mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-17 18:56:24 +00:00
66cac80698
Reset the data_vio properly for each discard block, and delay acknowledgement and cleanup until all discard blocks are complete. Signed-off-by: Matthew Sakai <msakai@redhat.com> Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
2066 lines
66 KiB
C
2066 lines
66 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2023 Red Hat
|
|
*/
|
|
|
|
#include "data-vio.h"
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device-mapper.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/lz4.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include "logger.h"
|
|
#include "memory-alloc.h"
|
|
#include "murmurhash3.h"
|
|
#include "permassert.h"
|
|
|
|
#include "block-map.h"
|
|
#include "dump.h"
|
|
#include "encodings.h"
|
|
#include "int-map.h"
|
|
#include "io-submitter.h"
|
|
#include "logical-zone.h"
|
|
#include "packer.h"
|
|
#include "recovery-journal.h"
|
|
#include "slab-depot.h"
|
|
#include "status-codes.h"
|
|
#include "types.h"
|
|
#include "vdo.h"
|
|
#include "vio.h"
|
|
#include "wait-queue.h"
|
|
|
|
/**
|
|
* DOC: Bio flags.
|
|
*
|
|
* For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those
|
|
* flags on our own bio(s) for that request may help underlying layers better fulfill the user
|
|
* bio's needs. This constant contains the aggregate of those flags; VDO strips all the other
|
|
* flags, as they convey incorrect information.
|
|
*
|
|
* These flags are always irrelevant if we have already finished the user bio as they are only
|
|
* hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how
|
|
* important finishing the finished bio was.
|
|
*
|
|
* Note that bio.c contains the complete list of flags we believe may be set; the following list
|
|
* explains the action taken with each of those flags VDO could receive:
|
|
*
|
|
* * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio
|
|
* completion is required for further work to be done by the issuer.
|
|
* * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer
|
|
* treats it as more urgent, similar to REQ_SYNC.
|
|
* * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is
|
|
* important.
|
|
* * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO.
|
|
* * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't
|
|
* match incoming IO, so this flag is incorrect for it.
|
|
* * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise.
|
|
* * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance.
|
|
* * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled
|
|
* ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load
|
|
* prioritization.
|
|
*/
|
|
static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD);
|
|
|
|
/**
|
|
* DOC:
|
|
*
|
|
* The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For
|
|
* correctness, and in order to avoid potentially expensive or blocking memory allocations during
|
|
* normal operation, the number of concurrently active data_vios is capped. Furthermore, in order
|
|
* to avoid starvation of reads and writes, at most 75% of the data_vios may be used for
|
|
* discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios
|
|
* for which a data_vio or discard permit are not available will block until the necessary
|
|
* resources are available. The pool is also responsible for distributing resources to blocked
|
|
* threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by
|
|
* performing the work of actually assigning resources to blocked threads or placing data_vios back
|
|
* into the pool on a single cpu at a time.
|
|
*
|
|
* The pool contains two "limiters", one for tracking data_vios and one for tracking discard
|
|
* permits. The limiters also provide safe cross-thread access to pool statistics without the need
|
|
* to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to
|
|
* get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources
|
|
* are available, the incoming bio will be assigned to the acquired data_vio, and it will be
|
|
* launched. However, if either of these are unavailable, the arrival time of the bio is recorded
|
|
* in the bio's bi_private field, the bio and its submitter are both queued on the appropriate
|
|
* limiter and the submitting thread will then put itself to sleep. (note that this mechanism will
|
|
* break if jiffies are only 32 bits.)
|
|
*
|
|
* Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio()
|
|
* will be called on it. This function will add the data_vio to a funnel queue, and then check the
|
|
* state of the pool. If the pool is not currently processing released data_vios, the pool's
|
|
* completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to
|
|
* hold the pool's lock, and also batches release work while avoiding starvation of the cpu
|
|
* threads.
|
|
*
|
|
* Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which
|
|
* processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For
|
|
* each data_vio, it first checks whether that data_vio was processing a discard. If so, and there
|
|
* is a blocked bio waiting for a discard permit, that permit is notionally transferred to the
|
|
* eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting
|
|
* for a data_vio. If there are no discard waiters, the discard permit is returned to the pool.
|
|
* Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or
|
|
* doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the
|
|
* pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit
|
|
* them are awakened.
|
|
*/
|
|
|
|
#define DATA_VIO_RELEASE_BATCH_SIZE 128
|
|
|
|
static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1;
|
|
static const u32 COMPRESSION_STATUS_MASK = 0xff;
|
|
static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000;
|
|
|
|
struct limiter;
|
|
typedef void (*assigner_fn)(struct limiter *limiter);
|
|
|
|
/* Bookkeeping structure for a single type of resource. */
|
|
struct limiter {
|
|
/* The data_vio_pool to which this limiter belongs */
|
|
struct data_vio_pool *pool;
|
|
/* The maximum number of data_vios available */
|
|
data_vio_count_t limit;
|
|
/* The number of resources in use */
|
|
data_vio_count_t busy;
|
|
/* The maximum number of resources ever simultaneously in use */
|
|
data_vio_count_t max_busy;
|
|
/* The number of resources to release */
|
|
data_vio_count_t release_count;
|
|
/* The number of waiters to wake */
|
|
data_vio_count_t wake_count;
|
|
/* The list of waiting bios which are known to process_release_callback() */
|
|
struct bio_list waiters;
|
|
/* The list of waiting bios which are not yet known to process_release_callback() */
|
|
struct bio_list new_waiters;
|
|
/* The list of waiters which have their permits */
|
|
struct bio_list *permitted_waiters;
|
|
/* The function for assigning a resource to a waiter */
|
|
assigner_fn assigner;
|
|
/* The queue of blocked threads */
|
|
wait_queue_head_t blocked_threads;
|
|
/* The arrival time of the eldest waiter */
|
|
u64 arrival;
|
|
};
|
|
|
|
/*
|
|
* A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread,
|
|
* and are released in batches.
|
|
*/
|
|
struct data_vio_pool {
|
|
/* Completion for scheduling releases */
|
|
struct vdo_completion completion;
|
|
/* The administrative state of the pool */
|
|
struct admin_state state;
|
|
/* Lock protecting the pool */
|
|
spinlock_t lock;
|
|
/* The main limiter controlling the total data_vios in the pool. */
|
|
struct limiter limiter;
|
|
/* The limiter controlling data_vios for discard */
|
|
struct limiter discard_limiter;
|
|
/* The list of bios which have discard permits but still need a data_vio */
|
|
struct bio_list permitted_discards;
|
|
/* The list of available data_vios */
|
|
struct list_head available;
|
|
/* The queue of data_vios waiting to be returned to the pool */
|
|
struct funnel_queue *queue;
|
|
/* Whether the pool is processing, or scheduled to process releases */
|
|
atomic_t processing;
|
|
/* The data vios in the pool */
|
|
struct data_vio data_vios[];
|
|
};
|
|
|
|
static const char * const ASYNC_OPERATION_NAMES[] = {
|
|
"launch",
|
|
"acknowledge_write",
|
|
"acquire_hash_lock",
|
|
"attempt_logical_block_lock",
|
|
"lock_duplicate_pbn",
|
|
"check_for_duplication",
|
|
"cleanup",
|
|
"compress_data_vio",
|
|
"find_block_map_slot",
|
|
"get_mapped_block_for_read",
|
|
"get_mapped_block_for_write",
|
|
"hash_data_vio",
|
|
"journal_remapping",
|
|
"vdo_attempt_packing",
|
|
"put_mapped_block",
|
|
"read_data_vio",
|
|
"update_dedupe_index",
|
|
"update_reference_counts",
|
|
"verify_duplication",
|
|
"write_data_vio",
|
|
};
|
|
|
|
/* The steps taken cleaning up a VIO, in the order they are performed. */
|
|
enum data_vio_cleanup_stage {
|
|
VIO_CLEANUP_START,
|
|
VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START,
|
|
VIO_RELEASE_ALLOCATED,
|
|
VIO_RELEASE_RECOVERY_LOCKS,
|
|
VIO_RELEASE_LOGICAL,
|
|
VIO_CLEANUP_DONE
|
|
};
|
|
|
|
static inline struct data_vio_pool * __must_check
|
|
as_data_vio_pool(struct vdo_completion *completion)
|
|
{
|
|
vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION);
|
|
return container_of(completion, struct data_vio_pool, completion);
|
|
}
|
|
|
|
static inline u64 get_arrival_time(struct bio *bio)
|
|
{
|
|
return (u64) bio->bi_private;
|
|
}
|
|
|
|
/**
|
|
* check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios
|
|
* or waiters while holding the pool's lock.
