linux-stable/fs/file.c
Al Viro 678379e1d4 close_range(): fix the logics in descriptor table trimming
Cloning a descriptor table picks the size that would cover all currently
opened files.  That's fine for clone() and unshare(), but for close_range()
there's an additional twist - we clone before we close, and it would be
a shame to have
	close_range(3, ~0U, CLOSE_RANGE_UNSHARE)
leave us with a huge descriptor table when we are not going to keep
anything past stderr, just because some large file descriptor used to
be open before our call has taken it out.

Unfortunately, it had been dealt with in an inherently racy way -
sane_fdtable_size() gets a "don't copy anything past that" argument
(passed via unshare_fd() and dup_fd()), close_range() decides how much
should be trimmed and passes that to unshare_fd().

The problem is, a range that used to extend to the end of descriptor
table back when close_range() had looked at it might very well have stuff
grown after it by the time dup_fd() has allocated a new files_struct
and started to figure out the capacity of fdtable to be attached to that.

That leads to interesting pathological cases; at the very least it's a
QoI issue, since unshare(CLONE_FILES) is atomic in a sense that it takes
a snapshot of descriptor table one might have observed at some point.
Since CLOSE_RANGE_UNSHARE close_range() is supposed to be a combination
of unshare(CLONE_FILES) with plain close_range(), ending up with a
weird state that would never occur with unshare(2) is confusing, to put
it mildly.

It's not hard to get rid of - all it takes is passing both ends of the
range down to sane_fdtable_size().  There we are under ->files_lock,
so the race is trivially avoided.

So we do the following:
	* switch close_files() from calling unshare_fd() to calling
dup_fd().
	* undo the calling convention change done to unshare_fd() in
60997c3d45 "close_range: add CLOSE_RANGE_UNSHARE"
	* introduce struct fd_range, pass a pointer to that to dup_fd()
and sane_fdtable_size() instead of "trim everything past that point"
they are currently getting.  NULL means "we are not going to be punching
any holes"; NR_OPEN_MAX is gone.
	* make sane_fdtable_size() use find_last_bit() instead of
open-coding it; it's easier to follow that way.
	* while we are at it, have dup_fd() report errors by returning
ERR_PTR(), no need to use a separate int *errorp argument.

Fixes: 60997c3d45 "close_range: add CLOSE_RANGE_UNSHARE"
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-09-29 21:52:29 -04:00

1430 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/file.c
*
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
*
* Manage the dynamic fd arrays in the process files_struct.
*/
#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/close_range.h>
#include <net/sock.h>
#include "internal.h"
unsigned int sysctl_nr_open __read_mostly = 1024*1024;
unsigned int sysctl_nr_open_min = BITS_PER_LONG;
/* our min() is unusable in constant expressions ;-/ */
#define __const_min(x, y) ((x) < (y) ? (x) : (y))
unsigned int sysctl_nr_open_max =
__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
static void __free_fdtable(struct fdtable *fdt)
{
kvfree(fdt->fd);
kvfree(fdt->open_fds);
kfree(fdt);
}
static void free_fdtable_rcu(struct rcu_head *rcu)
{
__free_fdtable(container_of(rcu, struct fdtable, rcu));
}
#define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
#define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
#define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
/*
* Copy 'count' fd bits from the old table to the new table and clear the extra
* space if any. This does not copy the file pointers. Called with the files
* spinlock held for write.
*/
static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
unsigned int copy_words)
{
unsigned int nwords = fdt_words(nfdt);
bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
copy_words, nwords);
}
/*
* Copy all file descriptors from the old table to the new, expanded table and
* clear the extra space. Called with the files spinlock held for write.
*/
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
{
size_t cpy, set;
BUG_ON(nfdt->max_fds < ofdt->max_fds);
cpy = ofdt->max_fds * sizeof(struct file *);
set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
memcpy(nfdt->fd, ofdt->fd, cpy);
memset((char *)nfdt->fd + cpy, 0, set);
copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
}
/*
* Note how the fdtable bitmap allocations very much have to be a multiple of
* BITS_PER_LONG. This is not only because we walk those things in chunks of
* 'unsigned long' in some places, but simply because that is how the Linux
* kernel bitmaps are defined to work: they are not "bits in an array of bytes",
* they are very much "bits in an array of unsigned long".
