linux-stable/kernel/trace/fgraph.c
Steven Rostedt fae4078c28 fgraph: Allocate ret_stack_list with proper size
The ret_stack_list is an array of ret_stack shadow stacks for the function
graph usage. When the first function graph is enabled, all tasks in the
system get a shadow stack. The ret_stack_list is a 32 element array of
pointers to these shadow stacks. It allocates the shadow stack in batches
(32 stacks at a time), assigns them to running tasks, and continues until
all tasks are covered.

When the function graph shadow stack changed from an array of
ftrace_ret_stack structures to an array of longs, the allocation of
ret_stack_list went from allocating an array of 32 elements to just a
block defined by SHADOW_STACK_SIZE. Luckily, that's defined as PAGE_SIZE
and is much more than enough to hold 32 pointers. But it is way overkill
for the amount needed to allocate.

Change the allocation of ret_stack_list back to a kcalloc() of
FTRACE_RETSTACK_ALLOC_SIZE pointers.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241018215212.23f13f40@rorschach
Fixes: 42675b723b ("function_graph: Convert ret_stack to a series of longs")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-18 21:57:20 -04:00

1361 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Infrastructure to took into function calls and returns.
* Copyright (c) 2008-2009 Frederic Weisbecker <fweisbec@gmail.com>
* Mostly borrowed from function tracer which
* is Copyright (c) Steven Rostedt <srostedt@redhat.com>
*
* Highly modified by Steven Rostedt (VMware).
*/
#include <linux/bits.h>
#include <linux/jump_label.h>
#include <linux/suspend.h>
#include <linux/ftrace.h>
#include <linux/static_call.h>
#include <linux/slab.h>
#include <trace/events/sched.h>
#include "ftrace_internal.h"
#include "trace.h"
/*
* FGRAPH_FRAME_SIZE: Size in bytes of the meta data on the shadow stack
* FGRAPH_FRAME_OFFSET: Size in long words of the meta data frame
*/
#define FGRAPH_FRAME_SIZE sizeof(struct ftrace_ret_stack)
#define FGRAPH_FRAME_OFFSET DIV_ROUND_UP(FGRAPH_FRAME_SIZE, sizeof(long))
/*
* On entry to a function (via function_graph_enter()), a new fgraph frame
* (ftrace_ret_stack) is pushed onto the stack as well as a word that
* holds a bitmask and a type (called "bitmap"). The bitmap is defined as:
*
* bits: 0 - 9 offset in words from the previous ftrace_ret_stack
*
* bits: 10 - 11 Type of storage
* 0 - reserved
* 1 - bitmap of fgraph_array index
* 2 - reserved data
*
* For type with "bitmap of fgraph_array index" (FGRAPH_TYPE_BITMAP):
* bits: 12 - 27 The bitmap of fgraph_ops fgraph_array index
* That is, it's a bitmask of 0-15 (16 bits)
* where if a corresponding ops in the fgraph_array[]
* expects a callback from the return of the function
* it's corresponding bit will be set.
*
*
* The top of the ret_stack (when not empty) will always have a reference
* word that points to the last fgraph frame that was saved.
*
* For reserved data:
* bits: 12 - 17 The size in words that is stored
* bits: 18 - 23 The index of fgraph_array, which shows who is stored
*
* That is, at the end of function_graph_enter, if the first and forth
* fgraph_ops on the fgraph_array[] (index 0 and 3) needs their retfunc called
* on the return of the function being traced, and the forth fgraph_ops
* stored two words of data, this is what will be on the task's shadow
* ret_stack: (the stack grows upward)
*
* ret_stack[SHADOW_STACK_OFFSET]
* | SHADOW_STACK_TASK_VARS(ret_stack)[15] |
* ...
* | SHADOW_STACK_TASK_VARS(ret_stack)[0] |
* ret_stack[SHADOW_STACK_MAX_OFFSET]
* ...
* | | <- task->curr_ret_stack
* +--------------------------------------------+
* | (3 << 12) | (3 << 10) | FGRAPH_FRAME_OFFSET|
* | *or put another way* |
* | (3 << FGRAPH_DATA_INDEX_SHIFT)| \ | This is for fgraph_ops[3].
* | ((2 - 1) << FGRAPH_DATA_SHIFT)| \ | The data size is 2 words.
* | (FGRAPH_TYPE_DATA << FGRAPH_TYPE_SHIFT)| \ |
* | (offset2:FGRAPH_FRAME_OFFSET+3) | <- the offset2 is from here
* +--------------------------------------------+ ( It is 4 words from the ret_stack)
* | STORED DATA WORD 2 |
* | STORED DATA WORD 1 |
* +--------------------------------------------+
* | (9 << 12) | (1 << 10) | FGRAPH_FRAME_OFFSET|
* | *or put another way* |
* | (BIT(3)|BIT(0)) << FGRAPH_INDEX_SHIFT | \ |
* | FGRAPH_TYPE_BITMAP << FGRAPH_TYPE_SHIFT| \ |
* | (offset1:FGRAPH_FRAME_OFFSET) | <- the offset1 is from here
* +--------------------------------------------+
* | struct ftrace_ret_stack |
* | (stores the saved ret pointer) | <- the offset points here
* +--------------------------------------------+
* | (X) | (N) | ( N words away from
* | | previous ret_stack)
* ...
* ret_stack[0]
*
* If a backtrace is required, and the real return pointer needs to be
* fetched, then it looks at the task's curr_ret_stack offset, if it
* is greater than zero (reserved, or right before popped), it would mask
* the value by FGRAPH_FRAME_OFFSET_MASK to get the offset of the
* ftrace_ret_stack structure stored on the shadow stack.