|
|
*/
|
|
static bool check_for_drain_complete_locked(struct data_vio_pool *pool)
|
|
{
|
|
if (pool->limiter.busy > 0)
|
|
return false;
|
|
|
|
VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0),
|
|
"no outstanding discard permits");
|
|
|
|
return (bio_list_empty(&pool->limiter.new_waiters) &&
|
|
bio_list_empty(&pool->discard_limiter.new_waiters));
|
|
}
|
|
|
|
static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn)
|
|
{
|
|
struct vdo *vdo = vdo_from_data_vio(data_vio);
|
|
zone_count_t zone_number;
|
|
struct lbn_lock *lock = &data_vio->logical;
|
|
|
|
lock->lbn = lbn;
|
|
lock->locked = false;
|
|
vdo_waitq_init(&lock->waiters);
|
|
zone_number = vdo_compute_logical_zone(data_vio);
|
|
lock->zone = &vdo->logical_zones->zones[zone_number];
|
|
}
|
|
|
|
static void launch_locked_request(struct data_vio *data_vio)
|
|
{
|
|
data_vio->logical.locked = true;
|
|
if (data_vio->write) {
|
|
struct vdo *vdo = vdo_from_data_vio(data_vio);
|
|
|
|
if (vdo_is_read_only(vdo)) {
|
|
continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
|
|
return;
|
|
}
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT;
|
|
vdo_find_block_map_slot(data_vio);
|
|
}
|
|
|
|
static void acknowledge_data_vio(struct data_vio *data_vio)
|
|
{
|
|
struct vdo *vdo = vdo_from_data_vio(data_vio);
|
|
struct bio *bio = data_vio->user_bio;
|
|
int error = vdo_status_to_errno(data_vio->vio.completion.result);
|
|
|
|
if (bio == NULL)
|
|
return;
|
|
|
|
VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <=
|
|
(u32) (VDO_BLOCK_SIZE - data_vio->offset)),
|
|
"data_vio to acknowledge is not an incomplete discard");
|
|
|
|
data_vio->user_bio = NULL;
|
|
vdo_count_bios(&vdo->stats.bios_acknowledged, bio);
|
|
if (data_vio->is_partial)
|
|
vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio);
|
|
|
|
bio->bi_status = errno_to_blk_status(error);
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void copy_to_bio(struct bio *bio, char *data_ptr)
|
|
{
|
|
struct bio_vec biovec;
|
|
struct bvec_iter iter;
|
|
|
|
bio_for_each_segment(biovec, bio, iter) {
|
|
memcpy_to_bvec(&biovec, data_ptr);
|
|
data_ptr += biovec.bv_len;
|
|
}
|
|
}
|
|
|
|
struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio)
|
|
{
|
|
u32 packed = atomic_read(&data_vio->compression.status);
|
|
|
|
/* pairs with cmpxchg in set_data_vio_compression_status */
|
|
smp_rmb();
|
|
return (struct data_vio_compression_status) {
|
|
.stage = packed & COMPRESSION_STATUS_MASK,
|
|
.may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0),
|
|
};
|
|
}
|
|
|
|
/**
|
|
* pack_status() - Convert a data_vio_compression_status into a u32 which may be stored
|
|
* atomically.
|
|
* @status: The state to convert.
|
|
*
|
|
* Return: The compression state packed into a u32.
|
|
*/
|
|
static u32 __must_check pack_status(struct data_vio_compression_status status)
|
|
{
|
|
return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0);
|
|
}
|
|
|
|
/**
|
|
* set_data_vio_compression_status() - Set the compression status of a data_vio.
|
|
* @state: The expected current status of the data_vio.
|
|
* @new_state: The status to set.
|
|
*
|
|
* Return: true if the new status was set, false if the data_vio's compression status did not
|
|
* match the expected state, and so was left unchanged.
|
|
*/
|
|
static bool __must_check
|
|
set_data_vio_compression_status(struct data_vio *data_vio,
|
|
struct data_vio_compression_status status,
|
|
struct data_vio_compression_status new_status)
|
|
{
|
|
u32 actual;
|
|
u32 expected = pack_status(status);
|
|
u32 replacement = pack_status(new_status);
|
|
|
|
/*
|
|
* Extra barriers because this was original developed using a CAS operation that implicitly
|
|
* had them.
|
|
*/
|
|
smp_mb__before_atomic();
|
|
actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement);
|
|
/* same as before_atomic */
|
|
smp_mb__after_atomic();
|
|
return (expected == actual);
|
|
}
|
|
|
|
struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio)
|
|
{
|
|
for (;;) {
|
|
struct data_vio_compression_status status =
|
|
get_data_vio_compression_status(data_vio);
|
|
struct data_vio_compression_status new_status = status;
|
|
|
|
if (status.stage == DATA_VIO_POST_PACKER) {
|
|
/* We're already in the last stage. */
|
|
return status;
|
|
}
|
|
|
|
if (status.may_not_compress) {
|
|
/*
|
|
* Compression has been dis-allowed for this VIO, so skip the rest of the
|
|
* path and go to the end.
|
|
*/
|
|
new_status.stage = DATA_VIO_POST_PACKER;
|
|
} else {
|
|
/* Go to the next state. */
|
|
new_status.stage++;
|
|
}
|
|
|
|
if (set_data_vio_compression_status(data_vio, status, new_status))
|
|
return new_status;
|
|
|
|
/* Another thread changed the status out from under us so try again. */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed.
|
|
*
|
|
* Return: true if the data_vio is in the packer and the caller was the first caller to cancel it.
|
|
*/
|
|
bool cancel_data_vio_compression(struct data_vio *data_vio)
|
|
{
|
|
struct data_vio_compression_status status, new_status;
|
|
|
|
for (;;) {
|
|
status = get_data_vio_compression_status(data_vio);
|
|
if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) {
|
|
/* This data_vio is already set up to not block in the packer. */
|
|
break;
|
|
}
|
|
|
|
new_status.stage = status.stage;
|
|
new_status.may_not_compress = true;
|
|
|
|
if (set_data_vio_compression_status(data_vio, status, new_status))
|
|
break;
|
|
}
|
|
|
|
return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress);
|
|
}
|
|
|
|
/**
|
|
* attempt_logical_block_lock() - Attempt to acquire the lock on a logical block.
|
|
* @completion: The data_vio for an external data request as a completion.
|
|
*
|
|
* This is the start of the path for all external requests. It is registered in launch_data_vio().
|
|
*/
|
|
static void attempt_logical_block_lock(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
struct lbn_lock *lock = &data_vio->logical;
|
|
struct vdo *vdo = vdo_from_data_vio(data_vio);
|
|
struct data_vio *lock_holder;
|
|
int result;
|
|
|
|
assert_data_vio_in_logical_zone(data_vio);
|
|
|
|
if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) {
|
|
continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE);
|
|
return;
|
|
}
|
|
|
|
result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
|
|
data_vio, false, (void **) &lock_holder);
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(data_vio, result);
|
|
return;
|
|
}
|
|
|
|
if (lock_holder == NULL) {
|
|
/* We got the lock */
|
|
launch_locked_request(data_vio);
|
|
return;
|
|
}
|
|
|
|
result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held");
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(data_vio, result);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the new request is a pure read request (not read-modify-write) and the lock_holder is
|
|
* writing and has received an allocation, service the read request immediately by copying
|
|
* data from the lock_holder to avoid having to flush the write out of the packer just to
|
|
* prevent the read from waiting indefinitely. If the lock_holder does not yet have an
|
|
* allocation, prevent it from blocking in the packer and wait on it. This is necessary in
|
|
* order to prevent returning data that may not have actually been written.
|
|
*/
|
|
if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) {
|
|
copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset);
|
|
acknowledge_data_vio(data_vio);
|
|
complete_data_vio(completion);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK;
|
|
vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter);
|
|
|
|
/*
|
|
* Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the
|
|
* packer.
|
|
*/
|
|
if (lock_holder->write && cancel_data_vio_compression(lock_holder)) {
|
|
data_vio->compression.lock_holder = lock_holder;
|
|
launch_data_vio_packer_callback(data_vio,
|
|
vdo_remove_lock_holder_from_packer);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the
|
|
* same parent and other state and send it on its way.
|
|
*/
|
|
static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn)
|
|
{
|
|
struct vdo_completion *completion = &data_vio->vio.completion;
|
|
|
|
/*
|
|
* Clearing the tree lock must happen before initializing the LBN lock, which also adds
|
|
* information to the tree lock.