*
* The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied
* by that "1024/sizeof(ptr)" before, we already know there are sufficient
* clear low bits. Clang seems to realize that, gcc ends up being confused.
*
* On a 128-bit machine, the ALIGN() would actually matter. In the meantime,
* let's consider it documentation (and maybe a test-case for gcc to improve
* its code generation ;)
*/
static struct fdtable * alloc_fdtable(unsigned int nr)
{
struct fdtable *fdt;
void *data;
/*
* Figure out how many fds we actually want to support in this fdtable.
* Allocation steps are keyed to the size of the fdarray, since it
* grows far faster than any of the other dynamic data. We try to fit
* the fdarray into comfortable page-tuned chunks: starting at 1024B
* and growing in powers of two from there on.
*/
nr /= (1024 / sizeof(struct file *));
nr = roundup_pow_of_two(nr + 1);
nr *= (1024 / sizeof(struct file *));
nr = ALIGN(nr, BITS_PER_LONG);
/*
* Note that this can drive nr *below* what we had passed if sysctl_nr_open
* had been set lower between the check in expand_files() and here. Deal
* with that in caller, it's cheaper that way.
*
* We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
* bitmaps handling below becomes unpleasant, to put it mildly...
*/
if (unlikely(nr > sysctl_nr_open))
nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
if (!fdt)
goto out;
fdt->max_fds = nr;
data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
if (!data)
goto out_fdt;
fdt->fd = data;
data = kvmalloc(max_t(size_t,
2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
GFP_KERNEL_ACCOUNT);
if (!data)
goto out_arr;
fdt->open_fds = data;
data += nr / BITS_PER_BYTE;
fdt->close_on_exec = data;
data += nr / BITS_PER_BYTE;
fdt->full_fds_bits = data;
return fdt;
out_arr:
kvfree(fdt->fd);
out_fdt:
kfree(fdt);
out:
return NULL;
}
/*
* Expand the file descriptor table.
* This function will allocate a new fdtable and both fd array and fdset, of
* the given size.
* Return <0 error code on error; 1 on successful completion.
* The files->file_lock should be held on entry, and will be held on exit.
*/
static int expand_fdtable(struct files_struct *files, unsigned int nr)
__releases(files->file_lock)
__acquires(files->file_lock)
{
struct fdtable *new_fdt, *cur_fdt;
spin_unlock(&files->file_lock);
new_fdt = alloc_fdtable(nr);
/* make sure all fd_install() have seen resize_in_progress
* or have finished their rcu_read_lock_sched() section.
*/
if (atomic_read(&files->count) > 1)
synchronize_rcu();
spin_lock(&files->file_lock);
if (!new_fdt)
return -ENOMEM;
/*
* extremely unlikely race - sysctl_nr_open decreased between the check in
* caller and alloc_fdtable(). Cheaper to catch it here...
*/
if (unlikely(new_fdt->max_fds <= nr)) {
__free_fdtable(new_fdt);
return -EMFILE;
}
cur_fdt = files_fdtable(files);
BUG_ON(nr < cur_fdt->max_fds);
copy_fdtable(new_fdt, cur_fdt);
rcu_assign_pointer(files->fdt, new_fdt);
if (cur_fdt != &files->fdtab)
call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
/* coupled with smp_rmb() in fd_install() */
smp_wmb();
return 1;
}
/*
* Expand files.
* This function will expand the file structures, if the requested size exceeds
* the current capacity and there is room for expansion.
* Return <0 error code on error; 0 when nothing done; 1 when files were
* expanded and execution may have blocked.
* The files->file_lock should be held on entry, and will be held on exit.
*/
static int expand_files(struct files_struct *files, unsigned int nr)
__releases(files->file_lock)
__acquires(files->file_lock)
{
struct fdtable *fdt;
int expanded = 0;
repeat:
fdt = files_fdtable(files);
/* Do we need to expand? */
if (nr < fdt->max_fds)
return expanded;
/* Can we expand? */
if (nr >= sysctl_nr_open)
return -EMFILE;
if (unlikely(files->resize_in_progress)) {
spin_unlock(&files->file_lock);
expanded = 1;
wait_event(files->resize_wait, !files->resize_in_progress);
spin_lock(&files->file_lock);
goto repeat;
}
/* All good, so we try */
files->resize_in_progress = true;
expanded = expand_fdtable(files, nr);
files->resize_in_progress = false;
wake_up_all(&files->resize_wait);
return expanded;
}
static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
{
__set_bit(fd, fdt->close_on_exec);
}
static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
{
if (test_bit(fd, fdt->close_on_exec))
__clear_bit(fd, fdt->close_on_exec);
}
static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
{
__set_bit(fd, fdt->open_fds);
fd /= BITS_PER_LONG;
if (!~fdt->open_fds[fd])
__set_bit(fd, fdt->full_fds_bits);
}
static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
{
__clear_bit(fd, fdt->open_fds);
__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
}
static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
{
return test_bit(fd, fdt->open_fds);
}
/*
* Note that a sane fdtable size always has to be a multiple of
* BITS_PER_LONG, since we have bitmaps that are sized by this.