*/
/*
* The following is for the top word on the stack:
*
* FGRAPH_FRAME_OFFSET (0-9) holds the offset delta to the fgraph frame
* FGRAPH_TYPE (10-11) holds the type of word this is.
* (RESERVED or BITMAP)
*/
#define FGRAPH_FRAME_OFFSET_BITS 10
#define FGRAPH_FRAME_OFFSET_MASK GENMASK(FGRAPH_FRAME_OFFSET_BITS - 1, 0)
#define FGRAPH_TYPE_BITS 2
#define FGRAPH_TYPE_MASK GENMASK(FGRAPH_TYPE_BITS - 1, 0)
#define FGRAPH_TYPE_SHIFT FGRAPH_FRAME_OFFSET_BITS
enum {
FGRAPH_TYPE_RESERVED = 0,
FGRAPH_TYPE_BITMAP = 1,
FGRAPH_TYPE_DATA = 2,
};
/*
* For BITMAP type:
* FGRAPH_INDEX (12-27) bits holding the gops index wanting return callback called
*/
#define FGRAPH_INDEX_BITS 16
#define FGRAPH_INDEX_MASK GENMASK(FGRAPH_INDEX_BITS - 1, 0)
#define FGRAPH_INDEX_SHIFT (FGRAPH_TYPE_SHIFT + FGRAPH_TYPE_BITS)
/*
* For DATA type:
* FGRAPH_DATA (12-17) bits hold the size of data (in words)
* FGRAPH_INDEX (18-23) bits hold the index for which gops->idx the data is for
*
* Note:
* data_size == 0 means 1 word, and 31 (=2^5 - 1) means 32 words.
*/
#define FGRAPH_DATA_BITS 5
#define FGRAPH_DATA_MASK GENMASK(FGRAPH_DATA_BITS - 1, 0)
#define FGRAPH_DATA_SHIFT (FGRAPH_TYPE_SHIFT + FGRAPH_TYPE_BITS)
#define FGRAPH_MAX_DATA_SIZE (sizeof(long) * (1 << FGRAPH_DATA_BITS))
#define FGRAPH_DATA_INDEX_BITS 4
#define FGRAPH_DATA_INDEX_MASK GENMASK(FGRAPH_DATA_INDEX_BITS - 1, 0)
#define FGRAPH_DATA_INDEX_SHIFT (FGRAPH_DATA_SHIFT + FGRAPH_DATA_BITS)
#define FGRAPH_MAX_INDEX \
((FGRAPH_INDEX_SIZE << FGRAPH_DATA_BITS) + FGRAPH_RET_INDEX)
#define FGRAPH_ARRAY_SIZE FGRAPH_INDEX_BITS
/*
* SHADOW_STACK_SIZE: The size in bytes of the entire shadow stack
* SHADOW_STACK_OFFSET: The size in long words of the shadow stack
* SHADOW_STACK_MAX_OFFSET: The max offset of the stack for a new frame to be added
*/
#define SHADOW_STACK_SIZE (PAGE_SIZE)
#define SHADOW_STACK_OFFSET (SHADOW_STACK_SIZE / sizeof(long))
/* Leave on a buffer at the end */
#define SHADOW_STACK_MAX_OFFSET \
(SHADOW_STACK_OFFSET - (FGRAPH_FRAME_OFFSET + 1 + FGRAPH_ARRAY_SIZE))
/* RET_STACK(): Return the frame from a given @offset from task @t */
#define RET_STACK(t, offset) ((struct ftrace_ret_stack *)(&(t)->ret_stack[offset]))
/*
* Each fgraph_ops has a reservered unsigned long at the end (top) of the
* ret_stack to store task specific state.
*/
#define SHADOW_STACK_TASK_VARS(ret_stack) \
((unsigned long *)(&(ret_stack)[SHADOW_STACK_OFFSET - FGRAPH_ARRAY_SIZE]))
DEFINE_STATIC_KEY_FALSE(kill_ftrace_graph);
int ftrace_graph_active;
static struct fgraph_ops *fgraph_array[FGRAPH_ARRAY_SIZE];
static unsigned long fgraph_array_bitmask;
/* LRU index table for fgraph_array */
static int fgraph_lru_table[FGRAPH_ARRAY_SIZE];
static int fgraph_lru_next;
static int fgraph_lru_last;
/* Initialize fgraph_lru_table with unused index */
static void fgraph_lru_init(void)
{
int i;
for (i = 0; i < FGRAPH_ARRAY_SIZE; i++)
fgraph_lru_table[i] = i;
}
/* Release the used index to the LRU table */
static int fgraph_lru_release_index(int idx)
{
if (idx < 0 || idx >= FGRAPH_ARRAY_SIZE ||
WARN_ON_ONCE(fgraph_lru_table[fgraph_lru_last] != -1))
return -1;
fgraph_lru_table[fgraph_lru_last] = idx;
fgraph_lru_last = (fgraph_lru_last + 1) % FGRAPH_ARRAY_SIZE;
clear_bit(idx, &fgraph_array_bitmask);
return 0;
}
/* Allocate a new index from LRU table */
static int fgraph_lru_alloc_index(void)
{
int idx = fgraph_lru_table[fgraph_lru_next];
/* No id is available */
if (idx == -1)
return -1;
fgraph_lru_table[fgraph_lru_next] = -1;
fgraph_lru_next = (fgraph_lru_next + 1) % FGRAPH_ARRAY_SIZE;
set_bit(idx, &fgraph_array_bitmask);
return idx;
}
/* Get the offset to the fgraph frame from a ret_stack value */
static inline int __get_offset(unsigned long val)
{
return val & FGRAPH_FRAME_OFFSET_MASK;
}
/* Get the type of word from a ret_stack value */
static inline int __get_type(unsigned long val)
{
return (val >> FGRAPH_TYPE_SHIFT) & FGRAPH_TYPE_MASK;
}
/* Get the data_index for a DATA type ret_stack word */
static inline int __get_data_index(unsigned long val)
{
return (val >> FGRAPH_DATA_INDEX_SHIFT) & FGRAPH_DATA_INDEX_MASK;
}
/* Get the data_size for a DATA type ret_stack word */
static inline int __get_data_size(unsigned long val)
{
return ((val >> FGRAPH_DATA_SHIFT) & FGRAPH_DATA_MASK) + 1;
}
/* Get the word from the ret_stack at @offset */