|
|
*/
|
|
memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock));
|
|
initialize_lbn_lock(data_vio, lbn);
|
|
INIT_LIST_HEAD(&data_vio->hash_lock_entry);
|
|
INIT_LIST_HEAD(&data_vio->write_entry);
|
|
|
|
memset(&data_vio->allocation, 0, sizeof(data_vio->allocation));
|
|
|
|
data_vio->is_duplicate = false;
|
|
|
|
memset(&data_vio->record_name, 0, sizeof(data_vio->record_name));
|
|
memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate));
|
|
vdo_reset_completion(&data_vio->decrement_completion);
|
|
vdo_reset_completion(completion);
|
|
completion->error_handler = handle_data_vio_error;
|
|
set_data_vio_logical_callback(data_vio, attempt_logical_block_lock);
|
|
vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY);
|
|
}
|
|
|
|
static bool is_zero_block(char *block)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
|
|
if (*((u64 *) &block[i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void copy_from_bio(struct bio *bio, char *data_ptr)
|
|
{
|
|
struct bio_vec biovec;
|
|
struct bvec_iter iter;
|
|
|
|
bio_for_each_segment(biovec, bio, iter) {
|
|
memcpy_from_bvec(data_ptr, &biovec);
|
|
data_ptr += biovec.bv_len;
|
|
}
|
|
}
|
|
|
|
static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio)
|
|
{
|
|
logical_block_number_t lbn;
|
|
/*
|
|
* Zero out the fields which don't need to be preserved (i.e. which are not pointers to
|
|
* separately allocated objects).
|
|
*/
|
|
memset(data_vio, 0, offsetof(struct data_vio, vio));
|
|
memset(&data_vio->compression, 0, offsetof(struct compression_state, block));
|
|
|
|
data_vio->user_bio = bio;
|
|
data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK);
|
|
data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0);
|
|
|
|
/*
|
|
* Discards behave very differently than other requests when coming in from device-mapper.
|
|
* We have to be able to handle any size discards and various sector offsets within a
|
|
* block.
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_DISCARD) {
|
|
data_vio->remaining_discard = bio->bi_iter.bi_size;
|
|
data_vio->write = true;
|
|
data_vio->is_discard = true;
|
|
if (data_vio->is_partial) {
|
|
vdo_count_bios(&vdo->stats.bios_in_partial, bio);
|
|
data_vio->read = true;
|
|
}
|
|
} else if (data_vio->is_partial) {
|
|
vdo_count_bios(&vdo->stats.bios_in_partial, bio);
|
|
data_vio->read = true;
|
|
if (bio_data_dir(bio) == WRITE)
|
|
data_vio->write = true;
|
|
} else if (bio_data_dir(bio) == READ) {
|
|
data_vio->read = true;
|
|
} else {
|
|
/*
|
|
* Copy the bio data to a char array so that we can continue to use the data after
|
|
* we acknowledge the bio.
|
|
*/
|
|
copy_from_bio(bio, data_vio->vio.data);
|
|
data_vio->is_zero = is_zero_block(data_vio->vio.data);
|
|
data_vio->write = true;
|
|
}
|
|
|
|
if (data_vio->user_bio->bi_opf & REQ_FUA)
|
|
data_vio->fua = true;
|
|
|
|
lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK;
|
|
launch_data_vio(data_vio, lbn);
|
|
}
|
|
|
|
static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio)
|
|
{
|
|
struct bio *bio = bio_list_pop(limiter->permitted_waiters);
|
|
|
|
launch_bio(limiter->pool->completion.vdo, data_vio, bio);
|
|
limiter->wake_count++;
|
|
|
|
bio = bio_list_peek(limiter->permitted_waiters);
|
|
limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio));
|
|
}
|
|
|
|
static void assign_discard_permit(struct limiter *limiter)
|
|
{
|
|
struct bio *bio = bio_list_pop(&limiter->waiters);
|
|
|
|
if (limiter->arrival == U64_MAX)
|
|
limiter->arrival = get_arrival_time(bio);
|
|
|
|
bio_list_add(limiter->permitted_waiters, bio);
|
|
}
|
|
|
|
static void get_waiters(struct limiter *limiter)
|
|
{
|
|
bio_list_merge_init(&limiter->waiters, &limiter->new_waiters);
|
|
}
|
|
|
|
static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool)
|
|
{
|
|
struct data_vio *data_vio =
|
|
list_first_entry(&pool->available, struct data_vio, pool_entry);
|
|
|
|
list_del_init(&data_vio->pool_entry);
|
|
return data_vio;
|
|
}
|
|
|
|
static void assign_data_vio_to_waiter(struct limiter *limiter)
|
|
{
|
|
assign_data_vio(limiter, get_available_data_vio(limiter->pool));
|
|
}
|
|
|
|
static void update_limiter(struct limiter *limiter)
|
|
{
|
|
struct bio_list *waiters = &limiter->waiters;
|
|
data_vio_count_t available = limiter->limit - limiter->busy;
|
|
|
|
VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy),
|
|
"Release count %u is not more than busy count %u",
|
|
limiter->release_count, limiter->busy);
|
|
|
|
get_waiters(limiter);
|
|
for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--)
|
|
limiter->assigner(limiter);
|
|
|
|
if (limiter->release_count > 0) {
|
|
WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count);
|
|
limiter->release_count = 0;
|
|
return;
|
|
}
|
|
|
|
for (; (available > 0) && !bio_list_empty(waiters); available--)
|
|
limiter->assigner(limiter);
|
|
|
|
WRITE_ONCE(limiter->busy, limiter->limit - available);
|
|
if (limiter->max_busy < limiter->busy)
|
|
WRITE_ONCE(limiter->max_busy, limiter->busy);
|
|
}
|
|
|
|
/**
|
|
* schedule_releases() - Ensure that release processing is scheduled.
|
|
*
|
|
* If this call switches the state to processing, enqueue. Otherwise, some other thread has already
|
|
* done so.
|
|
*/
|
|
static void schedule_releases(struct data_vio_pool *pool)
|
|
{
|
|
/* Pairs with the barrier in process_release_callback(). */
|
|
smp_mb__before_atomic();
|
|
if (atomic_cmpxchg(&pool->processing, false, true))
|
|
return;
|
|
|
|
pool->completion.requeue = true;
|
|
vdo_launch_completion_with_priority(&pool->completion,
|
|
CPU_Q_COMPLETE_VIO_PRIORITY);
|
|
}
|
|
|
|
static void reuse_or_release_resources(struct data_vio_pool *pool,
|
|
struct data_vio *data_vio,
|
|
struct list_head *returned)
|
|
{
|
|
if (data_vio->remaining_discard > 0) {
|
|
if (bio_list_empty(&pool->discard_limiter.waiters)) {
|
|
/* Return the data_vio's discard permit. */
|
|
pool->discard_limiter.release_count++;
|
|
} else {
|
|
assign_discard_permit(&pool->discard_limiter);
|
|
}
|
|
}
|
|
|
|
if (pool->limiter.arrival < pool->discard_limiter.arrival) {
|
|
assign_data_vio(&pool->limiter, data_vio);
|
|
} else if (pool->discard_limiter.arrival < U64_MAX) {
|
|
assign_data_vio(&pool->discard_limiter, data_vio);
|
|
} else {
|
|
list_add(&data_vio->pool_entry, returned);
|
|
pool->limiter.release_count++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* process_release_callback() - Process a batch of data_vio releases.
|
|
* @completion: The pool with data_vios to release.
|
|
*/
|
|
static void process_release_callback(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio_pool *pool = as_data_vio_pool(completion);
|
|
bool reschedule;
|
|
bool drained;
|
|
data_vio_count_t processed;
|
|
data_vio_count_t to_wake;
|
|
data_vio_count_t discards_to_wake;
|
|
LIST_HEAD(returned);
|
|
|
|
spin_lock(&pool->lock);
|
|
get_waiters(&pool->discard_limiter);
|
|
get_waiters(&pool->limiter);
|
|
spin_unlock(&pool->lock);
|
|
|
|
if (pool->limiter.arrival == U64_MAX) {
|
|
struct bio *bio = bio_list_peek(&pool->limiter.waiters);
|
|
|
|
if (bio != NULL)
|
|
pool->limiter.arrival = get_arrival_time(bio);
|
|
}
|
|
|
|
for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) {
|
|
struct data_vio *data_vio;
|
|
struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue);
|
|
|
|
if (entry == NULL)
|
|
break;
|
|
|
|
data_vio = as_data_vio(container_of(entry, struct vdo_completion,
|
|
work_queue_entry_link));
|
|
acknowledge_data_vio(data_vio);
|
|
reuse_or_release_resources(pool, data_vio, &returned);
|
|
}
|
|
|
|
spin_lock(&pool->lock);
|
|
/*
|
|
* There is a race where waiters could be added while we are in the unlocked section above.
|
|
* Those waiters could not see the resources we are now about to release, so we assign
|
|
* those resources now as we have no guarantee of being rescheduled. This is handled in
|
|
* update_limiter().
