linux-stable/fs/nfs/write.c
David Howells 16f2f4e679 nfs: Implement cache I/O by accessing the cache directly
Move NFS to using fscache DIO API instead of the old upstream I/O API as
that has been removed.  This is a stopgap solution as the intention is that
at sometime in the future, the cache will move to using larger blocks and
won't be able to store individual pages in order to deal with the potential
for data corruption due to the backing filesystem being able insert/remove
bridging blocks of zeros into its extent list[1].

NFS then reads and writes cache pages synchronously and one page at a time.

The preferred change would be to use the netfs lib, but the new I/O API can
be used directly.  It's just that as the cache now needs to track data for
itself, caching blocks may exceed page size...

This code is somewhat borrowed from my "fallback I/O" patchset[2].

Changes
=======
ver #3:
 - Restore lost =n fallback for nfs_fscache_release_page()[2].

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: Anna Schumaker <anna.schumaker@netapp.com>
cc: linux-nfs@vger.kernel.org
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/YO17ZNOcq+9PajfQ@mit.edu [1]
Link: https://lore.kernel.org/r/202112100957.2oEDT20W-lkp@intel.com/ [2]
Link: https://lore.kernel.org/r/163189108292.2509237.12615909591150927232.stgit@warthog.procyon.org.uk/ [2]
Link: https://lore.kernel.org/r/163906981318.143852.17220018647843475985.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967184451.1823006.6450645559828329590.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021577632.640689.11069627070150063812.stgit@warthog.procyon.org.uk/ # v4
2022-01-10 11:53:25 +00:00

2211 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/nfs/write.c
*
* Write file data over NFS.
*
* Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/nfs_page.h>
#include <linux/backing-dev.h>
#include <linux/export.h>
#include <linux/freezer.h>
#include <linux/wait.h>
#include <linux/iversion.h>
#include <linux/uaccess.h>
#include <linux/sched/mm.h>
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "nfs4_fs.h"
#include "fscache.h"
#include "pnfs.h"
#include "nfstrace.h"
#define NFSDBG_FACILITY NFSDBG_PAGECACHE
#define MIN_POOL_WRITE (32)
#define MIN_POOL_COMMIT (4)
struct nfs_io_completion {
void (*complete)(void *data);
void *data;
struct kref refcount;
};
/*
* Local function declarations
*/
static void nfs_redirty_request(struct nfs_page *req);
static const struct rpc_call_ops nfs_commit_ops;
static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
static const struct nfs_rw_ops nfs_rw_write_ops;
static void nfs_inode_remove_request(struct nfs_page *req);
static void nfs_clear_request_commit(struct nfs_page *req);
static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
struct inode *inode);
static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
struct page *page);
static struct kmem_cache *nfs_wdata_cachep;
static mempool_t *nfs_wdata_mempool;
static struct kmem_cache *nfs_cdata_cachep;
static mempool_t *nfs_commit_mempool;
struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
{
struct nfs_commit_data *p;
if (never_fail)
p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
else {
/* It is OK to do some reclaim, not no safe to wait
* for anything to be returned to the pool.
* mempool_alloc() cannot handle that particular combination,
* so we need two separate attempts.
*/
p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
if (!p)
p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
__GFP_NOWARN | __GFP_NORETRY);
if (!p)
return NULL;
}
memset(p, 0, sizeof(*p));
INIT_LIST_HEAD(&p->pages);
return p;
}
EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
void nfs_commit_free(struct nfs_commit_data *p)
{
mempool_free(p, nfs_commit_mempool);
}
EXPORT_SYMBOL_GPL(nfs_commit_free);
static struct nfs_pgio_header *nfs_writehdr_alloc(void)
{
struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
memset(p, 0, sizeof(*p));
p->rw_mode = FMODE_WRITE;
return p;
}
static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
{
mempool_free(hdr, nfs_wdata_mempool);
}
static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
{
return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
}
static void nfs_io_completion_init(struct nfs_io_completion *ioc,
void (*complete)(void *), void *data)
{
ioc->complete = complete;
ioc->data = data;
kref_init(&ioc->refcount);
}
static void nfs_io_completion_release(struct kref *kref)
{
struct nfs_io_completion *ioc = container_of(kref,
struct nfs_io_completion, refcount);
ioc->complete(ioc->data);
kfree(ioc);
}
static void nfs_io_completion_get(struct nfs_io_completion *ioc)
{
if (ioc != NULL)
kref_get(&ioc->refcount);
}
static void nfs_io_completion_put(struct nfs_io_completion *ioc)
{
if (ioc != NULL)
kref_put(&ioc->refcount, nfs_io_completion_release);
}
static void
nfs_page_set_inode_ref(struct nfs_page *req, struct inode *inode)
{
if (!test_and_set_bit(PG_INODE_REF, &req->wb_flags)) {
kref_get(&req->wb_kref);
atomic_long_inc(&NFS_I(inode)->nrequests);
}
}
static int
nfs_cancel_remove_inode(struct nfs_page *req, struct inode *inode)
{
int ret;
if (!test_bit(PG_REMOVE, &req->wb_flags))
return 0;
ret = nfs_page_group_lock(req);
if (ret)
return ret;
if (test_and_clear_bit(PG_REMOVE, &req->wb_flags))
nfs_page_set_inode_ref(req, inode);
nfs_page_group_unlock(req);
return 0;
}
static struct nfs_page *
nfs_page_private_request(struct page *page)
{
if (!PagePrivate(page))
return NULL;
return (struct nfs_page *)page_private(page);
}
/*
* nfs_page_find_head_request_locked - find head request associated with @page
*
* must be called while holding the inode lock.
*
* returns matching head request with reference held, or NULL if not found.
*/
static struct nfs_page *
nfs_page_find_private_request(struct page *page)
{
struct address_space *mapping = page_file_mapping(page);
struct nfs_page *req;
if (!PagePrivate(page))
return NULL;
spin_lock(&mapping->private_lock);
req = nfs_page_private_request(page);
if (req) {
WARN_ON_ONCE(req->wb_head != req);
kref_get(&req->wb_kref);
}
spin_unlock(&mapping->private_lock);
return req;
}
static struct nfs_page *
nfs_page_find_swap_request(struct page *page)
{
struct inode *inode = page_file_mapping(page)->host;
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_page *req = NULL;
if (!PageSwapCache(page))
return NULL;
mutex_lock(&nfsi->commit_mutex);
if (PageSwapCache(page)) {
req = nfs_page_search_commits_for_head_request_locked(nfsi,
page);
if (req) {
WARN_ON_ONCE(req->wb_head != req);
kref_get(&req->wb_kref);
}
}
mutex_unlock(&nfsi->commit_mutex);
return req;
}
/*
* nfs_page_find_head_request - find head request associated with @page
*
* returns matching head request with reference held, or NULL if not found.