static inline unsigned long get_fgraph_entry(struct task_struct *t, int offset)
{
return t->ret_stack[offset];
}
/* Get the FRAME_OFFSET from the word from the @offset on ret_stack */
static inline int get_frame_offset(struct task_struct *t, int offset)
{
return __get_offset(t->ret_stack[offset]);
}
/* For BITMAP type: get the bitmask from the @offset at ret_stack */
static inline unsigned long
get_bitmap_bits(struct task_struct *t, int offset)
{
return (t->ret_stack[offset] >> FGRAPH_INDEX_SHIFT) & FGRAPH_INDEX_MASK;
}
/* Write the bitmap to the ret_stack at @offset (does index, offset and bitmask) */
static inline void
set_bitmap(struct task_struct *t, int offset, unsigned long bitmap)
{
t->ret_stack[offset] = (bitmap << FGRAPH_INDEX_SHIFT) |
(FGRAPH_TYPE_BITMAP << FGRAPH_TYPE_SHIFT) | FGRAPH_FRAME_OFFSET;
}
/* For DATA type: get the data saved under the ret_stack word at @offset */
static inline void *get_data_type_data(struct task_struct *t, int offset)
{
unsigned long val = t->ret_stack[offset];
if (__get_type(val) != FGRAPH_TYPE_DATA)
return NULL;
offset -= __get_data_size(val);
return (void *)&t->ret_stack[offset];
}
/* Create the ret_stack word for a DATA type */
static inline unsigned long make_data_type_val(int idx, int size, int offset)
{
return (idx << FGRAPH_DATA_INDEX_SHIFT) |
((size - 1) << FGRAPH_DATA_SHIFT) |
(FGRAPH_TYPE_DATA << FGRAPH_TYPE_SHIFT) | offset;
}
/* ftrace_graph_entry set to this to tell some archs to run function graph */
static int entry_run(struct ftrace_graph_ent *trace, struct fgraph_ops *ops)
{
return 0;
}
/* ftrace_graph_return set to this to tell some archs to run function graph */
static void return_run(struct ftrace_graph_ret *trace, struct fgraph_ops *ops)
{
}
static void ret_stack_set_task_var(struct task_struct *t, int idx, long val)
{
unsigned long *gvals = SHADOW_STACK_TASK_VARS(t->ret_stack);
gvals[idx] = val;
}
static unsigned long *
ret_stack_get_task_var(struct task_struct *t, int idx)
{
unsigned long *gvals = SHADOW_STACK_TASK_VARS(t->ret_stack);
return &gvals[idx];
}
static void ret_stack_init_task_vars(unsigned long *ret_stack)
{
unsigned long *gvals = SHADOW_STACK_TASK_VARS(ret_stack);
memset(gvals, 0, sizeof(*gvals) * FGRAPH_ARRAY_SIZE);
}
/**
* fgraph_reserve_data - Reserve storage on the task's ret_stack
* @idx: The index of fgraph_array
* @size_bytes: The size in bytes to reserve
*
* Reserves space of up to FGRAPH_MAX_DATA_SIZE bytes on the
* task's ret_stack shadow stack, for a given fgraph_ops during
* the entryfunc() call. If entryfunc() returns zero, the storage
* is discarded. An entryfunc() can only call this once per iteration.
* The fgraph_ops retfunc() can retrieve this stored data with
* fgraph_retrieve_data().
*
* Returns: On success, a pointer to the data on the stack.
* Otherwise, NULL if there's not enough space left on the
* ret_stack for the data, or if fgraph_reserve_data() was called
* more than once for a single entryfunc() call.
*/
void *fgraph_reserve_data(int idx, int size_bytes)
{
unsigned long val;
void *data;
int curr_ret_stack = current->curr_ret_stack;
int data_size;
if (size_bytes > FGRAPH_MAX_DATA_SIZE)
return NULL;
/* Convert the data size to number of longs. */
data_size = (size_bytes + sizeof(long) - 1) >> (sizeof(long) == 4 ? 2 : 3);
val = get_fgraph_entry(current, curr_ret_stack - 1);
data = &current->ret_stack[curr_ret_stack];
curr_ret_stack += data_size + 1;
if (unlikely(curr_ret_stack >= SHADOW_STACK_MAX_OFFSET))
return NULL;
val = make_data_type_val(idx, data_size, __get_offset(val) + data_size + 1);
/* Set the last word to be reserved */
current->ret_stack[curr_ret_stack - 1] = val;
/* Make sure interrupts see this */
barrier();
current->curr_ret_stack = curr_ret_stack;
/* Again sync with interrupts, and reset reserve */
current->ret_stack[curr_ret_stack - 1] = val;
return data;
}
/**
* fgraph_retrieve_data - Retrieve stored data from fgraph_reserve_data()
* @idx: the index of fgraph_array (fgraph_ops::idx)
* @size_bytes: pointer to retrieved data size.
*
* This is to be called by a fgraph_ops retfunc(), to retrieve data that
* was stored by the fgraph_ops entryfunc() on the function entry.
* That is, this will retrieve the data that was reserved on the
* entry of the function that corresponds to the exit of the function
* that the fgraph_ops retfunc() is called on.