*
* punch_hole is optional - when close_range() is asked to unshare
* and close, we don't need to copy descriptors in that range, so
* a smaller cloned descriptor table might suffice if the last
* currently opened descriptor falls into that range.
*/
static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
{
unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
if (last == fdt->max_fds)
return NR_OPEN_DEFAULT;
if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
last = find_last_bit(fdt->open_fds, punch_hole->from);
if (last == punch_hole->from)
return NR_OPEN_DEFAULT;
}
return ALIGN(last + 1, BITS_PER_LONG);
}
/*
* Allocate a new descriptor table and copy contents from the passed in
* instance. Returns a pointer to cloned table on success, ERR_PTR()
* on failure. For 'punch_hole' see sane_fdtable_size().
*/
struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
{
struct files_struct *newf;
struct file **old_fds, **new_fds;
unsigned int open_files, i;
struct fdtable *old_fdt, *new_fdt;
int error;
newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
if (!newf)
return ERR_PTR(-ENOMEM);
atomic_set(&newf->count, 1);
spin_lock_init(&newf->file_lock);
newf->resize_in_progress = false;
init_waitqueue_head(&newf->resize_wait);
newf->next_fd = 0;
new_fdt = &newf->fdtab;
new_fdt->max_fds = NR_OPEN_DEFAULT;
new_fdt->close_on_exec = newf->close_on_exec_init;
new_fdt->open_fds = newf->open_fds_init;
new_fdt->full_fds_bits = newf->full_fds_bits_init;
new_fdt->fd = &newf->fd_array[0];
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
open_files = sane_fdtable_size(old_fdt, punch_hole);
/*
* Check whether we need to allocate a larger fd array and fd set.
*/
while (unlikely(open_files > new_fdt->max_fds)) {
spin_unlock(&oldf->file_lock);
if (new_fdt != &newf->fdtab)
__free_fdtable(new_fdt);
new_fdt = alloc_fdtable(open_files - 1);
if (!new_fdt) {
error = -ENOMEM;
goto out_release;
}
/* beyond sysctl_nr_open; nothing to do */
if (unlikely(new_fdt->max_fds < open_files)) {
__free_fdtable(new_fdt);
error = -EMFILE;
goto out_release;
}
/*
* Reacquire the oldf lock and a pointer to its fd table
* who knows it may have a new bigger fd table. We need
* the latest pointer.
*/
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
open_files = sane_fdtable_size(old_fdt, punch_hole);
}
copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
old_fds = old_fdt->fd;
new_fds = new_fdt->fd;
for (i = open_files; i != 0; i--) {
struct file *f = *old_fds++;
if (f) {
get_file(f);
} else {
/*
* The fd may be claimed in the fd bitmap but not yet
* instantiated in the files array if a sibling thread
* is partway through open(). So make sure that this
* fd is available to the new process.
*/
__clear_open_fd(open_files - i, new_fdt);
}
rcu_assign_pointer(*new_fds++, f);
}
spin_unlock(&oldf->file_lock);
/* clear the remainder */
memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
rcu_assign_pointer(newf->fdt, new_fdt);
return newf;
out_release:
kmem_cache_free(files_cachep, newf);
return ERR_PTR(error);
}
static struct fdtable *close_files(struct files_struct * files)
{
/*
* It is safe to dereference the fd table without RCU or
* ->file_lock because this is the last reference to the
* files structure.