*/
static struct nfs_page *nfs_page_find_head_request(struct page *page)
{
struct nfs_page *req;
req = nfs_page_find_private_request(page);
if (!req)
req = nfs_page_find_swap_request(page);
return req;
}
static struct nfs_page *nfs_find_and_lock_page_request(struct page *page)
{
struct inode *inode = page_file_mapping(page)->host;
struct nfs_page *req, *head;
int ret;
for (;;) {
req = nfs_page_find_head_request(page);
if (!req)
return req;
head = nfs_page_group_lock_head(req);
if (head != req)
nfs_release_request(req);
if (IS_ERR(head))
return head;
ret = nfs_cancel_remove_inode(head, inode);
if (ret < 0) {
nfs_unlock_and_release_request(head);
return ERR_PTR(ret);
}
/* Ensure that nobody removed the request before we locked it */
if (head == nfs_page_private_request(page))
break;
if (PageSwapCache(page))
break;
nfs_unlock_and_release_request(head);
}
return head;
}
/* Adjust the file length if we're writing beyond the end */
static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
{
struct inode *inode = page_file_mapping(page)->host;
loff_t end, i_size;
pgoff_t end_index;
spin_lock(&inode->i_lock);
i_size = i_size_read(inode);
end_index = (i_size - 1) >> PAGE_SHIFT;
if (i_size > 0 && page_index(page) < end_index)
goto out;
end = page_file_offset(page) + ((loff_t)offset+count);
if (i_size >= end)
goto out;
trace_nfs_size_grow(inode, end);
i_size_write(inode, end);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
out:
spin_unlock(&inode->i_lock);
nfs_fscache_invalidate(inode, 0);
}
/* A writeback failed: mark the page as bad, and invalidate the page cache */
static void nfs_set_pageerror(struct address_space *mapping)
{
struct inode *inode = mapping->host;
nfs_zap_mapping(mapping->host, mapping);
/* Force file size revalidation */
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_REVAL_FORCED |
NFS_INO_REVAL_PAGECACHE |
NFS_INO_INVALID_SIZE);
spin_unlock(&inode->i_lock);
}
static void nfs_mapping_set_error(struct page *page, int error)
{
struct address_space *mapping = page_file_mapping(page);
SetPageError(page);
mapping_set_error(mapping, error);
nfs_set_pageerror(mapping);
}
/*
* nfs_page_group_search_locked
* @head - head request of page group
* @page_offset - offset into page
*
* Search page group with head @head to find a request that contains the
* page offset @page_offset.
*
* Returns a pointer to the first matching nfs request, or NULL if no
* match is found.
*
* Must be called with the page group lock held
*/
static struct nfs_page *
nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
{
struct nfs_page *req;
req = head;
do {
if (page_offset >= req->wb_pgbase &&
page_offset < (req->wb_pgbase + req->wb_bytes))
return req;
req = req->wb_this_page;
} while (req != head);
return NULL;
}
/*
* nfs_page_group_covers_page
* @head - head request of page group
*
* Return true if the page group with head @head covers the whole page,
* returns false otherwise
*/
static bool nfs_page_group_covers_page(struct nfs_page *req)
{
struct nfs_page *tmp;
unsigned int pos = 0;
unsigned int len = nfs_page_length(req->wb_page);
nfs_page_group_lock(req);
for (;;) {
tmp = nfs_page_group_search_locked(req->wb_head, pos);
if (!tmp)
break;
pos = tmp->wb_pgbase + tmp->wb_bytes;
}
nfs_page_group_unlock(req);
return pos >= len;
}
/* We can set the PG_uptodate flag if we see that a write request
* covers the full page.
*/
static void nfs_mark_uptodate(struct nfs_page *req)
{
if (PageUptodate(req->wb_page))
return;
if (!nfs_page_group_covers_page(req))
return;
SetPageUptodate(req->wb_page);
}
static int wb_priority(struct writeback_control *wbc)
{
int ret = 0;
if (wbc->sync_mode == WB_SYNC_ALL)
ret = FLUSH_COND_STABLE;
return ret;
}
/*
* NFS congestion control
*/
int nfs_congestion_kb;
#define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
#define NFS_CONGESTION_OFF_THRESH \
(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
static void nfs_set_page_writeback(struct page *page)
{
struct inode *inode = page_file_mapping(page)->host;
struct nfs_server *nfss = NFS_SERVER(inode);
int ret = test_set_page_writeback(page);
WARN_ON_ONCE(ret != 0);
if (atomic_long_inc_return(&nfss->writeback) >
NFS_CONGESTION_ON_THRESH)
set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
}
static void nfs_end_page_writeback(struct nfs_page *req)
{
struct inode *inode = page_file_mapping(req->wb_page)->host;
struct nfs_server *nfss = NFS_SERVER(inode);
bool is_done;
is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
nfs_unlock_request(req);
if (!is_done)
return;
end_page_writeback(req->wb_page);
if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
}
/*
* nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
*
* @destroy_list - request list (using wb_this_page) terminated by @old_head
* @old_head - the old head of the list
*
* All subrequests must be locked and removed from all lists, so at this point
* they are only "active" in this function, and possibly in nfs_wait_on_request
* with a reference held by some other context.
*/
static void
nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
struct nfs_page *old_head,
struct inode *inode)
{
while (destroy_list) {
struct nfs_page *subreq = destroy_list;
destroy_list = (subreq->wb_this_page == old_head) ?
NULL : subreq->wb_this_page;
/* Note: lock subreq in order to change subreq->wb_head */
nfs_page_set_headlock(subreq);
WARN_ON_ONCE(old_head != subreq->wb_head);
/* make sure old group is not used */
subreq->wb_this_page = subreq;
subreq->wb_head = subreq;
clear_bit(PG_REMOVE, &subreq->wb_flags);
/* Note: races with nfs_page_group_destroy() */
if (!kref_read(&subreq->wb_kref)) {
/* Check if we raced with nfs_page_group_destroy() */
if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) {
nfs_page_clear_headlock(subreq);
nfs_free_request(subreq);
} else
nfs_page_clear_headlock(subreq);
continue;
}
nfs_page_clear_headlock(subreq);
nfs_release_request(old_head);
if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
nfs_release_request(subreq);
atomic_long_dec(&NFS_I(inode)->nrequests);
}
/* subreq is now totally disconnected from page group or any
* write / commit lists. last chance to wake any waiters */
nfs_unlock_and_release_request(subreq);
}
}
/*
* nfs_join_page_group - destroy subrequests of the head req
* @head: the page used to lookup the "page group" of nfs_page structures
* @inode: Inode to which the request belongs.
*
* This function joins all sub requests to the head request by first
* locking all requests in the group, cancelling any pending operations
* and finally updating the head request to cover the whole range covered by
* the (former) group. All subrequests are removed from any write or commit
* lists, unlinked from the group and destroyed.
*/
void
nfs_join_page_group(struct nfs_page *head, struct inode *inode)
{
struct nfs_page *subreq;
struct nfs_page *destroy_list = NULL;
unsigned int pgbase, off, bytes;
pgbase = head->wb_pgbase;
bytes = head->wb_bytes;
off = head->wb_offset;
for (subreq = head->wb_this_page; subreq != head;
subreq = subreq->wb_this_page) {
/* Subrequests should always form a contiguous range */
if (pgbase > subreq->wb_pgbase) {
off -= pgbase - subreq->wb_pgbase;
bytes += pgbase - subreq->wb_pgbase;
pgbase = subreq->wb_pgbase;
}
bytes = max(subreq->wb_pgbase + subreq->wb_bytes
- pgbase, bytes);
}
/* Set the head request's range to cover the former page group */
head->wb_pgbase = pgbase;
head->wb_bytes = bytes;
head->wb_offset = off;
/* Now that all requests are locked, make sure they aren't on any list.