*
* Returns: The stored data from fgraph_reserve_data() called by the
* matching entryfunc() for the retfunc() this is called from.
* Or NULL if there was nothing stored.
*/
void *fgraph_retrieve_data(int idx, int *size_bytes)
{
int offset = current->curr_ret_stack - 1;
unsigned long val;
val = get_fgraph_entry(current, offset);
while (__get_type(val) == FGRAPH_TYPE_DATA) {
if (__get_data_index(val) == idx)
goto found;
offset -= __get_data_size(val) + 1;
val = get_fgraph_entry(current, offset);
}
return NULL;
found:
if (size_bytes)
*size_bytes = __get_data_size(val) * sizeof(long);
return get_data_type_data(current, offset);
}
/**
* fgraph_get_task_var - retrieve a task specific state variable
* @gops: The ftrace_ops that owns the task specific variable
*
* Every registered fgraph_ops has a task state variable
* reserved on the task's ret_stack. This function returns the
* address to that variable.
*
* Returns the address to the fgraph_ops @gops tasks specific
* unsigned long variable.
*/
unsigned long *fgraph_get_task_var(struct fgraph_ops *gops)
{
return ret_stack_get_task_var(current, gops->idx);
}
/*
* @offset: The offset into @t->ret_stack to find the ret_stack entry
* @frame_offset: Where to place the offset into @t->ret_stack of that entry
*
* Returns a pointer to the previous ret_stack below @offset or NULL
* when it reaches the bottom of the stack.
*
* Calling this with:
*
* offset = task->curr_ret_stack;
* do {
* ret_stack = get_ret_stack(task, offset, &offset);
* } while (ret_stack);
*
* Will iterate through all the ret_stack entries from curr_ret_stack
* down to the first one.
*/
static inline struct ftrace_ret_stack *
get_ret_stack(struct task_struct *t, int offset, int *frame_offset)
{
int offs;
BUILD_BUG_ON(FGRAPH_FRAME_SIZE % sizeof(long));
if (unlikely(offset <= 0))
return NULL;
offs = get_frame_offset(t, --offset);
if (WARN_ON_ONCE(offs <= 0 || offs > offset))
return NULL;
offset -= offs;
*frame_offset = offset;
return RET_STACK(t, offset);
}
/* Both enabled by default (can be cleared by function_graph tracer flags */
static bool fgraph_sleep_time = true;
#ifdef CONFIG_DYNAMIC_FTRACE
/*
* archs can override this function if they must do something
* to enable hook for graph tracer.
*/
int __weak ftrace_enable_ftrace_graph_caller(void)
{
return 0;
}
/*
* archs can override this function if they must do something
* to disable hook for graph tracer.
*/
int __weak ftrace_disable_ftrace_graph_caller(void)
{
return 0;
}
#endif
int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace,
struct fgraph_ops *gops)
{
return 0;
}
static void ftrace_graph_ret_stub(struct ftrace_graph_ret *trace,
struct fgraph_ops *gops)
{
}
static struct fgraph_ops fgraph_stub = {
.entryfunc = ftrace_graph_entry_stub,
.retfunc = ftrace_graph_ret_stub,
};
static struct fgraph_ops *fgraph_direct_gops = &fgraph_stub;
DEFINE_STATIC_CALL(fgraph_func, ftrace_graph_entry_stub);
DEFINE_STATIC_CALL(fgraph_retfunc, ftrace_graph_ret_stub);
static DEFINE_STATIC_KEY_TRUE(fgraph_do_direct);
/**
* ftrace_graph_stop - set to permanently disable function graph tracing
*
* In case of an error int function graph tracing, this is called
* to try to keep function graph tracing from causing any more harm.
* Usually this is pretty severe and this is called to try to at least
* get a warning out to the user.
*/
void ftrace_graph_stop(void)
{
static_branch_enable(&kill_ftrace_graph);
}
/* Add a function return address to the trace stack on thread info.*/
static int
ftrace_push_return_trace(unsigned long ret, unsigned long func,
unsigned long frame_pointer, unsigned long *retp,
int fgraph_idx)
{
struct ftrace_ret_stack *ret_stack;
unsigned long long calltime;
unsigned long val;
int offset;
if (unlikely(ftrace_graph_is_dead()))
return -EBUSY;
if (!current->ret_stack)
return -EBUSY;
BUILD_BUG_ON(SHADOW_STACK_SIZE % sizeof(long));
/* Set val to "reserved" with the delta to the new fgraph frame */
val = (FGRAPH_TYPE_RESERVED << FGRAPH_TYPE_SHIFT) | FGRAPH_FRAME_OFFSET;
/*
* We must make sure the ret_stack is tested before we read
* anything else.
*/
smp_rmb();
/*
* Check if there's room on the shadow stack to fit a fraph frame
* and a bitmap word.
*/
if (current->curr_ret_stack + FGRAPH_FRAME_OFFSET + 1 >= SHADOW_STACK_MAX_OFFSET) {
atomic_inc(&current->trace_overrun);
return -EBUSY;
}
calltime = trace_clock_local();
offset = READ_ONCE(current->curr_ret_stack);
ret_stack = RET_STACK(current, offset);
offset += FGRAPH_FRAME_OFFSET;
/* ret offset = FGRAPH_FRAME_OFFSET ; type = reserved */
current->ret_stack[offset] = val;
ret_stack->ret = ret;
/*
* The unwinders expect curr_ret_stack to point to either zero
* or an offset where to find the next ret_stack. Even though the
* ret stack might be bogus, we want to write the ret and the
* offset to find the ret_stack before we increment the stack point.
* If an interrupt comes in now before we increment the curr_ret_stack
* it may blow away what we wrote. But that's fine, because the
* offset will still be correct (even though the 'ret' won't be).
