {
|
|
MF_COUNT_INCREASED = 1 << 0,
|
|
MF_ACTION_REQUIRED = 1 << 1,
|
|
MF_MUST_KILL = 1 << 2,
|
|
MF_SOFT_OFFLINE = 1 << 3,
|
|
MF_UNPOISON = 1 << 4,
|
|
MF_SW_SIMULATED = 1 << 5,
|
|
MF_NO_RETRY = 1 << 6,
|
|
};
|
|
int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
|
|
unsigned long count, int mf_flags);
|
|
extern int memory_failure(unsigned long pfn, int flags);
|
|
extern void memory_failure_queue_kick(int cpu);
|
|
extern int unpoison_memory(unsigned long pfn);
|
|
extern int sysctl_memory_failure_early_kill;
|
|
extern int sysctl_memory_failure_recovery;
|
|
extern void shake_page(struct page *p);
|
|
extern atomic_long_t num_poisoned_pages __read_mostly;
|
|
extern int soft_offline_page(unsigned long pfn, int flags);
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
extern void memory_failure_queue(unsigned long pfn, int flags);
|
|
extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
|
|
bool *migratable_cleared);
|
|
void num_poisoned_pages_inc(unsigned long pfn);
|
|
void num_poisoned_pages_sub(unsigned long pfn, long i);
|
|
#else
|
|
static inline void memory_failure_queue(unsigned long pfn, int flags)
|
|
{
|
|
}
|
|
|
|
static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
|
|
bool *migratable_cleared)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void num_poisoned_pages_inc(unsigned long pfn)
|
|
{
|
|
}
|
|
|
|
static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
|
|
extern void memblk_nr_poison_inc(unsigned long pfn);
|
|
extern void memblk_nr_poison_sub(unsigned long pfn, long i);
|
|
#else
|
|
static inline void memblk_nr_poison_inc(unsigned long pfn)
|
|
{
|
|
}
|
|
|
|
static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_memory_failure
|
|
static inline int arch_memory_failure(unsigned long pfn, int flags)
|
|
{
|
|
return -ENXIO;
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_is_platform_page
|
|
static inline bool arch_is_platform_page(u64 paddr)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Error handlers for various types of pages.
|
|
*/
|
|
enum mf_result {
|
|
MF_IGNORED, /* Error: cannot be handled */
|
|
MF_FAILED, /* Error: handling failed */
|
|
MF_DELAYED, /* Will be handled later */
|
|
MF_RECOVERED, /* Successfully recovered */
|
|
};
|
|
|
|
enum mf_action_page_type {
|
|
MF_MSG_KERNEL,
|
|
MF_MSG_KERNEL_HIGH_ORDER,
|
|
MF_MSG_SLAB,
|
|
MF_MSG_DIFFERENT_COMPOUND,
|
|
MF_MSG_HUGE,
|
|
MF_MSG_FREE_HUGE,
|
|
MF_MSG_UNMAP_FAILED,
|
|
MF_MSG_DIRTY_SWAPCACHE,
|
|
MF_MSG_CLEAN_SWAPCACHE,
|
|
MF_MSG_DIRTY_MLOCKED_LRU,
|
|
MF_MSG_CLEAN_MLOCKED_LRU,
|
|
MF_MSG_DIRTY_UNEVICTABLE_LRU,
|
|
MF_MSG_CLEAN_UNEVICTABLE_LRU,
|
|
MF_MSG_DIRTY_LRU,
|
|
MF_MSG_CLEAN_LRU,
|
|
MF_MSG_TRUNCATED_LRU,
|
|
MF_MSG_BUDDY,
|
|
MF_MSG_DAX,
|
|
MF_MSG_UNSPLIT_THP,
|
|
MF_MSG_UNKNOWN,
|
|
};
|
|
|
|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
|
|
extern void clear_huge_page(struct page *page,
|
|
unsigned long addr_hint,
|
|
unsigned int pages_per_huge_page);
|
|
extern void copy_user_huge_page(struct page *dst, struct page *src,
|
|
unsigned long addr_hint,
|
|
struct vm_area_struct *vma,
|
|
unsigned int pages_per_huge_page);
|
|
extern long copy_huge_page_from_user(struct page *dst_page,
|
|
const void __user *usr_src,
|
|
unsigned int pages_per_huge_page,
|
|
bool allow_pagefault);
|
|
|
|
/**
|
|
* vma_is_special_huge - Are transhuge page-table entries considered special?