* Commit list removal accounting is done after locks are dropped */
subreq = head;
do {
nfs_clear_request_commit(subreq);
subreq = subreq->wb_this_page;
} while (subreq != head);
/* unlink subrequests from head, destroy them later */
if (head->wb_this_page != head) {
/* destroy list will be terminated by head */
destroy_list = head->wb_this_page;
head->wb_this_page = head;
}
nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
}
/*
* nfs_lock_and_join_requests - join all subreqs to the head req
* @page: the page used to lookup the "page group" of nfs_page structures
*
* This function joins all sub requests to the head request by first
* locking all requests in the group, cancelling any pending operations
* and finally updating the head request to cover the whole range covered by
* the (former) group. All subrequests are removed from any write or commit
* lists, unlinked from the group and destroyed.
*
* Returns a locked, referenced pointer to the head request - which after
* this call is guaranteed to be the only request associated with the page.
* Returns NULL if no requests are found for @page, or a ERR_PTR if an
* error was encountered.
*/
static struct nfs_page *
nfs_lock_and_join_requests(struct page *page)
{
struct inode *inode = page_file_mapping(page)->host;
struct nfs_page *head;
int ret;
/*
* A reference is taken only on the head request which acts as a
* reference to the whole page group - the group will not be destroyed
* until the head reference is released.
*/
head = nfs_find_and_lock_page_request(page);
if (IS_ERR_OR_NULL(head))
return head;
/* lock each request in the page group */
ret = nfs_page_group_lock_subrequests(head);
if (ret < 0) {
nfs_unlock_and_release_request(head);
return ERR_PTR(ret);
}
nfs_join_page_group(head, inode);
return head;
}
static void nfs_write_error(struct nfs_page *req, int error)
{
trace_nfs_write_error(req, error);
nfs_mapping_set_error(req->wb_page, error);
nfs_inode_remove_request(req);
nfs_end_page_writeback(req);
nfs_release_request(req);
}
/*
* Find an associated nfs write request, and prepare to flush it out
* May return an error if the user signalled nfs_wait_on_request().
*/
static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
struct page *page)
{
struct nfs_page *req;
int ret = 0;
req = nfs_lock_and_join_requests(page);
if (!req)
goto out;
ret = PTR_ERR(req);
if (IS_ERR(req))
goto out;
nfs_set_page_writeback(page);
WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
/* If there is a fatal error that covers this write, just exit */
ret = pgio->pg_error;
if (nfs_error_is_fatal_on_server(ret))
goto out_launder;
ret = 0;
if (!nfs_pageio_add_request(pgio, req)) {
ret = pgio->pg_error;
/*
* Remove the problematic req upon fatal errors on the server
*/
if (nfs_error_is_fatal(ret)) {
if (nfs_error_is_fatal_on_server(ret))
goto out_launder;
} else
ret = -EAGAIN;
nfs_redirty_request(req);
pgio->pg_error = 0;
} else
nfs_add_stats(page_file_mapping(page)->host,
NFSIOS_WRITEPAGES, 1);
out:
return ret;
out_launder:
nfs_write_error(req, ret);
return 0;
}
static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
struct nfs_pageio_descriptor *pgio)
{
int ret;
nfs_pageio_cond_complete(pgio, page_index(page));
ret = nfs_page_async_flush(pgio, page);
if (ret == -EAGAIN) {
redirty_page_for_writepage(wbc, page);
ret = AOP_WRITEPAGE_ACTIVATE;
}
return ret;
}
/*
* Write an mmapped page to the server.
*/
static int nfs_writepage_locked(struct page *page,
struct writeback_control *wbc)
{
struct nfs_pageio_descriptor pgio;
struct inode *inode = page_file_mapping(page)->host;
int err;
nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
nfs_pageio_init_write(&pgio, inode, 0,
false, &nfs_async_write_completion_ops);
err = nfs_do_writepage(page, wbc, &pgio);
pgio.pg_error = 0;
nfs_pageio_complete(&pgio);
if (err < 0)
return err;
if (nfs_error_is_fatal(pgio.pg_error))
return pgio.pg_error;
return 0;
}
int nfs_writepage(struct page *page, struct writeback_control *wbc)
{
int ret;
ret = nfs_writepage_locked(page, wbc);
if (ret != AOP_WRITEPAGE_ACTIVATE)
unlock_page(page);
return ret;
}
static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
{
int ret;
ret = nfs_do_writepage(page, wbc, data);
if (ret != AOP_WRITEPAGE_ACTIVATE)
unlock_page(page);
return ret;
}
static void nfs_io_completion_commit(void *inode)
{
nfs_commit_inode(inode, 0);
}
int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct nfs_pageio_descriptor pgio;
struct nfs_io_completion *ioc = NULL;
unsigned int mntflags = NFS_SERVER(inode)->flags;
int priority = 0;
int err;
nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
if (!(mntflags & NFS_MOUNT_WRITE_EAGER) || wbc->for_kupdate ||
wbc->for_background || wbc->for_sync || wbc->for_reclaim) {
ioc = nfs_io_completion_alloc(GFP_KERNEL);
if (ioc)
nfs_io_completion_init(ioc, nfs_io_completion_commit,
inode);
priority = wb_priority(wbc);
}
nfs_pageio_init_write(&pgio, inode, priority, false,
&nfs_async_write_completion_ops);
pgio.pg_io_completion = ioc;
err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
pgio.pg_error = 0;
nfs_pageio_complete(&pgio);
nfs_io_completion_put(ioc);
if (err < 0)
goto out_err;
err = pgio.pg_error;
if (nfs_error_is_fatal(err))
goto out_err;
return 0;
out_err:
return err;
}
/*
* Insert a write request into an inode
*/
static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
{
struct address_space *mapping = page_file_mapping(req->wb_page);
struct nfs_inode *nfsi = NFS_I(inode);
WARN_ON_ONCE(req->wb_this_page != req);
/* Lock the request! */
nfs_lock_request(req);
/*
* Swap-space should not get truncated. Hence no need to plug the race
* with invalidate/truncate.
*/
spin_lock(&mapping->private_lock);
if (likely(!PageSwapCache(req->wb_page))) {
set_bit(PG_MAPPED, &req->wb_flags);
SetPagePrivate(req->wb_page);
set_page_private(req->wb_page, (unsigned long)req);
}
spin_unlock(&mapping->private_lock);
atomic_long_inc(&nfsi->nrequests);
/* this a head request for a page group - mark it as having an
* extra reference so sub groups can follow suit.
* This flag also informs pgio layer when to bump nrequests when
* adding subrequests. */
WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
kref_get(&req->wb_kref);
}
/*
* Remove a write request from an inode
*/
static void nfs_inode_remove_request(struct nfs_page *req)
{
struct address_space *mapping = page_file_mapping(req->wb_page);
struct inode *inode = mapping->host;
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_page *head;
if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
head = req->wb_head;
spin_lock(&mapping->private_lock);
if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
set_page_private(head->wb_page, 0);
ClearPagePrivate(head->wb_page);
clear_bit(PG_MAPPED, &head->wb_flags);
}
spin_unlock(&mapping->private_lock);
}
if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
nfs_release_request(req);
atomic_long_dec(&nfsi->nrequests);
}
}
static void
nfs_mark_request_dirty(struct nfs_page *req)
{
if (req->wb_page)
__set_page_dirty_nobuffers(req->wb_page);
}
/*
* nfs_page_search_commits_for_head_request_locked
*
* Search through commit lists on @inode for the head request for @page.