* What we worry about is the offset being correct after we increment
* the curr_ret_stack and before we update that offset, as if an
* interrupt comes in and does an unwind stack dump, it will need
* at least a correct offset!
*/
barrier();
WRITE_ONCE(current->curr_ret_stack, offset + 1);
/*
* This next barrier is to ensure that an interrupt coming in
* will not corrupt what we are about to write.
*/
barrier();
/* Still keep it reserved even if an interrupt came in */
current->ret_stack[offset] = val;
ret_stack->ret = ret;
ret_stack->func = func;
ret_stack->calltime = calltime;
#ifdef HAVE_FUNCTION_GRAPH_FP_TEST
ret_stack->fp = frame_pointer;
#endif
ret_stack->retp = retp;
return offset;
}
/*
* Not all archs define MCOUNT_INSN_SIZE which is used to look for direct
* functions. But those archs currently don't support direct functions
* anyway, and ftrace_find_rec_direct() is just a stub for them.
* Define MCOUNT_INSN_SIZE to keep those archs compiling.
*/
#ifndef MCOUNT_INSN_SIZE
/* Make sure this only works without direct calls */
# ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
# error MCOUNT_INSN_SIZE not defined with direct calls enabled
# endif
# define MCOUNT_INSN_SIZE 0
#endif
/* If the caller does not use ftrace, call this function. */
int function_graph_enter(unsigned long ret, unsigned long func,
unsigned long frame_pointer, unsigned long *retp)
{
struct ftrace_graph_ent trace;
unsigned long bitmap = 0;
int offset;
int i;
trace.func = func;
trace.depth = ++current->curr_ret_depth;
offset = ftrace_push_return_trace(ret, func, frame_pointer, retp, 0);
if (offset < 0)
goto out;
#ifdef CONFIG_HAVE_STATIC_CALL
if (static_branch_likely(&fgraph_do_direct)) {
int save_curr_ret_stack = current->curr_ret_stack;
if (static_call(fgraph_func)(&trace, fgraph_direct_gops))
bitmap |= BIT(fgraph_direct_gops->idx);
else
/* Clear out any saved storage */
current->curr_ret_stack = save_curr_ret_stack;
} else
#endif
{
for_each_set_bit(i, &fgraph_array_bitmask,
sizeof(fgraph_array_bitmask) * BITS_PER_BYTE) {
struct fgraph_ops *gops = READ_ONCE(fgraph_array[i]);
int save_curr_ret_stack;
if (gops == &fgraph_stub)
continue;
save_curr_ret_stack = current->curr_ret_stack;
if (ftrace_ops_test(&gops->ops, func, NULL) &&
gops->entryfunc(&trace, gops))
bitmap |= BIT(i);
else
/* Clear out any saved storage */
current->curr_ret_stack = save_curr_ret_stack;
}
}
if (!bitmap)
goto out_ret;
/*
* Since this function uses fgraph_idx = 0 as a tail-call checking
* flag, set that bit always.
*/
set_bitmap(current, offset, bitmap | BIT(0));
return 0;
out_ret:
current->curr_ret_stack -= FGRAPH_FRAME_OFFSET + 1;
out:
current->curr_ret_depth--;
return -EBUSY;
}
/* Retrieve a function return address to the trace stack on thread info.*/
static struct ftrace_ret_stack *
ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret,
unsigned long frame_pointer, int *offset)
{
struct ftrace_ret_stack *ret_stack;
ret_stack = get_ret_stack(current, current->curr_ret_stack, offset);
if (unlikely(!ret_stack)) {
ftrace_graph_stop();
WARN(1, "Bad function graph ret_stack pointer: %d",
current->curr_ret_stack);
/* Might as well panic, otherwise we have no where to go */
*ret = (unsigned long)panic;
return NULL;
}
#ifdef HAVE_FUNCTION_GRAPH_FP_TEST
/*
* The arch may choose to record the frame pointer used
* and check it here to make sure that it is what we expect it
* to be. If gcc does not set the place holder of the return
* address in the frame pointer, and does a copy instead, then
* the function graph trace will fail. This test detects this
* case.
*
* Currently, x86_32 with optimize for size (-Os) makes the latest
* gcc do the above.
*
* Note, -mfentry does not use frame pointers, and this test
* is not needed if CC_USING_FENTRY is set.
*/
if (unlikely(ret_stack->fp != frame_pointer)) {
ftrace_graph_stop();
WARN(1, "Bad frame pointer: expected %lx, received %lx\n"
" from func %ps return to %lx\n",
ret_stack->fp,
frame_pointer,
(void *)ret_stack->func,
ret_stack->ret);
*ret = (unsigned long)panic;
return NULL;
}
#endif
*offset += FGRAPH_FRAME_OFFSET;
*ret = ret_stack->ret;
trace->func = ret_stack->func;
trace->calltime = ret_stack->calltime;
trace->overrun = atomic_read(&current->trace_overrun);
trace->depth = current->curr_ret_depth;
/*
* We still want to trace interrupts coming in if
* max_depth is set to 1. Make sure the decrement is
* seen before ftrace_graph_return.
*/
barrier();
return ret_stack;
}
/*
* Hibernation protection.
* The state of the current task is too much unstable during
* suspend/restore to disk. We want to protect against that.
*/
static int
ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state,
void *unused)
{
switch (state) {
case PM_HIBERNATION_PREPARE:
pause_graph_tracing();
break;
case PM_POST_HIBERNATION:
unpause_graph_tracing();
break;
}
return NOTIFY_DONE;
}
static struct notifier_block ftrace_suspend_notifier = {
.notifier_call = ftrace_suspend_notifier_call,
};
/* fgraph_ret_regs is not defined without CONFIG_FUNCTION_GRAPH_RETVAL */
struct fgraph_ret_regs;
/*
* Send the trace to the ring-buffer.