|
|
*/
|
|
update_limiter(&pool->discard_limiter);
|
|
list_splice(&returned, &pool->available);
|
|
update_limiter(&pool->limiter);
|
|
to_wake = pool->limiter.wake_count;
|
|
pool->limiter.wake_count = 0;
|
|
discards_to_wake = pool->discard_limiter.wake_count;
|
|
pool->discard_limiter.wake_count = 0;
|
|
|
|
atomic_set(&pool->processing, false);
|
|
/* Pairs with the barrier in schedule_releases(). */
|
|
smp_mb();
|
|
|
|
reschedule = !vdo_is_funnel_queue_empty(pool->queue);
|
|
drained = (!reschedule &&
|
|
vdo_is_state_draining(&pool->state) &&
|
|
check_for_drain_complete_locked(pool));
|
|
spin_unlock(&pool->lock);
|
|
|
|
if (to_wake > 0)
|
|
wake_up_nr(&pool->limiter.blocked_threads, to_wake);
|
|
|
|
if (discards_to_wake > 0)
|
|
wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake);
|
|
|
|
if (reschedule)
|
|
schedule_releases(pool);
|
|
else if (drained)
|
|
vdo_finish_draining(&pool->state);
|
|
}
|
|
|
|
static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool,
|
|
assigner_fn assigner, data_vio_count_t limit)
|
|
{
|
|
limiter->pool = pool;
|
|
limiter->assigner = assigner;
|
|
limiter->limit = limit;
|
|
limiter->arrival = U64_MAX;
|
|
init_waitqueue_head(&limiter->blocked_threads);
|
|
}
|
|
|
|
/**
|
|
* initialize_data_vio() - Allocate the components of a data_vio.
|
|
*
|
|
* The caller is responsible for cleaning up the data_vio on error.
|
|
*
|
|
* Return: VDO_SUCCESS or an error.
|
|
*/
|
|
static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo)
|
|
{
|
|
struct bio *bio;
|
|
int result;
|
|
|
|
BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE);
|
|
result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data",
|
|
&data_vio->vio.data);
|
|
if (result != VDO_SUCCESS)
|
|
return vdo_log_error_strerror(result,
|
|
"data_vio data allocation failure");
|
|
|
|
result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block",
|
|
&data_vio->compression.block);
|
|
if (result != VDO_SUCCESS) {
|
|
return vdo_log_error_strerror(result,
|
|
"data_vio compressed block allocation failure");
|
|
}
|
|
|
|
result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch",
|
|
&data_vio->scratch_block);
|
|
if (result != VDO_SUCCESS)
|
|
return vdo_log_error_strerror(result,
|
|
"data_vio scratch allocation failure");
|
|
|
|
result = vdo_create_bio(&bio);
|
|
if (result != VDO_SUCCESS)
|
|
return vdo_log_error_strerror(result,
|
|
"data_vio data bio allocation failure");
|
|
|
|
vdo_initialize_completion(&data_vio->decrement_completion, vdo,
|
|
VDO_DECREMENT_COMPLETION);
|
|
initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo);
|
|
|
|
return VDO_SUCCESS;
|
|
}
|
|
|
|
static void destroy_data_vio(struct data_vio *data_vio)
|
|
{
|
|
if (data_vio == NULL)
|
|
return;
|
|
|
|
vdo_free_bio(vdo_forget(data_vio->vio.bio));
|
|
vdo_free(vdo_forget(data_vio->vio.data));
|
|
vdo_free(vdo_forget(data_vio->compression.block));
|
|
vdo_free(vdo_forget(data_vio->scratch_block));
|
|
}
|
|
|
|
/**
|
|
* make_data_vio_pool() - Initialize a data_vio pool.
|
|
* @vdo: The vdo to which the pool will belong.
|
|
* @pool_size: The number of data_vios in the pool.
|
|
* @discard_limit: The maximum number of data_vios which may be used for discards.
|
|
* @pool: A pointer to hold the newly allocated pool.
|
|
*/
|
|
int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size,
|
|
data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr)
|
|
{
|
|
int result;
|
|
struct data_vio_pool *pool;
|
|
data_vio_count_t i;
|
|
|
|
result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio,
|
|
__func__, &pool);
|
|
if (result != VDO_SUCCESS)
|
|
return result;
|
|
|
|
VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size),
|
|
"discard limit does not exceed pool size");
|
|
initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit,
|
|
discard_limit);
|
|
pool->discard_limiter.permitted_waiters = &pool->permitted_discards;
|
|
initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size);
|
|
pool->limiter.permitted_waiters = &pool->limiter.waiters;
|
|
INIT_LIST_HEAD(&pool->available);
|
|
spin_lock_init(&pool->lock);
|
|
vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
|
|
vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION);
|
|
vdo_prepare_completion(&pool->completion, process_release_callback,
|
|
process_release_callback, vdo->thread_config.cpu_thread,
|
|
NULL);
|
|
|
|
result = vdo_make_funnel_queue(&pool->queue);
|
|
if (result != VDO_SUCCESS) {
|
|
free_data_vio_pool(vdo_forget(pool));
|
|
return result;
|
|
}
|
|
|
|
for (i = 0; i < pool_size; i++) {
|
|
struct data_vio *data_vio = &pool->data_vios[i];
|
|
|
|
result = initialize_data_vio(data_vio, vdo);
|
|
if (result != VDO_SUCCESS) {
|
|
destroy_data_vio(data_vio);
|
|
free_data_vio_pool(pool);
|
|
return result;
|
|
}
|
|
|
|
list_add(&data_vio->pool_entry, &pool->available);
|
|
}
|
|
|
|
*pool_ptr = pool;
|
|
return VDO_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* free_data_vio_pool() - Free a data_vio_pool and the data_vios in it.
|
|
*
|
|
* All data_vios must be returned to the pool before calling this function.
|
|
*/
|
|
void free_data_vio_pool(struct data_vio_pool *pool)
|
|
{
|
|
struct data_vio *data_vio, *tmp;
|
|
|
|
if (pool == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Pairs with the barrier in process_release_callback(). Possibly not needed since it
|
|
* caters to an enqueue vs. free race.
|
|
*/
|
|
smp_mb();
|
|
BUG_ON(atomic_read(&pool->processing));
|
|
|
|
spin_lock(&pool->lock);
|
|
VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0),
|
|
"data_vio pool must not have %u busy entries when being freed",
|
|
pool->limiter.busy);
|
|
VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) &&
|
|
bio_list_empty(&pool->limiter.new_waiters)),
|
|
"data_vio pool must not have threads waiting to read or write when being freed");
|
|
VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) &&
|
|
bio_list_empty(&pool->discard_limiter.new_waiters)),
|
|
"data_vio pool must not have threads waiting to discard when being freed");
|
|
spin_unlock(&pool->lock);
|
|
|
|
list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) {
|
|
list_del_init(&data_vio->pool_entry);
|
|
destroy_data_vio(data_vio);
|
|
}
|
|
|
|
vdo_free_funnel_queue(vdo_forget(pool->queue));
|
|
vdo_free(pool);
|
|
}
|
|
|
|
static bool acquire_permit(struct limiter *limiter)
|
|
{
|
|
if (limiter->busy >= limiter->limit)
|
|
return false;
|
|
|
|
WRITE_ONCE(limiter->busy, limiter->busy + 1);
|
|
if (limiter->max_busy < limiter->busy)
|
|
WRITE_ONCE(limiter->max_busy, limiter->busy);
|
|
return true;
|
|
}
|
|
|
|
static void wait_permit(struct limiter *limiter, struct bio *bio)
|
|
__releases(&limiter->pool->lock)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
bio_list_add(&limiter->new_waiters, bio);
|
|
prepare_to_wait_exclusive(&limiter->blocked_threads, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
spin_unlock(&limiter->pool->lock);
|
|
io_schedule();
|
|
finish_wait(&limiter->blocked_threads, &wait);
|
|
}
|
|
|
|
/**
|
|
* vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it.
|
|
*
|
|
* This will block if data_vios or discard permits are not available.
|
|
*/
|
|
void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio)
|
|
{
|
|
struct data_vio *data_vio;
|
|
|
|
VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state),
|
|
"data_vio_pool not quiescent on acquire");
|
|
|
|
bio->bi_private = (void *) jiffies;
|
|
spin_lock(&pool->lock);
|
|
if ((bio_op(bio) == REQ_OP_DISCARD) &&
|
|
!acquire_permit(&pool->discard_limiter)) {
|
|
wait_permit(&pool->discard_limiter, bio);
|
|
return;
|
|
}
|
|
|
|
if (!acquire_permit(&pool->limiter)) {
|
|
wait_permit(&pool->limiter, bio);
|
|
return;
|
|
}
|
|
|
|
data_vio = get_available_data_vio(pool);
|
|
spin_unlock(&pool->lock);
|
|
launch_bio(pool->completion.vdo, data_vio, bio);
|
|
}
|
|
|
|
/* Implements vdo_admin_initiator_fn. */
|
|
static void initiate_drain(struct admin_state *state)
|
|
{
|
|
bool drained;
|
|
struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state);
|
|
|
|
spin_lock(&pool->lock);
|
|
drained = check_for_drain_complete_locked(pool);
|
|
spin_unlock(&pool->lock);
|
|
|
|
if (drained)
|
|
vdo_finish_draining(state);
|
|
}
|
|
|
|
static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name)
|
|
{
|
|
VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread),
|
|
"%s called on cpu thread", name);
|
|
}
|
|
|
|
/**
|
|
* drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool.