* Must be called while holding the inode (which is cinfo) lock.
*
* Returns the head request if found, or NULL if not found.
*/
static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
struct page *page)
{
struct nfs_page *freq, *t;
struct nfs_commit_info cinfo;
struct inode *inode = &nfsi->vfs_inode;
nfs_init_cinfo_from_inode(&cinfo, inode);
/* search through pnfs commit lists */
freq = pnfs_search_commit_reqs(inode, &cinfo, page);
if (freq)
return freq->wb_head;
/* Linearly search the commit list for the correct request */
list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
if (freq->wb_page == page)
return freq->wb_head;
}
return NULL;
}
/**
* nfs_request_add_commit_list_locked - add request to a commit list
* @req: pointer to a struct nfs_page
* @dst: commit list head
* @cinfo: holds list lock and accounting info
*
* This sets the PG_CLEAN bit, updates the cinfo count of
* number of outstanding requests requiring a commit as well as
* the MM page stats.
*
* The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
* nfs_page lock.
*/
void
nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
struct nfs_commit_info *cinfo)
{
set_bit(PG_CLEAN, &req->wb_flags);
nfs_list_add_request(req, dst);
atomic_long_inc(&cinfo->mds->ncommit);
}
EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
/**
* nfs_request_add_commit_list - add request to a commit list
* @req: pointer to a struct nfs_page
* @cinfo: holds list lock and accounting info
*
* This sets the PG_CLEAN bit, updates the cinfo count of
* number of outstanding requests requiring a commit as well as
* the MM page stats.
*
* The caller must _not_ hold the cinfo->lock, but must be
* holding the nfs_page lock.
*/
void
nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
{
mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
if (req->wb_page)
nfs_mark_page_unstable(req->wb_page, cinfo);
}
EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
/**
* nfs_request_remove_commit_list - Remove request from a commit list
* @req: pointer to a nfs_page
* @cinfo: holds list lock and accounting info
*
* This clears the PG_CLEAN bit, and updates the cinfo's count of
* number of outstanding requests requiring a commit
* It does not update the MM page stats.
*
* The caller _must_ hold the cinfo->lock and the nfs_page lock.
*/
void
nfs_request_remove_commit_list(struct nfs_page *req,
struct nfs_commit_info *cinfo)
{
if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
return;
nfs_list_remove_request(req);
atomic_long_dec(&cinfo->mds->ncommit);
}
EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
struct inode *inode)
{
cinfo->inode = inode;
cinfo->mds = &NFS_I(inode)->commit_info;
cinfo->ds = pnfs_get_ds_info(inode);
cinfo->dreq = NULL;
cinfo->completion_ops = &nfs_commit_completion_ops;
}
void nfs_init_cinfo(struct nfs_commit_info *cinfo,
struct inode *inode,
struct nfs_direct_req *dreq)
{
if (dreq)
nfs_init_cinfo_from_dreq(cinfo, dreq);
else
nfs_init_cinfo_from_inode(cinfo, inode);
}
EXPORT_SYMBOL_GPL(nfs_init_cinfo);
/*
* Add a request to the inode's commit list.
*/
void
nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
struct nfs_commit_info *cinfo, u32 ds_commit_idx)
{
if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
return;
nfs_request_add_commit_list(req, cinfo);
}
static void
nfs_clear_page_commit(struct page *page)
{
dec_node_page_state(page, NR_WRITEBACK);
dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
WB_WRITEBACK);
}
/* Called holding the request lock on @req */
static void
nfs_clear_request_commit(struct nfs_page *req)
{
if (test_bit(PG_CLEAN, &req->wb_flags)) {
struct nfs_open_context *ctx = nfs_req_openctx(req);
struct inode *inode = d_inode(ctx->dentry);
struct nfs_commit_info cinfo;
nfs_init_cinfo_from_inode(&cinfo, inode);
mutex_lock(&NFS_I(inode)->commit_mutex);
if (!pnfs_clear_request_commit(req, &cinfo)) {
nfs_request_remove_commit_list(req, &cinfo);
}
mutex_unlock(&NFS_I(inode)->commit_mutex);
nfs_clear_page_commit(req->wb_page);
}
}
int nfs_write_need_commit(struct nfs_pgio_header *hdr)
{
if (hdr->verf.committed == NFS_DATA_SYNC)
return hdr->lseg == NULL;
return hdr->verf.committed != NFS_FILE_SYNC;
}
static void nfs_async_write_init(struct nfs_pgio_header *hdr)
{
nfs_io_completion_get(hdr->io_completion);
}
static void nfs_write_completion(struct nfs_pgio_header *hdr)
{
struct nfs_commit_info cinfo;
unsigned long bytes = 0;
if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
goto out;
nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
while (!list_empty(&hdr->pages)) {
struct nfs_page *req = nfs_list_entry(hdr->pages.next);
bytes += req->wb_bytes;
nfs_list_remove_request(req);
if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
(hdr->good_bytes < bytes)) {
trace_nfs_comp_error(req, hdr->error);
nfs_mapping_set_error(req->wb_page, hdr->error);
goto remove_req;
}
if (nfs_write_need_commit(hdr)) {
/* Reset wb_nio, since the write was successful. */
req->wb_nio = 0;
memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
nfs_mark_request_commit(req, hdr->lseg, &cinfo,
hdr->pgio_mirror_idx);
goto next;
}
remove_req:
nfs_inode_remove_request(req);
next:
nfs_end_page_writeback(req);
nfs_release_request(req);
}
out:
nfs_io_completion_put(hdr->io_completion);
hdr->release(hdr);
}
unsigned long
nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
{
return atomic_long_read(&cinfo->mds->ncommit);
}
/* NFS_I(cinfo->inode)->commit_mutex held by caller */
int
nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
struct nfs_commit_info *cinfo, int max)
{
struct nfs_page *req, *tmp;
int ret = 0;
list_for_each_entry_safe(req, tmp, src, wb_list) {
kref_get(&req->wb_kref);
if (!nfs_lock_request(req)) {
nfs_release_request(req);
continue;
}
nfs_request_remove_commit_list(req, cinfo);
clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
nfs_list_add_request(req, dst);
ret++;
if ((ret == max) && !cinfo->dreq)
break;
cond_resched();
}
return ret;
}
EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
/*
* nfs_scan_commit - Scan an inode for commit requests
* @inode: NFS inode to scan
* @dst: mds destination list
* @cinfo: mds and ds lists of reqs ready to commit
*
* Moves requests from the inode's 'commit' request list.
* The requests are *not* checked to ensure that they form a contiguous set.
*/
int
nfs_scan_commit(struct inode *inode, struct list_head *dst,
struct nfs_commit_info *cinfo)
{
int ret = 0;
if (!atomic_long_read(&cinfo->mds->ncommit))
return 0;
mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
const int max = INT_MAX;
ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
cinfo, max);
ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
}
mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
return ret;
}
/*
* Search for an existing write request, and attempt to update
* it to reflect a new dirty region on a given page.