*/
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
unsigned int i, j = 0;
for (;;) {
unsigned long set;
i = j * BITS_PER_LONG;
if (i >= fdt->max_fds)
break;
set = fdt->open_fds[j++];
while (set) {
if (set & 1) {
struct file * file = xchg(&fdt->fd[i], NULL);
if (file) {
filp_close(file, files);
cond_resched();
}
}
i++;
set >>= 1;
}
}
return fdt;
}
void put_files_struct(struct files_struct *files)
{
if (atomic_dec_and_test(&files->count)) {
struct fdtable *fdt = close_files(files);
/* free the arrays if they are not embedded */
if (fdt != &files->fdtab)
__free_fdtable(fdt);
kmem_cache_free(files_cachep, files);
}
}
void exit_files(struct task_struct *tsk)
{
struct files_struct * files = tsk->files;
if (files) {
task_lock(tsk);
tsk->files = NULL;
task_unlock(tsk);
put_files_struct(files);
}
}
struct files_struct init_files = {
.count = ATOMIC_INIT(1),
.fdt = &init_files.fdtab,
.fdtab = {
.max_fds = NR_OPEN_DEFAULT,
.fd = &init_files.fd_array[0],
.close_on_exec = init_files.close_on_exec_init,
.open_fds = init_files.open_fds_init,
.full_fds_bits = init_files.full_fds_bits_init,
},
.file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
.resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
};
static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
{
unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
unsigned int maxbit = maxfd / BITS_PER_LONG;
unsigned int bitbit = start / BITS_PER_LONG;
bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
if (bitbit >= maxfd)
return maxfd;
if (bitbit > start)
start = bitbit;
return find_next_zero_bit(fdt->open_fds, maxfd, start);
}
/*
* allocate a file descriptor, mark it busy.
*/
static int alloc_fd(unsigned start, unsigned end, unsigned flags)
{
struct files_struct *files = current->files;
unsigned int fd;
int error;
struct fdtable *fdt;
spin_lock(&files->file_lock);
repeat:
fdt = files_fdtable(files);
fd = start;
if (fd < files->next_fd)
fd = files->next_fd;
if (fd < fdt->max_fds)
fd = find_next_fd(fdt, fd);
/*
* N.B. For clone tasks sharing a files structure, this test
* will limit the total number of files that can be opened.
*/
error = -EMFILE;
if (fd >= end)
goto out;
error = expand_files(files, fd);
if (error < 0)
goto out;
/*
* If we needed to expand the fs array we
* might have blocked - try again.
*/
if (error)
goto repeat;
if (start <= files->next_fd)
files->next_fd = fd + 1;
__set_open_fd(fd, fdt);
if (flags & O_CLOEXEC)
__set_close_on_exec(fd, fdt);
else
__clear_close_on_exec(fd, fdt);
error = fd;
#if 1
/* Sanity check */
if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
rcu_assign_pointer(fdt->fd[fd], NULL);
}
#endif
out:
spin_unlock(&files->file_lock);
return error;
}
int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
{
return alloc_fd(0, nofile, flags);
}
int get_unused_fd_flags(unsigned flags)
{
return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
}
EXPORT_SYMBOL(get_unused_fd_flags);
static void __put_unused_fd(struct files_struct *files, unsigned int fd)
{
struct fdtable *fdt = files_fdtable(files);
__clear_open_fd(fd, fdt);
if (fd < files->next_fd)
files->next_fd = fd;
}
void put_unused_fd(unsigned int fd)
{
struct files_struct *files = current->files;
spin_lock(&files->file_lock);
__put_unused_fd(files, fd);
spin_unlock(&files->file_lock);
}
EXPORT_SYMBOL(put_unused_fd);
/*
* Install a file pointer in the fd array.
*
* The VFS is full of places where we drop the files lock between
* setting the open_fds bitmap and installing the file in the file
* array. At any such point, we are vulnerable to a dup2() race
* installing a file in the array before us. We need to detect this and
* fput() the struct file we are about to overwrite in this case.
*
* It should never happen - if we allow dup2() do it, _really_ bad things
* will follow.
*
* This consumes the "file" refcount, so callers should treat it
* as if they had called fput(file).
*/
void fd_install(unsigned int fd, struct file *file)
{
struct files_struct *files = current->files;
struct fdtable *fdt;
if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
return;
rcu_read_lock_sched();
if (unlikely(files->resize_in_progress)) {
rcu_read_unlock_sched();
spin_lock(&files->file_lock);
fdt = files_fdtable(files);
BUG_ON(fdt->fd[fd] != NULL);
rcu_assign_pointer(fdt->fd[fd], file);
spin_unlock(&files->file_lock);
return;
}
/* coupled with smp_wmb() in expand_fdtable() */
smp_rmb();
fdt = rcu_dereference_sched(files->fdt);
BUG_ON(fdt->fd[fd] != NULL);
rcu_assign_pointer(fdt->fd[fd], file);
rcu_read_unlock_sched();
}
EXPORT_SYMBOL(fd_install);
/**
* file_close_fd_locked - return file associated with fd
* @files: file struct to retrieve file from
* @fd: file descriptor to retrieve file for
*
* Doesn't take a separate reference count.