* @return the original return address.
*/
static unsigned long __ftrace_return_to_handler(struct fgraph_ret_regs *ret_regs,
unsigned long frame_pointer)
{
struct ftrace_ret_stack *ret_stack;
struct ftrace_graph_ret trace;
unsigned long bitmap;
unsigned long ret;
int offset;
int i;
ret_stack = ftrace_pop_return_trace(&trace, &ret, frame_pointer, &offset);
if (unlikely(!ret_stack)) {
ftrace_graph_stop();
WARN_ON(1);
/* Might as well panic. What else to do? */
return (unsigned long)panic;
}
trace.rettime = trace_clock_local();
#ifdef CONFIG_FUNCTION_GRAPH_RETVAL
trace.retval = fgraph_ret_regs_return_value(ret_regs);
#endif
bitmap = get_bitmap_bits(current, offset);
#ifdef CONFIG_HAVE_STATIC_CALL
if (static_branch_likely(&fgraph_do_direct)) {
if (test_bit(fgraph_direct_gops->idx, &bitmap))
static_call(fgraph_retfunc)(&trace, fgraph_direct_gops);
} else
#endif
{
for_each_set_bit(i, &bitmap, sizeof(bitmap) * BITS_PER_BYTE) {
struct fgraph_ops *gops = fgraph_array[i];
if (gops == &fgraph_stub)
continue;
gops->retfunc(&trace, gops);
}
}
/*
* The ftrace_graph_return() may still access the current
* ret_stack structure, we need to make sure the update of
* curr_ret_stack is after that.
*/
barrier();
current->curr_ret_stack = offset - FGRAPH_FRAME_OFFSET;
current->curr_ret_depth--;
return ret;
}
/*
* After all architecures have selected HAVE_FUNCTION_GRAPH_RETVAL, we can
* leave only ftrace_return_to_handler(ret_regs).
*/
#ifdef CONFIG_HAVE_FUNCTION_GRAPH_RETVAL
unsigned long ftrace_return_to_handler(struct fgraph_ret_regs *ret_regs)
{
return __ftrace_return_to_handler(ret_regs,
fgraph_ret_regs_frame_pointer(ret_regs));
}
#else
unsigned long ftrace_return_to_handler(unsigned long frame_pointer)
{
return __ftrace_return_to_handler(NULL, frame_pointer);
}
#endif
/**
* ftrace_graph_get_ret_stack - return the entry of the shadow stack
* @task: The task to read the shadow stack from.
* @idx: Index down the shadow stack
*
* Return the ret_struct on the shadow stack of the @task at the
* call graph at @idx starting with zero. If @idx is zero, it
* will return the last saved ret_stack entry. If it is greater than
* zero, it will return the corresponding ret_stack for the depth
* of saved return addresses.
*/
struct ftrace_ret_stack *
ftrace_graph_get_ret_stack(struct task_struct *task, int idx)
{
struct ftrace_ret_stack *ret_stack = NULL;
int offset = task->curr_ret_stack;
if (offset < 0)
return NULL;
do {
ret_stack = get_ret_stack(task, offset, &offset);
} while (ret_stack && --idx >= 0);
return ret_stack;
}
/**
* ftrace_graph_ret_addr - return the original value of the return address
* @task: The task the unwinder is being executed on
* @idx: An initialized pointer to the next stack index to use
* @ret: The current return address (likely pointing to return_handler)
* @retp: The address on the stack of the current return location
*
* This function can be called by stack unwinding code to convert a found stack
* return address (@ret) to its original value, in case the function graph
* tracer has modified it to be 'return_to_handler'. If the address hasn't
* been modified, the unchanged value of @ret is returned.
*
* @idx holds the last index used to know where to start from. It should be
* initialized to zero for the first iteration as that will mean to start
* at the top of the shadow stack. If the location is found, this pointer
* will be assigned that location so that if called again, it will continue
* where it left off.
*
* @retp is a pointer to the return address on the stack.
*/
unsigned long ftrace_graph_ret_addr(struct task_struct *task, int *idx,
unsigned long ret, unsigned long *retp)
{
struct ftrace_ret_stack *ret_stack;
unsigned long return_handler = (unsigned long)dereference_kernel_function_descriptor(return_to_handler);
int i = task->curr_ret_stack;
if (ret != return_handler)
return ret;
if (!idx)
return ret;
i = *idx ? : task->curr_ret_stack;
while (i > 0) {
ret_stack = get_ret_stack(task, i, &i);
if (!ret_stack)
break;
/*
* For the tail-call, there would be 2 or more ftrace_ret_stacks on
* the ret_stack, which records "return_to_handler" as the return
* address except for the last one.
* But on the real stack, there should be 1 entry because tail-call
* reuses the return address on the stack and jump to the next function.
* Thus we will continue to find real return address.
*/
if (ret_stack->retp == retp &&
ret_stack->ret != return_handler) {
*idx = i;
return ret_stack->ret;
}
}
return ret;
}
static struct ftrace_ops graph_ops = {
.func = ftrace_graph_func,
.flags = FTRACE_OPS_GRAPH_STUB,
#ifdef FTRACE_GRAPH_TRAMP_ADDR
.trampoline = FTRACE_GRAPH_TRAMP_ADDR,
/* trampoline_size is only needed for dynamically allocated tramps */
#endif
};
void fgraph_init_ops(struct ftrace_ops *dst_ops,
struct ftrace_ops *src_ops)
{
dst_ops->flags = FTRACE_OPS_FL_PID | FTRACE_OPS_GRAPH_STUB;
#ifdef CONFIG_DYNAMIC_FTRACE
if (src_ops) {
dst_ops->func_hash = &src_ops->local_hash;
mutex_init(&dst_ops->local_hash.regex_lock);
INIT_LIST_HEAD(&dst_ops->subop_list);
dst_ops->flags |= FTRACE_OPS_FL_INITIALIZED;
}
#endif
}
void ftrace_graph_sleep_time_control(bool enable)
{
fgraph_sleep_time = enable;
}
/*
* Simply points to ftrace_stub, but with the proper protocol.