*
* If the attempt fails, then the existing request is flushed out
* to disk.
*/
static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
struct page *page,
unsigned int offset,
unsigned int bytes)
{
struct nfs_page *req;
unsigned int rqend;
unsigned int end;
int error;
end = offset + bytes;
req = nfs_lock_and_join_requests(page);
if (IS_ERR_OR_NULL(req))
return req;
rqend = req->wb_offset + req->wb_bytes;
/*
* Tell the caller to flush out the request if
* the offsets are non-contiguous.
* Note: nfs_flush_incompatible() will already
* have flushed out requests having wrong owners.
*/
if (offset > rqend || end < req->wb_offset)
goto out_flushme;
/* Okay, the request matches. Update the region */
if (offset < req->wb_offset) {
req->wb_offset = offset;
req->wb_pgbase = offset;
}
if (end > rqend)
req->wb_bytes = end - req->wb_offset;
else
req->wb_bytes = rqend - req->wb_offset;
req->wb_nio = 0;
return req;
out_flushme:
/*
* Note: we mark the request dirty here because
* nfs_lock_and_join_requests() cannot preserve
* commit flags, so we have to replay the write.
*/
nfs_mark_request_dirty(req);
nfs_unlock_and_release_request(req);
error = nfs_wb_page(inode, page);
return (error < 0) ? ERR_PTR(error) : NULL;
}
/*
* Try to update an existing write request, or create one if there is none.
*
* Note: Should always be called with the Page Lock held to prevent races
* if we have to add a new request. Also assumes that the caller has
* already called nfs_flush_incompatible() if necessary.
*/
static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
struct page *page, unsigned int offset, unsigned int bytes)
{
struct inode *inode = page_file_mapping(page)->host;
struct nfs_page *req;
req = nfs_try_to_update_request(inode, page, offset, bytes);
if (req != NULL)
goto out;
req = nfs_create_request(ctx, page, offset, bytes);
if (IS_ERR(req))
goto out;
nfs_inode_add_request(inode, req);
out:
return req;
}
static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
unsigned int offset, unsigned int count)
{
struct nfs_page *req;
req = nfs_setup_write_request(ctx, page, offset, count);
if (IS_ERR(req))
return PTR_ERR(req);
/* Update file length */
nfs_grow_file(page, offset, count);
nfs_mark_uptodate(req);
nfs_mark_request_dirty(req);
nfs_unlock_and_release_request(req);
return 0;
}
int nfs_flush_incompatible(struct file *file, struct page *page)
{
struct nfs_open_context *ctx = nfs_file_open_context(file);
struct nfs_lock_context *l_ctx;
struct file_lock_context *flctx = file_inode(file)->i_flctx;
struct nfs_page *req;
int do_flush, status;
/*
* Look for a request corresponding to this page. If there
* is one, and it belongs to another file, we flush it out
* before we try to copy anything into the page. Do this
* due to the lack of an ACCESS-type call in NFSv2.
* Also do the same if we find a request from an existing
* dropped page.
*/
do {
req = nfs_page_find_head_request(page);
if (req == NULL)
return 0;
l_ctx = req->wb_lock_context;
do_flush = req->wb_page != page ||
!nfs_match_open_context(nfs_req_openctx(req), ctx);
if (l_ctx && flctx &&
!(list_empty_careful(&flctx->flc_posix) &&
list_empty_careful(&flctx->flc_flock))) {
do_flush |= l_ctx->lockowner != current->files;
}
nfs_release_request(req);
if (!do_flush)
return 0;
status = nfs_wb_page(page_file_mapping(page)->host, page);
} while (status == 0);
return status;
}
/*
* Avoid buffered writes when a open context credential's key would
* expire soon.
*
* Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
*
* Return 0 and set a credential flag which triggers the inode to flush
* and performs NFS_FILE_SYNC writes if the key will expired within
* RPC_KEY_EXPIRE_TIMEO.
*/
int
nfs_key_timeout_notify(struct file *filp, struct inode *inode)
{
struct nfs_open_context *ctx = nfs_file_open_context(filp);
if (nfs_ctx_key_to_expire(ctx, inode) &&
!rcu_access_pointer(ctx->ll_cred))
/* Already expired! */
return -EACCES;
return 0;
}
/*
* Test if the open context credential key is marked to expire soon.
*/
bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
{
struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
struct rpc_cred *cred, *new, *old = NULL;
struct auth_cred acred = {
.cred = ctx->cred,
};
bool ret = false;
rcu_read_lock();
cred = rcu_dereference(ctx->ll_cred);
if (cred && !(cred->cr_ops->crkey_timeout &&
cred->cr_ops->crkey_timeout(cred)))
goto out;
rcu_read_unlock();
new = auth->au_ops->lookup_cred(auth, &acred, 0);
if (new == cred) {
put_rpccred(new);
return true;
}
if (IS_ERR_OR_NULL(new)) {
new = NULL;
ret = true;
} else if (new->cr_ops->crkey_timeout &&
new->cr_ops->crkey_timeout(new))
ret = true;
rcu_read_lock();
old = rcu_dereference_protected(xchg(&ctx->ll_cred,
RCU_INITIALIZER(new)), 1);
out:
rcu_read_unlock();
put_rpccred(old);
return ret;
}
/*
* If the page cache is marked as unsafe or invalid, then we can't rely on
* the PageUptodate() flag. In this case, we will need to turn off
* write optimisations that depend on the page contents being correct.
*/
static bool nfs_write_pageuptodate(struct page *page, struct inode *inode,
unsigned int pagelen)
{
struct nfs_inode *nfsi = NFS_I(inode);
if (nfs_have_delegated_attributes(inode))
goto out;
if (nfsi->cache_validity &
(NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE))
return false;
smp_rmb();
if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags) && pagelen != 0)
return false;
out:
if (nfsi->cache_validity & NFS_INO_INVALID_DATA && pagelen != 0)
return false;
return PageUptodate(page) != 0;
}
static bool
is_whole_file_wrlock(struct file_lock *fl)
{
return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
fl->fl_type == F_WRLCK;
}
/* If we know the page is up to date, and we're not using byte range locks (or
* if we have the whole file locked for writing), it may be more efficient to
* extend the write to cover the entire page in order to avoid fragmentation
* inefficiencies.
*
* If the file is opened for synchronous writes then we can just skip the rest
* of the checks.
*/
static int nfs_can_extend_write(struct file *file, struct page *page,
struct inode *inode, unsigned int pagelen)
{
int ret;
struct file_lock_context *flctx = inode->i_flctx;
struct file_lock *fl;
if (file->f_flags & O_DSYNC)
return 0;
if (!nfs_write_pageuptodate(page, inode, pagelen))
return 0;
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
return 1;
if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
list_empty_careful(&flctx->flc_posix)))
return 1;
/* Check to see if there are whole file write locks */
ret = 0;
spin_lock(&flctx->flc_lock);
if (!list_empty(&flctx->flc_posix)) {
fl = list_first_entry(&flctx->flc_posix, struct file_lock,
fl_list);
if (is_whole_file_wrlock(fl))
ret = 1;
} else if (!list_empty(&flctx->flc_flock)) {
fl = list_first_entry(&flctx->flc_flock, struct file_lock,
fl_list);
if (fl->fl_type == F_WRLCK)
ret = 1;
}
spin_unlock(&flctx->flc_lock);
return ret;
}
/*
* Update and possibly write a cached page of an NFS file.