|
|
* @vma: Pointer to the struct vm_area_struct to consider
|
|
*
|
|
* Whether transhuge page-table entries are considered "special" following
|
|
* the definition in vm_normal_page().
|
|
*
|
|
* Return: true if transhuge page-table entries should be considered special,
|
|
* false otherwise.
|
|
*/
|
|
static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
|
|
{
|
|
return vma_is_dax(vma) || (vma->vm_file &&
|
|
(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
extern unsigned int _debug_guardpage_minorder;
|
|
DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
|
|
|
|
static inline unsigned int debug_guardpage_minorder(void)
|
|
{
|
|
return _debug_guardpage_minorder;
|
|
}
|
|
|
|
static inline bool debug_guardpage_enabled(void)
|
|
{
|
|
return static_branch_unlikely(&_debug_guardpage_enabled);
|
|
}
|
|
|
|
static inline bool page_is_guard(struct page *page)
|
|
{
|
|
if (!debug_guardpage_enabled())
|
|
return false;
|
|
|
|
return PageGuard(page);
|
|
}
|
|
#else
|
|
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
|
|
static inline bool debug_guardpage_enabled(void) { return false; }
|
|
static inline bool page_is_guard(struct page *page) { return false; }
|
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
|
|
|
#if MAX_NUMNODES > 1
|
|
void __init setup_nr_node_ids(void);
|
|
#else
|
|
static inline void setup_nr_node_ids(void) {}
|
|
#endif
|
|
|
|
extern int memcmp_pages(struct page *page1, struct page *page2);
|
|
|
|
static inline int pages_identical(struct page *page1, struct page *page2)
|
|
{
|
|
return !memcmp_pages(page1, page2);
|
|
}
|
|
|
|
#ifdef CONFIG_MAPPING_DIRTY_HELPERS
|
|
unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
|
|
pgoff_t first_index, pgoff_t nr,
|
|
pgoff_t bitmap_pgoff,
|
|
unsigned long *bitmap,
|
|
pgoff_t *start,
|
|
pgoff_t *end);
|
|
|
|
unsigned long wp_shared_mapping_range(struct address_space *mapping,
|
|
pgoff_t first_index, pgoff_t nr);
|
|
#endif
|
|
|
|
extern int sysctl_nr_trim_pages;
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
void mem_dump_obj(void *object);
|
|
#else
|
|
static inline void mem_dump_obj(void *object) {}
|
|
#endif
|
|
|
|
/**
|
|
* seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
|
|
* @seals: the seals to check
|
|
* @vma: the vma to operate on
|
|
*
|
|
* Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
|
|
* the vma flags. Return 0 if check pass, or <0 for errors.
|
|
*/
|
|
static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
|
|
{
|
|
if (seals & F_SEAL_FUTURE_WRITE) {
|
|
/*
|
|
* New PROT_WRITE and MAP_SHARED mmaps are not allowed when
|
|
* "future write" seal active.
|
|
*/
|
|
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
|
|
* MAP_SHARED and read-only, take care to not allow mprotect to
|
|
* revert protections on such mappings. Do this only for shared
|
|
* mappings. For private mappings, don't need to mask
|
|
* VM_MAYWRITE as we still want them to be COW-writable.
|
|
*/
|
|
if (vma->vm_flags & VM_SHARED)
|
|
vma->vm_flags &= ~(VM_MAYWRITE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ANON_VMA_NAME
|
|
int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
|
|
unsigned long len_in,
|
|
struct anon_vma_name *anon_name);
|
|
#else
|
|
static inline int
|
|
madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
|
|
unsigned long len_in, struct anon_vma_name *anon_name) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LINUX_MM_H */
|