|
|
* @completion: The completion to notify when the pool has drained.
|
|
*/
|
|
void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
|
|
{
|
|
assert_on_vdo_cpu_thread(completion->vdo, __func__);
|
|
vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion,
|
|
initiate_drain);
|
|
}
|
|
|
|
/**
|
|
* resume_data_vio_pool() - Resume a data_vio pool.
|
|
* @completion: The completion to notify when the pool has resumed.
|
|
*/
|
|
void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
|
|
{
|
|
assert_on_vdo_cpu_thread(completion->vdo, __func__);
|
|
vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state));
|
|
}
|
|
|
|
static void dump_limiter(const char *name, struct limiter *limiter)
|
|
{
|
|
vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy,
|
|
limiter->limit, limiter->max_busy,
|
|
((bio_list_empty(&limiter->waiters) &&
|
|
bio_list_empty(&limiter->new_waiters)) ?
|
|
"no waiters" : "has waiters"));
|
|
}
|
|
|
|
/**
|
|
* dump_data_vio_pool() - Dump a data_vio pool to the log.
|
|
* @dump_vios: Whether to dump the details of each busy data_vio as well.
|
|
*/
|
|
void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios)
|
|
{
|
|
/*
|
|
* In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the
|
|
* second clock tick). These numbers were picked based on experiments with lab machines.
|
|
*/
|
|
static const int ELEMENTS_PER_BATCH = 35;
|
|
static const int SLEEP_FOR_SYSLOG = 4000;
|
|
|
|
if (pool == NULL)
|
|
return;
|
|
|
|
spin_lock(&pool->lock);
|
|
dump_limiter("data_vios", &pool->limiter);
|
|
dump_limiter("discard permits", &pool->discard_limiter);
|
|
if (dump_vios) {
|
|
int i;
|
|
int dumped = 0;
|
|
|
|
for (i = 0; i < pool->limiter.limit; i++) {
|
|
struct data_vio *data_vio = &pool->data_vios[i];
|
|
|
|
if (!list_empty(&data_vio->pool_entry))
|
|
continue;
|
|
|
|
dump_data_vio(data_vio);
|
|
if (++dumped >= ELEMENTS_PER_BATCH) {
|
|
spin_unlock(&pool->lock);
|
|
dumped = 0;
|
|
fsleep(SLEEP_FOR_SYSLOG);
|
|
spin_lock(&pool->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock(&pool->lock);
|
|
}
|
|
|
|
data_vio_count_t get_data_vio_pool_active_discards(struct data_vio_pool *pool)
|
|
{
|
|
return READ_ONCE(pool->discard_limiter.busy);
|
|
}
|
|
|
|
data_vio_count_t get_data_vio_pool_discard_limit(struct data_vio_pool *pool)
|
|
{
|
|
return READ_ONCE(pool->discard_limiter.limit);
|
|
}
|
|
|
|
data_vio_count_t get_data_vio_pool_maximum_discards(struct data_vio_pool *pool)
|
|
{
|
|
return READ_ONCE(pool->discard_limiter.max_busy);
|
|
}
|
|
|
|
int set_data_vio_pool_discard_limit(struct data_vio_pool *pool, data_vio_count_t limit)
|
|
{
|
|
if (get_data_vio_pool_request_limit(pool) < limit) {
|
|
// The discard limit may not be higher than the data_vio limit.
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&pool->lock);
|
|
pool->discard_limiter.limit = limit;
|
|
spin_unlock(&pool->lock);
|
|
|
|
return VDO_SUCCESS;
|
|
}
|
|
|
|
data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool)
|
|
{
|
|
return READ_ONCE(pool->limiter.busy);
|
|
}
|
|
|
|
data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool)
|
|
{
|
|
return READ_ONCE(pool->limiter.limit);
|
|
}
|
|
|
|
data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool)
|
|
{
|
|
return READ_ONCE(pool->limiter.max_busy);
|
|
}
|
|
|
|
static void update_data_vio_error_stats(struct data_vio *data_vio)
|
|
{
|
|
u8 index = 0;
|
|
static const char * const operations[] = {
|
|
[0] = "empty",
|
|
[1] = "read",
|
|
[2] = "write",
|
|
[3] = "read-modify-write",
|
|
[5] = "read+fua",
|
|
[6] = "write+fua",
|
|
[7] = "read-modify-write+fua",
|
|
};
|
|
|
|
if (data_vio->read)
|
|
index = 1;
|
|
|
|
if (data_vio->write)
|
|
index += 2;
|
|
|
|
if (data_vio->fua)
|
|
index += 4;
|
|
|
|
update_vio_error_stats(&data_vio->vio,
|
|
"Completing %s vio for LBN %llu with error after %s",
|
|
operations[index],
|
|
(unsigned long long) data_vio->logical.lbn,
|
|
get_data_vio_operation_name(data_vio));
|
|
}
|
|
|
|
static void perform_cleanup_stage(struct data_vio *data_vio,
|
|
enum data_vio_cleanup_stage stage);
|
|
|
|
/**
|
|
* release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at
|
|
* the end of processing a data_vio.
|
|
*/
|
|
static void release_allocated_lock(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_allocated_zone(data_vio);
|
|
release_data_vio_allocation_lock(data_vio, false);
|
|
perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS);
|
|
}
|
|
|
|
/** release_lock() - Release an uncontended LBN lock. */
|
|
static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock)
|
|
{
|
|
struct int_map *lock_map = lock->zone->lbn_operations;
|
|
struct data_vio *lock_holder;
|
|
|
|
if (!lock->locked) {
|
|
/* The lock is not locked, so it had better not be registered in the lock map. */
|
|
struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn);
|
|
|
|
VDO_ASSERT_LOG_ONLY((data_vio != lock_holder),
|
|
"no logical block lock held for block %llu",
|
|
(unsigned long long) lock->lbn);
|
|
return;
|
|
}
|
|
|
|
/* Release the lock by removing the lock from the map. */
|
|
lock_holder = vdo_int_map_remove(lock_map, lock->lbn);
|
|
VDO_ASSERT_LOG_ONLY((data_vio == lock_holder),
|
|
"logical block lock mismatch for block %llu",
|
|
(unsigned long long) lock->lbn);
|
|
lock->locked = false;
|
|
}
|
|
|
|
/** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */
|
|
static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock)
|
|
{
|
|
struct data_vio *lock_holder, *next_lock_holder;
|
|
int result;
|
|
|
|
VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked");
|
|
|
|
/* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */
|
|
next_lock_holder =
|
|
vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
|
|
|
|
/* Transfer the remaining lock waiters to the next lock holder. */
|
|
vdo_waitq_transfer_all_waiters(&lock->waiters,
|
|
&next_lock_holder->logical.waiters);
|
|
|
|
result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
|
|
next_lock_holder, true, (void **) &lock_holder);
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(next_lock_holder, result);
|
|
return;
|
|
}
|
|
|
|
VDO_ASSERT_LOG_ONLY((lock_holder == data_vio),
|
|
"logical block lock mismatch for block %llu",
|
|
(unsigned long long) lock->lbn);
|
|
lock->locked = false;
|
|
|
|
/*
|
|
* If there are still waiters, other data_vios must be trying to get the lock we just
|
|
* transferred. We must ensure that the new lock holder doesn't block in the packer.
|
|
*/
|
|
if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters))
|
|
cancel_data_vio_compression(next_lock_holder);
|
|
|
|
/*
|
|
* Avoid stack overflow on lock transfer.
|
|
* FIXME: this is only an issue in the 1 thread config.
|
|
*/
|
|
next_lock_holder->vio.completion.requeue = true;
|
|
launch_locked_request(next_lock_holder);
|
|
}
|
|
|
|
/**
|
|
* release_logical_lock() - Release the logical block lock and flush generation lock at the end of
|
|
* processing a data_vio.
|
|
*/
|
|
static void release_logical_lock(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
struct lbn_lock *lock = &data_vio->logical;
|
|
|
|
assert_data_vio_in_logical_zone(data_vio);
|
|
|
|
if (vdo_waitq_has_waiters(&lock->waiters))
|
|
transfer_lock(data_vio, lock);
|
|
else
|
|
release_lock(data_vio, lock);
|
|
|
|
vdo_release_flush_generation_lock(data_vio);
|
|
perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE);
|
|
}
|
|
|
|
/** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */
|
|
static void clean_hash_lock(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_hash_zone(data_vio);
|
|
if (completion->result != VDO_SUCCESS) {
|
|
vdo_clean_failed_hash_lock(data_vio);
|
|
return;
|
|
}
|
|
|
|
vdo_release_hash_lock(data_vio);
|
|
perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL);
|
|
}
|
|
|
|
/**
|
|
* finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up.