*
* XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
* things with a page scheduled for an RPC call (e.g. invalidate it).
*/
int nfs_updatepage(struct file *file, struct page *page,
unsigned int offset, unsigned int count)
{
struct nfs_open_context *ctx = nfs_file_open_context(file);
struct address_space *mapping = page_file_mapping(page);
struct inode *inode = mapping->host;
unsigned int pagelen = nfs_page_length(page);
int status = 0;
nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
file, count, (long long)(page_file_offset(page) + offset));
if (!count)
goto out;
if (nfs_can_extend_write(file, page, inode, pagelen)) {
count = max(count + offset, pagelen);
offset = 0;
}
status = nfs_writepage_setup(ctx, page, offset, count);
if (status < 0)
nfs_set_pageerror(mapping);
out:
dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
status, (long long)i_size_read(inode));
return status;
}
static int flush_task_priority(int how)
{
switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
case FLUSH_HIGHPRI:
return RPC_PRIORITY_HIGH;
case FLUSH_LOWPRI:
return RPC_PRIORITY_LOW;
}
return RPC_PRIORITY_NORMAL;
}
static void nfs_initiate_write(struct nfs_pgio_header *hdr,
struct rpc_message *msg,
const struct nfs_rpc_ops *rpc_ops,
struct rpc_task_setup *task_setup_data, int how)
{
int priority = flush_task_priority(how);
task_setup_data->priority = priority;
rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
trace_nfs_initiate_write(hdr);
}
/* If a nfs_flush_* function fails, it should remove reqs from @head and
* call this on each, which will prepare them to be retried on next
* writeback using standard nfs.
*/
static void nfs_redirty_request(struct nfs_page *req)
{
/* Bump the transmission count */
req->wb_nio++;
nfs_mark_request_dirty(req);
set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
nfs_end_page_writeback(req);
nfs_release_request(req);
}
static void nfs_async_write_error(struct list_head *head, int error)
{
struct nfs_page *req;
while (!list_empty(head)) {
req = nfs_list_entry(head->next);
nfs_list_remove_request(req);
if (nfs_error_is_fatal(error))
nfs_write_error(req, error);
else
nfs_redirty_request(req);
}
}
static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
{
nfs_async_write_error(&hdr->pages, 0);
filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
hdr->args.offset + hdr->args.count - 1);
}
static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
.init_hdr = nfs_async_write_init,
.error_cleanup = nfs_async_write_error,
.completion = nfs_write_completion,
.reschedule_io = nfs_async_write_reschedule_io,
};
void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
struct inode *inode, int ioflags, bool force_mds,
const struct nfs_pgio_completion_ops *compl_ops)
{
struct nfs_server *server = NFS_SERVER(inode);
const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
#ifdef CONFIG_NFS_V4_1
if (server->pnfs_curr_ld && !force_mds)
pg_ops = server->pnfs_curr_ld->pg_write_ops;
#endif
nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
server->wsize, ioflags);
}
EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
{
struct nfs_pgio_mirror *mirror;
if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
pgio->pg_ops->pg_cleanup(pgio);
pgio->pg_ops = &nfs_pgio_rw_ops;
nfs_pageio_stop_mirroring(pgio);
mirror = &pgio->pg_mirrors[0];
mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
}
EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
void nfs_commit_prepare(struct rpc_task *task, void *calldata)
{
struct nfs_commit_data *data = calldata;
NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
}
/*
* Special version of should_remove_suid() that ignores capabilities.
*/
static int nfs_should_remove_suid(const struct inode *inode)
{
umode_t mode = inode->i_mode;
int kill = 0;
/* suid always must be killed */
if (unlikely(mode & S_ISUID))
kill = ATTR_KILL_SUID;
/*
* sgid without any exec bits is just a mandatory locking mark; leave
* it alone. If some exec bits are set, it's a real sgid; kill it.
*/
if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
kill |= ATTR_KILL_SGID;
if (unlikely(kill && S_ISREG(mode)))
return kill;
return 0;
}
static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
struct nfs_fattr *fattr)
{
struct nfs_pgio_args *argp = &hdr->args;
struct nfs_pgio_res *resp = &hdr->res;
u64 size = argp->offset + resp->count;
if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
fattr->size = size;
if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
return;
}
if (size != fattr->size)
return;
/* Set attribute barrier */
nfs_fattr_set_barrier(fattr);
/* ...and update size */
fattr->valid |= NFS_ATTR_FATTR_SIZE;
}
void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
{
struct nfs_fattr *fattr = &hdr->fattr;
struct inode *inode = hdr->inode;
spin_lock(&inode->i_lock);
nfs_writeback_check_extend(hdr, fattr);
nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
/*
* This function is called when the WRITE call is complete.
*/
static int nfs_writeback_done(struct rpc_task *task,
struct nfs_pgio_header *hdr,
struct inode *inode)
{
int status;
/*
* ->write_done will attempt to use post-op attributes to detect
* conflicting writes by other clients. A strict interpretation
* of close-to-open would allow us to continue caching even if
* another writer had changed the file, but some applications
* depend on tighter cache coherency when writing.
*/
status = NFS_PROTO(inode)->write_done(task, hdr);
if (status != 0)
return status;
nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
trace_nfs_writeback_done(task, hdr);
if (hdr->res.verf->committed < hdr->args.stable &&
task->tk_status >= 0) {
/* We tried a write call, but the server did not
* commit data to stable storage even though we
* requested it.
* Note: There is a known bug in Tru64 < 5.0 in which
* the server reports NFS_DATA_SYNC, but performs
* NFS_FILE_SYNC. We therefore implement this checking
* as a dprintk() in order to avoid filling syslog.
*/
static unsigned long complain;
/* Note this will print the MDS for a DS write */
if (time_before(complain, jiffies)) {
dprintk("NFS: faulty NFS server %s:"
" (committed = %d) != (stable = %d)\n",
NFS_SERVER(inode)->nfs_client->cl_hostname,
hdr->res.verf->committed, hdr->args.stable);
complain = jiffies + 300 * HZ;
}
}
/* Deal with the suid/sgid bit corner case */
if (nfs_should_remove_suid(inode)) {
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_MODE);
spin_unlock(&inode->i_lock);
}
return 0;
}
/*
* This function is called when the WRITE call is complete.
*/
static void nfs_writeback_result(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
struct nfs_pgio_args *argp = &hdr->args;
struct nfs_pgio_res *resp = &hdr->res;
if (resp->count < argp->count) {
static unsigned long complain;
/* This a short write! */
nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
/* Has the server at least made some progress? */
if (resp->count == 0) {
if (time_before(complain, jiffies)) {
printk(KERN_WARNING
"NFS: Server wrote zero bytes, expected %u.\n",
argp->count);
complain = jiffies + 300 * HZ;
}
nfs_set_pgio_error(hdr, -EIO, argp->offset);
task->tk_status = -EIO;
return;
}
/* For non rpc-based layout drivers, retry-through-MDS */
if (!task->tk_ops) {
hdr->pnfs_error = -EAGAIN;
return;
}
/* Was this an NFSv2 write or an NFSv3 stable write? */
if (resp->verf->committed != NFS_UNSTABLE) {
/* Resend from where the server left off */
hdr->mds_offset += resp->count;
argp->offset += resp->count;
argp->pgbase += resp->count;
argp->count -= resp->count;
} else {
/* Resend as a stable write in order to avoid
* headaches in the case of a server crash.
