linux-stable/sound/isa/gus/gus_dma.c
Thomas Gleixner 1a59d1b8e0 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  59 temple place suite 330 boston ma 02111 1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1334 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:35 -07:00

235 lines
6.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Routines for GF1 DMA control
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
*/
#include <asm/dma.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/gus.h>
static void snd_gf1_dma_ack(struct snd_gus_card * gus)
{
unsigned long flags;
spin_lock_irqsave(&gus->reg_lock, flags);
snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, 0x00);
snd_gf1_look8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL);
spin_unlock_irqrestore(&gus->reg_lock, flags);
}
static void snd_gf1_dma_program(struct snd_gus_card * gus,
unsigned int addr,
unsigned long buf_addr,
unsigned int count,
unsigned int cmd)
{
unsigned long flags;
unsigned int address;
unsigned char dma_cmd;
unsigned int address_high;
snd_printdd("dma_transfer: addr=0x%x, buf=0x%lx, count=0x%x\n",
addr, buf_addr, count);
if (gus->gf1.dma1 > 3) {
if (gus->gf1.enh_mode) {
address = addr >> 1;
} else {
if (addr & 0x1f) {
snd_printd("snd_gf1_dma_transfer: unaligned address (0x%x)?\n", addr);
return;
}
address = (addr & 0x000c0000) | ((addr & 0x0003ffff) >> 1);
}
} else {
address = addr;
}
dma_cmd = SNDRV_GF1_DMA_ENABLE | (unsigned short) cmd;
#if 0
dma_cmd |= 0x08;
#endif
if (dma_cmd & SNDRV_GF1_DMA_16BIT) {
count++;
count &= ~1; /* align */
}
if (gus->gf1.dma1 > 3) {
dma_cmd |= SNDRV_GF1_DMA_WIDTH16;
count++;
count &= ~1; /* align */
}
snd_gf1_dma_ack(gus);
snd_dma_program(gus->gf1.dma1, buf_addr, count, dma_cmd & SNDRV_GF1_DMA_READ ? DMA_MODE_READ : DMA_MODE_WRITE);
#if 0
snd_printk(KERN_DEBUG "address = 0x%x, count = 0x%x, dma_cmd = 0x%x\n",
address << 1, count, dma_cmd);
#endif
spin_lock_irqsave(&gus->reg_lock, flags);
if (gus->gf1.enh_mode) {
address_high = ((address >> 16) & 0x000000f0) | (address & 0x0000000f);
snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4));
snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_HIGH, (unsigned char) address_high);
} else
snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4));
snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, dma_cmd);
spin_unlock_irqrestore(&gus->reg_lock, flags);
}
static struct snd_gf1_dma_block *snd_gf1_dma_next_block(struct snd_gus_card * gus)
{
struct snd_gf1_dma_block *block;
/* PCM block have bigger priority than synthesizer one */
if (gus->gf1.dma_data_pcm) {
block = gus->gf1.dma_data_pcm;
if (gus->gf1.dma_data_pcm_last == block) {
gus->gf1.dma_data_pcm =
gus->gf1.dma_data_pcm_last = NULL;
} else {
gus->gf1.dma_data_pcm = block->next;
}
} else if (gus->gf1.dma_data_synth) {
block = gus->gf1.dma_data_synth;
if (gus->gf1.dma_data_synth_last == block) {
gus->gf1.dma_data_synth =
gus->gf1.dma_data_synth_last = NULL;
} else {
gus->gf1.dma_data_synth = block->next;
}
} else {
block = NULL;
}
if (block) {
gus->gf1.dma_ack = block->ack;
gus->gf1.dma_private_data = block->private_data;
}