|
|
*
|
|
* If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the
|
|
* pool.
|
|
*/
|
|
static void finish_cleanup(struct data_vio *data_vio)
|
|
{
|
|
struct vdo_completion *completion = &data_vio->vio.completion;
|
|
u32 discard_size = min_t(u32, data_vio->remaining_discard,
|
|
VDO_BLOCK_SIZE - data_vio->offset);
|
|
|
|
VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL,
|
|
"complete data_vio has no allocation lock");
|
|
VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL,
|
|
"complete data_vio has no hash lock");
|
|
if ((data_vio->remaining_discard <= discard_size) ||
|
|
(completion->result != VDO_SUCCESS)) {
|
|
struct data_vio_pool *pool = completion->vdo->data_vio_pool;
|
|
|
|
vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link);
|
|
schedule_releases(pool);
|
|
return;
|
|
}
|
|
|
|
data_vio->remaining_discard -= discard_size;
|
|
data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE);
|
|
data_vio->read = data_vio->is_partial;
|
|
data_vio->offset = 0;
|
|
completion->requeue = true;
|
|
data_vio->first_reference_operation_complete = false;
|
|
launch_data_vio(data_vio, data_vio->logical.lbn + 1);
|
|
}
|
|
|
|
/** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */
|
|
static void perform_cleanup_stage(struct data_vio *data_vio,
|
|
enum data_vio_cleanup_stage stage)
|
|
{
|
|
struct vdo *vdo = vdo_from_data_vio(data_vio);
|
|
|
|
switch (stage) {
|
|
case VIO_RELEASE_HASH_LOCK:
|
|
if (data_vio->hash_lock != NULL) {
|
|
launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock);
|
|
return;
|
|
}
|
|
fallthrough;
|
|
|
|
case VIO_RELEASE_ALLOCATED:
|
|
if (data_vio_has_allocation(data_vio)) {
|
|
launch_data_vio_allocated_zone_callback(data_vio,
|
|
release_allocated_lock);
|
|
return;
|
|
}
|
|
fallthrough;
|
|
|
|
case VIO_RELEASE_RECOVERY_LOCKS:
|
|
if ((data_vio->recovery_sequence_number > 0) &&
|
|
(READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) &&
|
|
(data_vio->vio.completion.result != VDO_READ_ONLY))
|
|
vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock");
|
|
fallthrough;
|
|
|
|
case VIO_RELEASE_LOGICAL:
|
|
launch_data_vio_logical_callback(data_vio, release_logical_lock);
|
|
return;
|
|
|
|
default:
|
|
finish_cleanup(data_vio);
|
|
}
|
|
}
|
|
|
|
void complete_data_vio(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
completion->error_handler = NULL;
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP;
|
|
perform_cleanup_stage(data_vio,
|
|
(data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL));
|
|
}
|
|
|
|
static void enter_read_only_mode(struct vdo_completion *completion)
|
|
{
|
|
if (vdo_is_read_only(completion->vdo))
|
|
return;
|
|
|
|
if (completion->result != VDO_READ_ONLY) {
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
vdo_log_error_strerror(completion->result,
|
|
"Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s",
|
|
(unsigned long long) data_vio->logical.lbn,
|
|
(unsigned long long) data_vio->new_mapped.pbn,
|
|
(unsigned long long) data_vio->mapped.pbn,
|
|
(unsigned long long) data_vio->allocation.pbn,
|
|
get_data_vio_operation_name(data_vio));
|
|
}
|
|
|
|
vdo_enter_read_only_mode(completion->vdo, completion->result);
|
|
}
|
|
|
|
void handle_data_vio_error(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL))
|
|
enter_read_only_mode(completion);
|
|
|
|
update_data_vio_error_stats(data_vio);
|
|
complete_data_vio(completion);
|
|
}
|
|
|
|
/**
|
|
* get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a
|
|
* data_vio.
|
|
*/
|
|
const char *get_data_vio_operation_name(struct data_vio *data_vio)
|
|
{
|
|
BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) !=
|
|
ARRAY_SIZE(ASYNC_OPERATION_NAMES));
|
|
|
|
return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ?
|
|
ASYNC_OPERATION_NAMES[data_vio->last_async_operation] :
|
|
"unknown async operation");
|
|
}
|
|
|
|
/**
|
|
* data_vio_allocate_data_block() - Allocate a data block.
|
|
*
|
|
* @write_lock_type: The type of write lock to obtain on the block.
|
|
* @callback: The callback which will attempt an allocation in the current zone and continue if it
|
|
* succeeds.
|
|
* @error_handler: The handler for errors while allocating.
|
|
*/
|
|
void data_vio_allocate_data_block(struct data_vio *data_vio,
|
|
enum pbn_lock_type write_lock_type,
|
|
vdo_action_fn callback, vdo_action_fn error_handler)
|
|
{
|
|
struct allocation *allocation = &data_vio->allocation;
|
|
|
|
VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK),
|
|
"data_vio does not have an allocation");
|
|
allocation->write_lock_type = write_lock_type;
|
|
allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone);
|
|
allocation->first_allocation_zone = allocation->zone->zone_number;
|
|
|
|
data_vio->vio.completion.error_handler = error_handler;
|
|
launch_data_vio_allocated_zone_callback(data_vio, callback);
|
|
}
|
|
|
|
/**
|
|
* release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block.
|
|
* @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten).
|
|
*
|
|
* If the reference to the locked block is still provisional, it will be released as well.
|
|
*/
|
|
void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset)
|
|
{
|
|
struct allocation *allocation = &data_vio->allocation;
|
|
physical_block_number_t locked_pbn = allocation->pbn;
|
|
|
|
assert_data_vio_in_allocated_zone(data_vio);
|
|
|
|
if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock))
|
|
allocation->pbn = VDO_ZERO_BLOCK;
|
|
|
|
vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn,
|
|
vdo_forget(allocation->lock));
|
|
}
|
|
|
|
/**
|
|
* uncompress_data_vio() - Uncompress the data a data_vio has just read.
|
|
* @mapping_state: The mapping state indicating which fragment to decompress.
|
|
* @buffer: The buffer to receive the uncompressed data.
|
|
*/
|
|
int uncompress_data_vio(struct data_vio *data_vio,
|
|
enum block_mapping_state mapping_state, char *buffer)
|
|
{
|
|
int size;
|
|
u16 fragment_offset, fragment_size;
|
|
struct compressed_block *block = data_vio->compression.block;
|
|
int result = vdo_get_compressed_block_fragment(mapping_state, block,
|
|
&fragment_offset, &fragment_size);
|
|
|
|
if (result != VDO_SUCCESS) {
|
|
vdo_log_debug("%s: compressed fragment error %d", __func__, result);
|
|
return result;
|
|
}
|
|
|
|
size = LZ4_decompress_safe((block->data + fragment_offset), buffer,
|
|
fragment_size, VDO_BLOCK_SIZE);
|
|
if (size != VDO_BLOCK_SIZE) {
|
|
vdo_log_debug("%s: lz4 error", __func__);
|
|
return VDO_INVALID_FRAGMENT;
|
|
}
|
|
|
|
return VDO_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle.
|
|
* @completion: The data_vio which has just finished its read.
|
|
*
|
|
* This callback is registered in read_block().