* Defined by the linker script in linux/vmlinux.lds.h
*/
void ftrace_stub_graph(struct ftrace_graph_ret *trace, struct fgraph_ops *gops);
/* The callbacks that hook a function */
trace_func_graph_ret_t ftrace_graph_return = ftrace_stub_graph;
trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub;
/* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */
static int alloc_retstack_tasklist(unsigned long **ret_stack_list)
{
int i;
int ret = 0;
int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
struct task_struct *g, *t;
for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
ret_stack_list[i] = kmalloc(SHADOW_STACK_SIZE, GFP_KERNEL);
if (!ret_stack_list[i]) {
start = 0;
end = i;
ret = -ENOMEM;
goto free;
}
}
rcu_read_lock();
for_each_process_thread(g, t) {
if (start == end) {
ret = -EAGAIN;
goto unlock;
}
if (t->ret_stack == NULL) {
atomic_set(&t->trace_overrun, 0);
ret_stack_init_task_vars(ret_stack_list[start]);
t->curr_ret_stack = 0;
t->curr_ret_depth = -1;
/* Make sure the tasks see the 0 first: */
smp_wmb();
t->ret_stack = ret_stack_list[start++];
}
}
unlock:
rcu_read_unlock();
free:
for (i = start; i < end; i++)
kfree(ret_stack_list[i]);
return ret;
}
static void
ftrace_graph_probe_sched_switch(void *ignore, bool preempt,
struct task_struct *prev,
struct task_struct *next,
unsigned int prev_state)
{
struct ftrace_ret_stack *ret_stack;
unsigned long long timestamp;
int offset;
/*
* Does the user want to count the time a function was asleep.
* If so, do not update the time stamps.
*/
if (fgraph_sleep_time)
return;
timestamp = trace_clock_local();
prev->ftrace_timestamp = timestamp;
/* only process tasks that we timestamped */
if (!next->ftrace_timestamp)
return;
/*
* Update all the counters in next to make up for the
* time next was sleeping.
*/
timestamp -= next->ftrace_timestamp;
for (offset = next->curr_ret_stack; offset > 0; ) {
ret_stack = get_ret_stack(next, offset, &offset);
if (ret_stack)
ret_stack->calltime += timestamp;
}
}
static DEFINE_PER_CPU(unsigned long *, idle_ret_stack);
static void
graph_init_task(struct task_struct *t, unsigned long *ret_stack)
{
atomic_set(&t->trace_overrun, 0);
ret_stack_init_task_vars(ret_stack);
t->ftrace_timestamp = 0;
t->curr_ret_stack = 0;
t->curr_ret_depth = -1;
/* make curr_ret_stack visible before we add the ret_stack */
smp_wmb();
t->ret_stack = ret_stack;
}
/*
* Allocate a return stack for the idle task. May be the first
* time through, or it may be done by CPU hotplug online.
*/
void ftrace_graph_init_idle_task(struct task_struct *t, int cpu)
{
t->curr_ret_stack = 0;
t->curr_ret_depth = -1;
/*
* The idle task has no parent, it either has its own
* stack or no stack at all.
*/
if (t->ret_stack)
WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu));
if (ftrace_graph_active) {
unsigned long *ret_stack;
ret_stack = per_cpu(idle_ret_stack, cpu);
if (!ret_stack) {
ret_stack = kmalloc(SHADOW_STACK_SIZE, GFP_KERNEL);
if (!ret_stack)
return;
per_cpu(idle_ret_stack, cpu) = ret_stack;
}
graph_init_task(t, ret_stack);
}
}
/* Allocate a return stack for newly created task */
void ftrace_graph_init_task(struct task_struct *t)
{
/* Make sure we do not use the parent ret_stack */
t->ret_stack = NULL;
t->curr_ret_stack = 0;
t->curr_ret_depth = -1;
if (ftrace_graph_active) {
unsigned long *ret_stack;
ret_stack = kmalloc(SHADOW_STACK_SIZE, GFP_KERNEL);
if (!ret_stack)
return;
graph_init_task(t, ret_stack);
}
}
void ftrace_graph_exit_task(struct task_struct *t)
{
unsigned long *ret_stack = t->ret_stack;
t->ret_stack = NULL;
/* NULL must become visible to IRQs before we free it: */
barrier();
kfree(ret_stack);
}
#ifdef CONFIG_DYNAMIC_FTRACE
static int fgraph_pid_func(struct ftrace_graph_ent *trace,
struct fgraph_ops *gops)
{
struct trace_array *tr = gops->ops.private;
int pid;
if (tr) {
pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
if (pid == FTRACE_PID_IGNORE)
return 0;
if (pid != FTRACE_PID_TRACE &&
pid != current->pid)
return 0;
}
return gops->saved_func(trace, gops);
}
void fgraph_update_pid_func(void)
{
struct fgraph_ops *gops;
struct ftrace_ops *op;
if (!(graph_ops.flags & FTRACE_OPS_FL_INITIALIZED))
return;
list_for_each_entry(op, &graph_ops.subop_list, list) {
if (op->flags & FTRACE_OPS_FL_PID) {
gops = container_of(op, struct fgraph_ops, ops);
gops->entryfunc = ftrace_pids_enabled(op) ?