return block;
}
static void snd_gf1_dma_interrupt(struct snd_gus_card * gus)
{
struct snd_gf1_dma_block *block;
snd_gf1_dma_ack(gus);
if (gus->gf1.dma_ack)
gus->gf1.dma_ack(gus, gus->gf1.dma_private_data);
spin_lock(&gus->dma_lock);
if (gus->gf1.dma_data_pcm == NULL &&
gus->gf1.dma_data_synth == NULL) {
gus->gf1.dma_ack = NULL;
gus->gf1.dma_flags &= ~SNDRV_GF1_DMA_TRIGGER;
spin_unlock(&gus->dma_lock);
return;
}
block = snd_gf1_dma_next_block(gus);
spin_unlock(&gus->dma_lock);
snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd);
kfree(block);
#if 0
snd_printd(KERN_DEBUG "program dma (IRQ) - "
"addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n",
block->addr, block->buf_addr, block->count, block->cmd);
#endif
}
int snd_gf1_dma_init(struct snd_gus_card * gus)
{
mutex_lock(&gus->dma_mutex);
gus->gf1.dma_shared++;
if (gus->gf1.dma_shared > 1) {
mutex_unlock(&gus->dma_mutex);
return 0;
}
gus->gf1.interrupt_handler_dma_write = snd_gf1_dma_interrupt;
gus->gf1.dma_data_pcm =
gus->gf1.dma_data_pcm_last =
gus->gf1.dma_data_synth =
gus->gf1.dma_data_synth_last = NULL;
mutex_unlock(&gus->dma_mutex);
return 0;
}
int snd_gf1_dma_done(struct snd_gus_card * gus)
{
struct snd_gf1_dma_block *block;
mutex_lock(&gus->dma_mutex);
gus->gf1.dma_shared--;
if (!gus->gf1.dma_shared) {
snd_dma_disable(gus->gf1.dma1);
snd_gf1_set_default_handlers(gus, SNDRV_GF1_HANDLER_DMA_WRITE);
snd_gf1_dma_ack(gus);
while ((block = gus->gf1.dma_data_pcm)) {
gus->gf1.dma_data_pcm = block->next;
kfree(block);
}
while ((block = gus->gf1.dma_data_synth)) {
gus->gf1.dma_data_synth = block->next;
kfree(block);
}
gus->gf1.dma_data_pcm_last =
gus->gf1.dma_data_synth_last = NULL;
}
mutex_unlock(&gus->dma_mutex);
return 0;
}
int snd_gf1_dma_transfer_block(struct snd_gus_card * gus,
struct snd_gf1_dma_block * __block,
int atomic,
int synth)
{
unsigned long flags;
struct snd_gf1_dma_block *block;
block = kmalloc(sizeof(*block), atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!block)
return -ENOMEM;
*block = *__block;
block->next = NULL;
snd_printdd("addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n",
block->addr, (long) block->buffer, block->count,
block->cmd);
snd_printdd("gus->gf1.dma_data_pcm_last = 0x%lx\n",
(long)gus->gf1.dma_data_pcm_last);
snd_printdd("gus->gf1.dma_data_pcm = 0x%lx\n",
(long)gus->gf1.dma_data_pcm);
spin_lock_irqsave(&gus->dma_lock, flags);
if (synth) {
if (gus->gf1.dma_data_synth_last) {
gus->gf1.dma_data_synth_last->next = block;
gus->gf1.dma_data_synth_last = block;
} else {
gus->gf1.dma_data_synth =
gus->gf1.dma_data_synth_last = block;
}
} else {
if (gus->gf1.dma_data_pcm_last) {
gus->gf1.dma_data_pcm_last->next = block;
gus->gf1.dma_data_pcm_last = block;
} else {
gus->gf1.dma_data_pcm =
gus->gf1.dma_data_pcm_last = block;
}
}
if (!(gus->gf1.dma_flags & SNDRV_GF1_DMA_TRIGGER)) {
gus->gf1.dma_flags |= SNDRV_GF1_DMA_TRIGGER;
block = snd_gf1_dma_next_block(gus);
spin_unlock_irqrestore(&gus->dma_lock, flags);
if (block == NULL)
return 0;
snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd);
kfree(block);
return 0;
}
spin_unlock_irqrestore(&gus->dma_lock, flags);
return 0;
}