*/
argp->stable = NFS_FILE_SYNC;
}
resp->count = 0;
resp->verf->committed = 0;
rpc_restart_call_prepare(task);
}
}
static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
{
return wait_var_event_killable(&cinfo->rpcs_out,
!atomic_read(&cinfo->rpcs_out));
}
static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
{
atomic_inc(&cinfo->rpcs_out);
}
bool nfs_commit_end(struct nfs_mds_commit_info *cinfo)
{
if (atomic_dec_and_test(&cinfo->rpcs_out)) {
wake_up_var(&cinfo->rpcs_out);
return true;
}
return false;
}
void nfs_commitdata_release(struct nfs_commit_data *data)
{
put_nfs_open_context(data->context);
nfs_commit_free(data);
}
EXPORT_SYMBOL_GPL(nfs_commitdata_release);
int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
const struct nfs_rpc_ops *nfs_ops,
const struct rpc_call_ops *call_ops,
int how, int flags)
{
struct rpc_task *task;
int priority = flush_task_priority(how);
struct rpc_message msg = {
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct rpc_task_setup task_setup_data = {
.task = &data->task,
.rpc_client = clnt,
.rpc_message = &msg,
.callback_ops = call_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | flags,
.priority = priority,
};
/* Set up the initial task struct. */
nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
trace_nfs_initiate_commit(data);
dprintk("NFS: initiated commit call\n");
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (how & FLUSH_SYNC)
rpc_wait_for_completion_task(task);
rpc_put_task(task);
return 0;
}
EXPORT_SYMBOL_GPL(nfs_initiate_commit);
static loff_t nfs_get_lwb(struct list_head *head)
{
loff_t lwb = 0;
struct nfs_page *req;
list_for_each_entry(req, head, wb_list)
if (lwb < (req_offset(req) + req->wb_bytes))
lwb = req_offset(req) + req->wb_bytes;
return lwb;
}
/*
* Set up the argument/result storage required for the RPC call.
*/
void nfs_init_commit(struct nfs_commit_data *data,
struct list_head *head,
struct pnfs_layout_segment *lseg,
struct nfs_commit_info *cinfo)
{
struct nfs_page *first;
struct nfs_open_context *ctx;
struct inode *inode;
/* Set up the RPC argument and reply structs
* NB: take care not to mess about with data->commit et al. */
if (head)
list_splice_init(head, &data->pages);
first = nfs_list_entry(data->pages.next);
ctx = nfs_req_openctx(first);
inode = d_inode(ctx->dentry);
data->inode = inode;
data->cred = ctx->cred;
data->lseg = lseg; /* reference transferred */
/* only set lwb for pnfs commit */
if (lseg)
data->lwb = nfs_get_lwb(&data->pages);
data->mds_ops = &nfs_commit_ops;
data->completion_ops = cinfo->completion_ops;
data->dreq = cinfo->dreq;
data->args.fh = NFS_FH(data->inode);
/* Note: we always request a commit of the entire inode */
data->args.offset = 0;
data->args.count = 0;
data->context = get_nfs_open_context(ctx);
data->res.fattr = &data->fattr;
data->res.verf = &data->verf;
nfs_fattr_init(&data->fattr);
nfs_commit_begin(cinfo->mds);
}
EXPORT_SYMBOL_GPL(nfs_init_commit);
void nfs_retry_commit(struct list_head *page_list,
struct pnfs_layout_segment *lseg,
struct nfs_commit_info *cinfo,
u32 ds_commit_idx)
{
struct nfs_page *req;
while (!list_empty(page_list)) {
req = nfs_list_entry(page_list->next);
nfs_list_remove_request(req);
nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
if (!cinfo->dreq)
nfs_clear_page_commit(req->wb_page);
nfs_unlock_and_release_request(req);
}
}
EXPORT_SYMBOL_GPL(nfs_retry_commit);
static void
nfs_commit_resched_write(struct nfs_commit_info *cinfo,
struct nfs_page *req)
{
__set_page_dirty_nobuffers(req->wb_page);
}
/*
* Commit dirty pages
*/
static int
nfs_commit_list(struct inode *inode, struct list_head *head, int how,
struct nfs_commit_info *cinfo)
{
struct nfs_commit_data *data;
unsigned short task_flags = 0;
/* another commit raced with us */
if (list_empty(head))
return 0;
data = nfs_commitdata_alloc(true);
/* Set up the argument struct */
nfs_init_commit(data, head, NULL, cinfo);
if (NFS_SERVER(inode)->nfs_client->cl_minorversion)
task_flags = RPC_TASK_MOVEABLE;
return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
data->mds_ops, how,
RPC_TASK_CRED_NOREF | task_flags);
}
/*
* COMMIT call returned
*/
static void nfs_commit_done(struct rpc_task *task, void *calldata)
{
struct nfs_commit_data *data = calldata;
/* Call the NFS version-specific code */
NFS_PROTO(data->inode)->commit_done(task, data);
trace_nfs_commit_done(task, data);
}
static void nfs_commit_release_pages(struct nfs_commit_data *data)
{
const struct nfs_writeverf *verf = data->res.verf;
struct nfs_page *req;
int status = data->task.tk_status;
struct nfs_commit_info cinfo;
struct nfs_server *nfss;
while (!list_empty(&data->pages)) {
req = nfs_list_entry(data->pages.next);
nfs_list_remove_request(req);
if (req->wb_page)
nfs_clear_page_commit(req->wb_page);
dprintk("NFS: commit (%s/%llu %d@%lld)",
nfs_req_openctx(req)->dentry->d_sb->s_id,
(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
req->wb_bytes,
(long long)req_offset(req));
if (status < 0) {
if (req->wb_page) {
trace_nfs_commit_error(req, status);
nfs_mapping_set_error(req->wb_page, status);
nfs_inode_remove_request(req);
}
dprintk_cont(", error = %d\n", status);
goto next;
}
/* Okay, COMMIT succeeded, apparently. Check the verifier
* returned by the server against all stored verfs. */
if (nfs_write_match_verf(verf, req)) {
/* We have a match */
if (req->wb_page)
nfs_inode_remove_request(req);
dprintk_cont(" OK\n");
goto next;
}
/* We have a mismatch. Write the page again */
dprintk_cont(" mismatch\n");
nfs_mark_request_dirty(req);
set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
next:
nfs_unlock_and_release_request(req);
/* Latency breaker */
cond_resched();
}
nfss = NFS_SERVER(data->inode);
if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
nfs_init_cinfo(&cinfo, data->inode, data->dreq);
nfs_commit_end(cinfo.mds);
}
static void nfs_commit_release(void *calldata)
{
struct nfs_commit_data *data = calldata;
data->completion_ops->completion(data);
nfs_commitdata_release(calldata);
}
static const struct rpc_call_ops nfs_commit_ops = {
.rpc_call_prepare = nfs_commit_prepare,
.rpc_call_done = nfs_commit_done,
.rpc_release = nfs_commit_release,
};
static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
.completion = nfs_commit_release_pages,
.resched_write = nfs_commit_resched_write,
};
int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
int how, struct nfs_commit_info *cinfo)
{
int status;
status = pnfs_commit_list(inode, head, how, cinfo);
if (status == PNFS_NOT_ATTEMPTED)
status = nfs_commit_list(inode, head, how, cinfo);
return status;
}
static int __nfs_commit_inode(struct inode *inode, int how,
struct writeback_control *wbc)
{
LIST_HEAD(head);
struct nfs_commit_info cinfo;
int may_wait = how & FLUSH_SYNC;
int ret, nscan;
how &= ~FLUSH_SYNC;
nfs_init_cinfo_from_inode(&cinfo, inode);
nfs_commit_begin(cinfo.mds);
for (;;) {
ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
if (ret <= 0)
break;
ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
if (ret < 0)
break;
ret = 0;
if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
if (nscan < wbc->nr_to_write)
wbc->nr_to_write -= nscan;
else
wbc->nr_to_write = 0;
}
if (nscan < INT_MAX)
break;
cond_resched();
}
nfs_commit_end(cinfo.mds);
if (ret || !may_wait)
return ret;
return wait_on_commit(cinfo.mds);
}
int nfs_commit_inode(struct inode *inode, int how)
{
return __nfs_commit_inode(inode, how, NULL);
}
EXPORT_SYMBOL_GPL(nfs_commit_inode);
int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct nfs_inode *nfsi = NFS_I(inode);
int flags = FLUSH_SYNC;
int ret = 0;
if (wbc->sync_mode == WB_SYNC_NONE) {
/* no commits means nothing needs to be done */
if (!atomic_long_read(&nfsi->commit_info.ncommit))
goto check_requests_outstanding;
/* Don't commit yet if this is a non-blocking flush and there
* are a lot of outstanding writes for this mapping.