|
|
*/
|
|
static void modify_for_partial_write(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
char *data = data_vio->vio.data;
|
|
struct bio *bio = data_vio->user_bio;
|
|
|
|
assert_data_vio_on_cpu_thread(data_vio);
|
|
|
|
if (bio_op(bio) == REQ_OP_DISCARD) {
|
|
memset(data + data_vio->offset, '\0', min_t(u32,
|
|
data_vio->remaining_discard,
|
|
VDO_BLOCK_SIZE - data_vio->offset));
|
|
} else {
|
|
copy_from_bio(bio, data + data_vio->offset);
|
|
}
|
|
|
|
data_vio->is_zero = is_zero_block(data);
|
|
data_vio->read = false;
|
|
launch_data_vio_logical_callback(data_vio,
|
|
continue_data_vio_with_block_map_slot);
|
|
}
|
|
|
|
static void complete_read(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
char *data = data_vio->vio.data;
|
|
bool compressed = vdo_is_state_compressed(data_vio->mapped.state);
|
|
|
|
assert_data_vio_on_cpu_thread(data_vio);
|
|
|
|
if (compressed) {
|
|
int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data);
|
|
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(data_vio, result);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (data_vio->write) {
|
|
modify_for_partial_write(completion);
|
|
return;
|
|
}
|
|
|
|
if (compressed || data_vio->is_partial)
|
|
copy_to_bio(data_vio->user_bio, data + data_vio->offset);
|
|
|
|
acknowledge_data_vio(data_vio);
|
|
complete_data_vio(completion);
|
|
}
|
|
|
|
static void read_endio(struct bio *bio)
|
|
{
|
|
struct data_vio *data_vio = vio_as_data_vio(bio->bi_private);
|
|
int result = blk_status_to_errno(bio->bi_status);
|
|
|
|
vdo_count_completed_bios(bio);
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(data_vio, result);
|
|
return;
|
|
}
|
|
|
|
launch_data_vio_cpu_callback(data_vio, complete_read,
|
|
CPU_Q_COMPLETE_READ_PRIORITY);
|
|
}
|
|
|
|
static void complete_zero_read(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_on_cpu_thread(data_vio);
|
|
|
|
if (data_vio->is_partial) {
|
|
memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE);
|
|
if (data_vio->write) {
|
|
modify_for_partial_write(completion);
|
|
return;
|
|
}
|
|
} else {
|
|
zero_fill_bio(data_vio->user_bio);
|
|
}
|
|
|
|
complete_read(completion);
|
|
}
|
|
|
|
/**
|
|
* read_block() - Read a block asynchronously.
|
|
*
|
|
* This is the callback registered in read_block_mapping().
|
|
*/
|
|
static void read_block(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
struct vio *vio = as_vio(completion);
|
|
int result = VDO_SUCCESS;
|
|
|
|
if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
|
|
launch_data_vio_cpu_callback(data_vio, complete_zero_read,
|
|
CPU_Q_COMPLETE_VIO_PRIORITY);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO;
|
|
if (vdo_is_state_compressed(data_vio->mapped.state)) {
|
|
result = vio_reset_bio(vio, (char *) data_vio->compression.block,
|
|
read_endio, REQ_OP_READ, data_vio->mapped.pbn);
|
|
} else {
|
|
blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ);
|
|
|
|
if (data_vio->is_partial) {
|
|
result = vio_reset_bio(vio, vio->data, read_endio, opf,
|
|
data_vio->mapped.pbn);
|
|
} else {
|
|
/* A full 4k read. Use the incoming bio to avoid having to copy the data */
|
|
bio_reset(vio->bio, vio->bio->bi_bdev, opf);
|
|
bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio,
|
|
data_vio->user_bio, GFP_KERNEL);
|
|
|
|
/* Copy over the original bio iovec and opflags. */
|
|
vdo_set_bio_properties(vio->bio, vio, read_endio, opf,
|
|
data_vio->mapped.pbn);
|
|
}
|
|
}
|
|
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(data_vio, result);
|
|
return;
|
|
}
|
|
|
|
vdo_submit_data_vio(data_vio);
|
|
}
|
|
|
|
static inline struct data_vio *
|
|
reference_count_update_completion_as_data_vio(struct vdo_completion *completion)
|
|
{
|
|
if (completion->type == VIO_COMPLETION)
|
|
return as_data_vio(completion);
|
|
|
|
return container_of(completion, struct data_vio, decrement_completion);
|
|
}
|
|
|
|
/**
|
|
* update_block_map() - Rendezvous of the data_vio and decrement completions after each has
|
|
* made its reference updates. Handle any error from either, or proceed
|
|
* to updating the block map.
|
|
* @completion: The completion of the write in progress.
|
|
*/
|
|
static void update_block_map(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion);
|
|
|
|
assert_data_vio_in_logical_zone(data_vio);
|
|
|
|
if (!data_vio->first_reference_operation_complete) {
|
|
/* Rendezvous, we're first */
|
|
data_vio->first_reference_operation_complete = true;
|
|
return;
|
|
}
|
|
|
|
completion = &data_vio->vio.completion;
|
|
vdo_set_completion_result(completion, data_vio->decrement_completion.result);
|
|
if (completion->result != VDO_SUCCESS) {
|
|
handle_data_vio_error(completion);
|
|
return;
|
|
}
|
|
|
|
completion->error_handler = handle_data_vio_error;
|
|
if (data_vio->hash_lock != NULL)
|
|
set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock);
|
|
else
|
|
completion->callback = complete_data_vio;
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK;
|
|
vdo_put_mapped_block(data_vio);
|
|
}
|
|
|
|
static void decrement_reference_count(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = container_of(completion, struct data_vio,
|
|
decrement_completion);
|
|
|
|
assert_data_vio_in_mapped_zone(data_vio);
|
|
|
|
vdo_set_completion_callback(completion, update_block_map,
|
|
data_vio->logical.zone->thread_id);
|
|
completion->error_handler = update_block_map;
|
|
vdo_modify_reference_count(completion, &data_vio->decrement_updater);
|
|
}
|
|
|
|
static void increment_reference_count(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_new_mapped_zone(data_vio);
|
|
|
|
if (data_vio->downgrade_allocation_lock) {
|
|
/*
|
|
* Now that the data has been written, it's safe to deduplicate against the
|
|
* block. Downgrade the allocation lock to a read lock so it can be used later by
|
|
* the hash lock. This is done here since it needs to happen sometime before we
|
|
* return to the hash zone, and we are currently on the correct thread. For
|
|
* compressed blocks, the downgrade will have already been done.
|
|
*/
|
|
vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false);
|
|
}
|
|
|
|
set_data_vio_logical_callback(data_vio, update_block_map);
|
|
completion->error_handler = update_block_map;
|
|
vdo_modify_reference_count(completion, &data_vio->increment_updater);
|
|
}
|
|
|
|
/** journal_remapping() - Add a recovery journal entry for a data remapping. */
|
|
static void journal_remapping(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_journal_zone(data_vio);
|
|
|
|
data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING;
|
|
data_vio->decrement_updater.zpbn = data_vio->mapped;
|
|
if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
|
|
data_vio->first_reference_operation_complete = true;
|
|
if (data_vio->mapped.pbn == VDO_ZERO_BLOCK)
|
|
set_data_vio_logical_callback(data_vio, update_block_map);
|
|
} else {
|
|
set_data_vio_new_mapped_zone_callback(data_vio,
|
|
increment_reference_count);
|
|
}
|
|
|
|
if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
|
|
data_vio->first_reference_operation_complete = true;
|
|
} else {
|
|
vdo_set_completion_callback(&data_vio->decrement_completion,
|
|
decrement_reference_count,
|
|
data_vio->mapped.zone->thread_id);
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING;
|
|
vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
|
|
}
|
|
|
|
/**
|
|
* read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write.
|
|
*
|
|
* Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate
|
|
* journal entry referencing the removal of this LBN->PBN mapping.
|
|
*/
|
|
static void read_old_block_mapping(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_logical_zone(data_vio);
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE;
|
|
set_data_vio_journal_callback(data_vio, journal_remapping);
|
|
vdo_get_mapped_block(data_vio);
|
|
}
|
|
|
|
void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock)
|
|
{
|
|
data_vio->increment_updater = (struct reference_updater) {
|
|
.operation = VDO_JOURNAL_DATA_REMAPPING,
|
|
.increment = true,
|
|
.zpbn = data_vio->new_mapped,
|
|
.lock = lock,
|
|
};
|
|
|
|
launch_data_vio_logical_callback(data_vio, read_old_block_mapping);
|
|
}
|
|
|
|
/**
|
|
* pack_compressed_data() - Attempt to pack the compressed data_vio into a block.
|
|
*
|
|
* This is the callback registered in launch_compress_data_vio().
|
|
*/
|
|
static void pack_compressed_data(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_packer_zone(data_vio);
|
|
|
|
if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
|
|
get_data_vio_compression_status(data_vio).may_not_compress) {
|
|
write_data_vio(data_vio);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING;
|
|
vdo_attempt_packing(data_vio);
|
|
}
|
|
|
|
/**
|
|
* compress_data_vio() - Do the actual work of compressing the data on a CPU queue.
|
|
*
|
|
* This callback is registered in launch_compress_data_vio().
|
|
*/
|
|
static void compress_data_vio(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
int size;
|
|
|
|
assert_data_vio_on_cpu_thread(data_vio);
|
|
|
|
/*
|
|
* By putting the compressed data at the start of the compressed block data field, we won't
|
|
* need to copy it if this data_vio becomes a compressed write agent.
|
|
*/
|
|
size = LZ4_compress_default(data_vio->vio.data,
|
|
data_vio->compression.block->data, VDO_BLOCK_SIZE,
|
|
VDO_MAX_COMPRESSED_FRAGMENT_SIZE,
|
|
(char *) vdo_get_work_queue_private_data());
|
|
if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) {
|
|
data_vio->compression.size = size;
|
|
launch_data_vio_packer_callback(data_vio, pack_compressed_data);
|
|
return;
|
|
}
|
|
|
|
write_data_vio(data_vio);
|
|
}
|
|
|
|
/**
|
|
* launch_compress_data_vio() - Continue a write by attempting to compress the data.