fgraph_pid_func : gops->saved_func;
if (ftrace_graph_active == 1)
static_call_update(fgraph_func, gops->entryfunc);
}
}
}
#endif
/* Allocate a return stack for each task */
static int start_graph_tracing(void)
{
unsigned long **ret_stack_list;
int ret;
ret_stack_list = kcalloc(FTRACE_RETSTACK_ALLOC_SIZE,
sizeof(*ret_stack_list), GFP_KERNEL);
if (!ret_stack_list)
return -ENOMEM;
do {
ret = alloc_retstack_tasklist(ret_stack_list);
} while (ret == -EAGAIN);
if (!ret) {
ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
if (ret)
pr_info("ftrace_graph: Couldn't activate tracepoint"
" probe to kernel_sched_switch\n");
}
kfree(ret_stack_list);
return ret;
}
static void init_task_vars(int idx)
{
struct task_struct *g, *t;
int cpu;
for_each_online_cpu(cpu) {
if (idle_task(cpu)->ret_stack)
ret_stack_set_task_var(idle_task(cpu), idx, 0);
}
read_lock(&tasklist_lock);
for_each_process_thread(g, t) {
if (t->ret_stack)
ret_stack_set_task_var(t, idx, 0);
}
read_unlock(&tasklist_lock);
}
static void ftrace_graph_enable_direct(bool enable_branch, struct fgraph_ops *gops)
{
trace_func_graph_ent_t func = NULL;
trace_func_graph_ret_t retfunc = NULL;
int i;
if (gops) {
func = gops->entryfunc;
retfunc = gops->retfunc;
fgraph_direct_gops = gops;
} else {
for_each_set_bit(i, &fgraph_array_bitmask,
sizeof(fgraph_array_bitmask) * BITS_PER_BYTE) {
func = fgraph_array[i]->entryfunc;
retfunc = fgraph_array[i]->retfunc;
fgraph_direct_gops = fgraph_array[i];
}
}
if (WARN_ON_ONCE(!func))
return;
static_call_update(fgraph_func, func);
static_call_update(fgraph_retfunc, retfunc);
if (enable_branch)
static_branch_disable(&fgraph_do_direct);
}
static void ftrace_graph_disable_direct(bool disable_branch)
{
if (disable_branch)
static_branch_disable(&fgraph_do_direct);
static_call_update(fgraph_func, ftrace_graph_entry_stub);
static_call_update(fgraph_retfunc, ftrace_graph_ret_stub);
fgraph_direct_gops = &fgraph_stub;
}
/* The cpu_boot init_task->ret_stack will never be freed */
static int fgraph_cpu_init(unsigned int cpu)
{
if (!idle_task(cpu)->ret_stack)
ftrace_graph_init_idle_task(idle_task(cpu), cpu);
return 0;
}
int register_ftrace_graph(struct fgraph_ops *gops)
{
static bool fgraph_initialized;
int command = 0;
int ret = 0;
int i = -1;
mutex_lock(&ftrace_lock);
if (!fgraph_initialized) {
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "fgraph_idle_init",
fgraph_cpu_init, NULL);
if (ret < 0) {
pr_warn("fgraph: Error to init cpu hotplug support\n");
return ret;
}
fgraph_initialized = true;
ret = 0;
}
if (!fgraph_array[0]) {
/* The array must always have real data on it */
for (i = 0; i < FGRAPH_ARRAY_SIZE; i++)
fgraph_array[i] = &fgraph_stub;
fgraph_lru_init();
}
i = fgraph_lru_alloc_index();
if (i < 0 || WARN_ON_ONCE(fgraph_array[i] != &fgraph_stub)) {
ret = -ENOSPC;
goto out;
}
gops->idx = i;
ftrace_graph_active++;
if (ftrace_graph_active == 2)
ftrace_graph_disable_direct(true);
if (ftrace_graph_active == 1) {
ftrace_graph_enable_direct(false, gops);
register_pm_notifier(&ftrace_suspend_notifier);
ret = start_graph_tracing();
if (ret)
goto error;
/*
* Some archs just test to see if these are not
* the default function
*/
ftrace_graph_return = return_run;
ftrace_graph_entry = entry_run;
command = FTRACE_START_FUNC_RET;
} else {
init_task_vars(gops->idx);
}
/* Always save the function, and reset at unregistering */
gops->saved_func = gops->entryfunc;
ret = ftrace_startup_subops(&graph_ops, &gops->ops, command);
if (!ret)
fgraph_array[i] = gops;
error:
if (ret) {
ftrace_graph_active--;
gops->saved_func = NULL;
fgraph_lru_release_index(i);
}
out:
mutex_unlock(&ftrace_lock);
return ret;
}
void unregister_ftrace_graph(struct fgraph_ops *gops)
{
int command = 0;
mutex_lock(&ftrace_lock);
if (unlikely(!ftrace_graph_active))
goto out;
if (unlikely(gops->idx < 0 || gops->idx >= FGRAPH_ARRAY_SIZE ||
fgraph_array[gops->idx] != gops))
goto out;
if (fgraph_lru_release_index(gops->idx) < 0)
goto out;
fgraph_array[gops->idx] = &fgraph_stub;
ftrace_graph_active--;
if (!ftrace_graph_active)
command = FTRACE_STOP_FUNC_RET;
ftrace_shutdown_subops(&graph_ops, &gops->ops, command);
if (ftrace_graph_active == 1)
ftrace_graph_enable_direct(true, NULL);
else if (!ftrace_graph_active)
ftrace_graph_disable_direct(false);
if (!ftrace_graph_active) {
ftrace_graph_return = ftrace_stub_graph;
ftrace_graph_entry = ftrace_graph_entry_stub;
unregister_pm_notifier(&ftrace_suspend_notifier);
unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
}
out:
gops->saved_func = NULL;
mutex_unlock(&ftrace_lock);
}