*/
if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
goto out_mark_dirty;
/* don't wait for the COMMIT response */
flags = 0;
}
ret = __nfs_commit_inode(inode, flags, wbc);
if (!ret) {
if (flags & FLUSH_SYNC)
return 0;
} else if (atomic_long_read(&nfsi->commit_info.ncommit))
goto out_mark_dirty;
check_requests_outstanding:
if (!atomic_read(&nfsi->commit_info.rpcs_out))
return ret;
out_mark_dirty:
__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
return ret;
}
EXPORT_SYMBOL_GPL(nfs_write_inode);
/*
* Wrapper for filemap_write_and_wait_range()
*
* Needed for pNFS in order to ensure data becomes visible to the
* client.
*/
int nfs_filemap_write_and_wait_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
int ret;
ret = filemap_write_and_wait_range(mapping, lstart, lend);
if (ret == 0)
ret = pnfs_sync_inode(mapping->host, true);
return ret;
}
EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
/*
* flush the inode to disk.
*/
int nfs_wb_all(struct inode *inode)
{
int ret;
trace_nfs_writeback_inode_enter(inode);
ret = filemap_write_and_wait(inode->i_mapping);
if (ret)
goto out;
ret = nfs_commit_inode(inode, FLUSH_SYNC);
if (ret < 0)
goto out;
pnfs_sync_inode(inode, true);
ret = 0;
out:
trace_nfs_writeback_inode_exit(inode, ret);
return ret;
}
EXPORT_SYMBOL_GPL(nfs_wb_all);
int nfs_wb_page_cancel(struct inode *inode, struct page *page)
{
struct nfs_page *req;
int ret = 0;
wait_on_page_writeback(page);
/* blocking call to cancel all requests and join to a single (head)
* request */
req = nfs_lock_and_join_requests(page);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
} else if (req) {
/* all requests from this page have been cancelled by
* nfs_lock_and_join_requests, so just remove the head
* request from the inode / page_private pointer and
* release it */
nfs_inode_remove_request(req);
nfs_unlock_and_release_request(req);
}
return ret;
}
/*
* Write back all requests on one page - we do this before reading it.
*/
int nfs_wb_page(struct inode *inode, struct page *page)
{
loff_t range_start = page_file_offset(page);
loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = 0,
.range_start = range_start,
.range_end = range_end,
};
int ret;
trace_nfs_writeback_page_enter(inode);
for (;;) {
wait_on_page_writeback(page);
if (clear_page_dirty_for_io(page)) {
ret = nfs_writepage_locked(page, &wbc);
if (ret < 0)
goto out_error;
continue;
}
ret = 0;
if (!PagePrivate(page))
break;
ret = nfs_commit_inode(inode, FLUSH_SYNC);
if (ret < 0)
goto out_error;
}
out_error:
trace_nfs_writeback_page_exit(inode, ret);
return ret;
}
#ifdef CONFIG_MIGRATION
int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
struct page *page, enum migrate_mode mode)
{
/*
* If PagePrivate is set, then the page is currently associated with
* an in-progress read or write request. Don't try to migrate it.
*
* FIXME: we could do this in principle, but we'll need a way to ensure
* that we can safely release the inode reference while holding
* the page lock.
*/
if (PagePrivate(page))
return -EBUSY;
if (PageFsCache(page)) {
if (mode == MIGRATE_ASYNC)
return -EBUSY;
wait_on_page_fscache(page);
}
return migrate_page(mapping, newpage, page, mode);
}
#endif
int __init nfs_init_writepagecache(void)
{
nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
sizeof(struct nfs_pgio_header),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (nfs_wdata_cachep == NULL)
return -ENOMEM;
nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
nfs_wdata_cachep);
if (nfs_wdata_mempool == NULL)
goto out_destroy_write_cache;
nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
sizeof(struct nfs_commit_data),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (nfs_cdata_cachep == NULL)
goto out_destroy_write_mempool;
nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
nfs_cdata_cachep);
if (nfs_commit_mempool == NULL)
goto out_destroy_commit_cache;
/*
* NFS congestion size, scale with available memory.
*
* 64MB: 8192k
* 128MB: 11585k
* 256MB: 16384k
* 512MB: 23170k
* 1GB: 32768k
* 2GB: 46340k
* 4GB: 65536k
* 8GB: 92681k
* 16GB: 131072k
*
* This allows larger machines to have larger/more transfers.
* Limit the default to 256M
*/
nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
if (nfs_congestion_kb > 256*1024)
nfs_congestion_kb = 256*1024;
return 0;
out_destroy_commit_cache:
kmem_cache_destroy(nfs_cdata_cachep);
out_destroy_write_mempool:
mempool_destroy(nfs_wdata_mempool);
out_destroy_write_cache:
kmem_cache_destroy(nfs_wdata_cachep);
return -ENOMEM;
}
void nfs_destroy_writepagecache(void)
{
mempool_destroy(nfs_commit_mempool);
kmem_cache_destroy(nfs_cdata_cachep);
mempool_destroy(nfs_wdata_mempool);
kmem_cache_destroy(nfs_wdata_cachep);
}
static const struct nfs_rw_ops nfs_rw_write_ops = {
.rw_alloc_header = nfs_writehdr_alloc,
.rw_free_header = nfs_writehdr_free,
.rw_done = nfs_writeback_done,
.rw_result = nfs_writeback_result,
.rw_initiate = nfs_initiate_write,
};