|
|
*
|
|
* This is a re-entry point to vio_write used by hash locks.
|
|
*/
|
|
void launch_compress_data_vio(struct data_vio *data_vio)
|
|
{
|
|
VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block");
|
|
VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL,
|
|
"data_vio to compress has a hash_lock");
|
|
VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio),
|
|
"data_vio to compress has an allocation");
|
|
|
|
/*
|
|
* There are 4 reasons why a data_vio which has reached this point will not be eligible for
|
|
* compression:
|
|
*
|
|
* 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the
|
|
* write request also requests FUA.
|
|
*
|
|
* 2) A data_vio should not be compressed when compression is disabled for the vdo.
|
|
*
|
|
* 3) A data_vio could be doing a partial write on behalf of a larger discard which has not
|
|
* yet been acknowledged and hence blocking in the packer would be bad.
|
|
*
|
|
* 4) Some other data_vio may be waiting on this data_vio in which case blocking in the
|
|
* packer would also be bad.
|
|
*/
|
|
if (data_vio->fua ||
|
|
!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
|
|
((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) ||
|
|
(advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) {
|
|
write_data_vio(data_vio);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO;
|
|
launch_data_vio_cpu_callback(data_vio, compress_data_vio,
|
|
CPU_Q_COMPRESS_BLOCK_PRIORITY);
|
|
}
|
|
|
|
/**
|
|
* hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record
|
|
* name as set).
|
|
|
|
* This callback is registered in prepare_for_dedupe().
|
|
*/
|
|
static void hash_data_vio(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_on_cpu_thread(data_vio);
|
|
VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed");
|
|
|
|
murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be,
|
|
&data_vio->record_name);
|
|
|
|
data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones,
|
|
&data_vio->record_name);
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK;
|
|
launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock);
|
|
}
|
|
|
|
/** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */
|
|
static void prepare_for_dedupe(struct data_vio *data_vio)
|
|
{
|
|
/* We don't care what thread we are on. */
|
|
VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks");
|
|
|
|
/*
|
|
* Before we can dedupe, we need to know the record name, so the first
|
|
* step is to hash the block data.
|
|
*/
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO;
|
|
launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY);
|
|
}
|
|
|
|
/**
|
|
* write_bio_finished() - This is the bio_end_io function registered in write_block() to be called
|
|
* when a data_vio's write to the underlying storage has completed.
|
|
*/
|
|
static void write_bio_finished(struct bio *bio)
|
|
{
|
|
struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private);
|
|
|
|
vdo_count_completed_bios(bio);
|
|
vdo_set_completion_result(&data_vio->vio.completion,
|
|
blk_status_to_errno(bio->bi_status));
|
|
data_vio->downgrade_allocation_lock = true;
|
|
update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock);
|
|
}
|
|
|
|
/** write_data_vio() - Write a data block to storage without compression. */
|
|
void write_data_vio(struct data_vio *data_vio)
|
|
{
|
|
struct data_vio_compression_status status, new_status;
|
|
int result;
|
|
|
|
if (!data_vio_has_allocation(data_vio)) {
|
|
/*
|
|
* There was no space to write this block and we failed to deduplicate or compress
|
|
* it.
|
|
*/
|
|
continue_data_vio_with_error(data_vio, VDO_NO_SPACE);
|
|
return;
|
|
}
|
|
|
|
new_status = (struct data_vio_compression_status) {
|
|
.stage = DATA_VIO_POST_PACKER,
|
|
.may_not_compress = true,
|
|
};
|
|
|
|
do {
|
|
status = get_data_vio_compression_status(data_vio);
|
|
} while ((status.stage != DATA_VIO_POST_PACKER) &&
|
|
!set_data_vio_compression_status(data_vio, status, new_status));
|
|
|
|
/* Write the data from the data block buffer. */
|
|
result = vio_reset_bio(&data_vio->vio, data_vio->vio.data,
|
|
write_bio_finished, REQ_OP_WRITE,
|
|
data_vio->allocation.pbn);
|
|
if (result != VDO_SUCCESS) {
|
|
continue_data_vio_with_error(data_vio, result);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO;
|
|
vdo_submit_data_vio(data_vio);
|
|
}
|
|
|
|
/**
|
|
* acknowledge_write_callback() - Acknowledge a write to the requestor.
|
|
*
|
|
* This callback is registered in allocate_block() and continue_write_with_block_map_slot().
|
|
*/
|
|
static void acknowledge_write_callback(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
struct vdo *vdo = completion->vdo;
|
|
|
|
VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) ||
|
|
(vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)),
|
|
"%s() called on bio ack queue", __func__);
|
|
VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio),
|
|
"write VIO to be acknowledged has a flush generation lock");
|
|
acknowledge_data_vio(data_vio);
|
|
if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
|
|
/* This is a zero write or discard */
|
|
update_metadata_for_data_vio_write(data_vio, NULL);
|
|
return;
|
|
}
|
|
|
|
prepare_for_dedupe(data_vio);
|
|
}
|
|
|
|
/**
|
|
* allocate_block() - Attempt to allocate a block in the current allocation zone.
|
|
*
|
|
* This callback is registered in continue_write_with_block_map_slot().
|
|
*/
|
|
static void allocate_block(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_allocated_zone(data_vio);
|
|
|
|
if (!vdo_allocate_block_in_zone(data_vio))
|
|
return;
|
|
|
|
completion->error_handler = handle_data_vio_error;
|
|
WRITE_ONCE(data_vio->allocation_succeeded, true);
|
|
data_vio->new_mapped = (struct zoned_pbn) {
|
|
.zone = data_vio->allocation.zone,
|
|
.pbn = data_vio->allocation.pbn,
|
|
.state = VDO_MAPPING_STATE_UNCOMPRESSED,
|
|
};
|
|
|
|
if (data_vio->fua ||
|
|
data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
|
|
prepare_for_dedupe(data_vio);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
|
|
launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
|
|
}
|
|
|
|
/**
|
|
* handle_allocation_error() - Handle an error attempting to allocate a block.
|
|
*
|
|
* This error handler is registered in continue_write_with_block_map_slot().
|
|
*/
|
|
static void handle_allocation_error(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
if (completion->result == VDO_NO_SPACE) {
|
|
/* We failed to get an allocation, but we can try to dedupe. */
|
|
vdo_reset_completion(completion);
|
|
completion->error_handler = handle_data_vio_error;
|
|
prepare_for_dedupe(data_vio);
|
|
return;
|
|
}
|
|
|
|
/* We got a "real" error, not just a failure to allocate, so fail the request. */
|
|
handle_data_vio_error(completion);
|
|
}
|
|
|
|
static int assert_is_discard(struct data_vio *data_vio)
|
|
{
|
|
int result = VDO_ASSERT(data_vio->is_discard,
|
|
"data_vio with no block map page is a discard");
|
|
|
|
return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY);
|
|
}
|
|
|
|
/**
|
|
* continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map.
|
|
*
|
|
* This callback is registered in launch_read_data_vio().
|
|
*/
|
|
void continue_data_vio_with_block_map_slot(struct vdo_completion *completion)
|
|
{
|
|
struct data_vio *data_vio = as_data_vio(completion);
|
|
|
|
assert_data_vio_in_logical_zone(data_vio);
|
|
if (data_vio->read) {
|
|
set_data_vio_logical_callback(data_vio, read_block);
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ;
|
|
vdo_get_mapped_block(data_vio);
|
|
return;
|
|
}
|
|
|
|
vdo_acquire_flush_generation_lock(data_vio);
|
|
|
|
if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
|
|
/*
|
|
* This is a discard for a block on a block map page which has not been allocated, so
|
|
* there's nothing more we need to do.
|
|
*/
|
|
completion->callback = complete_data_vio;
|
|
continue_data_vio_with_error(data_vio, assert_is_discard(data_vio));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need an allocation if this is neither a full-block discard nor a
|
|
* full-block zero write.
|
|
*/
|
|
if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) {
|
|
data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block,
|
|
handle_allocation_error);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We don't need to write any data, so skip allocation and just update the block map and
|
|
* reference counts (via the journal).
|
|
*/
|
|
data_vio->new_mapped.pbn = VDO_ZERO_BLOCK;
|
|
if (data_vio->is_zero)
|
|
data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED;
|
|
|
|
if (data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
|
|
/* This is not the final block of a discard so we can't acknowledge it yet. */
|
|
update_metadata_for_data_vio_write(data_vio, NULL);
|
|
return;
|
|
}
|
|
|
|
data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
|
|
launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
|
|
}
|