*
* Context: files_lock must be held.
*
* Returns: The file associated with @fd (NULL if @fd is not open)
*/
struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
{
struct fdtable *fdt = files_fdtable(files);
struct file *file;
lockdep_assert_held(&files->file_lock);
if (fd >= fdt->max_fds)
return NULL;
fd = array_index_nospec(fd, fdt->max_fds);
file = fdt->fd[fd];
if (file) {
rcu_assign_pointer(fdt->fd[fd], NULL);
__put_unused_fd(files, fd);
}
return file;
}
int close_fd(unsigned fd)
{
struct files_struct *files = current->files;
struct file *file;
spin_lock(&files->file_lock);
file = file_close_fd_locked(files, fd);
spin_unlock(&files->file_lock);
if (!file)
return -EBADF;
return filp_close(file, files);
}
EXPORT_SYMBOL(close_fd);
/**
* last_fd - return last valid index into fd table
* @fdt: File descriptor table.
*
* Context: Either rcu read lock or files_lock must be held.
*
* Returns: Last valid index into fdtable.
*/
static inline unsigned last_fd(struct fdtable *fdt)
{
return fdt->max_fds - 1;
}
static inline void __range_cloexec(struct files_struct *cur_fds,
unsigned int fd, unsigned int max_fd)
{
struct fdtable *fdt;
/* make sure we're using the correct maximum value */
spin_lock(&cur_fds->file_lock);
fdt = files_fdtable(cur_fds);
max_fd = min(last_fd(fdt), max_fd);
if (fd <= max_fd)
bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
spin_unlock(&cur_fds->file_lock);
}
static inline void __range_close(struct files_struct *files, unsigned int fd,
unsigned int max_fd)
{
struct file *file;
unsigned n;
spin_lock(&files->file_lock);
n = last_fd(files_fdtable(files));
max_fd = min(max_fd, n);
for (; fd <= max_fd; fd++) {
file = file_close_fd_locked(files, fd);
if (file) {
spin_unlock(&files->file_lock);
filp_close(file, files);
cond_resched();
spin_lock(&files->file_lock);
} else if (need_resched()) {
spin_unlock(&files->file_lock);
cond_resched();
spin_lock(&files->file_lock);
}
}
spin_unlock(&files->file_lock);
}
/**
* __close_range() - Close all file descriptors in a given range.
*
* @fd: starting file descriptor to close
* @max_fd: last file descriptor to close
* @flags: CLOSE_RANGE flags.
*
* This closes a range of file descriptors. All file descriptors
* from @fd up to and including @max_fd are closed.
*/
int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
{
struct task_struct *me = current;
struct files_struct *cur_fds = me->files, *fds = NULL;
if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
return -EINVAL;
if (fd > max_fd)
return -EINVAL;
if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
struct fd_range range = {fd, max_fd}, *punch_hole = &range;
/*
* If the caller requested all fds to be made cloexec we always
* copy all of the file descriptors since they still want to
* use them.
*/
if (flags & CLOSE_RANGE_CLOEXEC)
punch_hole = NULL;
fds = dup_fd(cur_fds, punch_hole);
if (IS_ERR(fds))
return PTR_ERR(fds);
/*
* We used to share our file descriptor table, and have now
* created a private one, make sure we're using it below.
*/
swap(cur_fds, fds);
}
if (flags & CLOSE_RANGE_CLOEXEC)
__range_cloexec(cur_fds, fd, max_fd);
else
__range_close(cur_fds, fd, max_fd);
if (fds) {
/*
* We're done closing the files we were supposed to. Time to install
* the new file descriptor table and drop the old one.
*/
task_lock(me);
me->files = cur_fds;
task_unlock(me);
put_files_struct(fds);
}
return 0;
}
/**
* file_close_fd - return file associated with fd
* @fd: file descriptor to retrieve file for
*
* Doesn't take a separate reference count.
*
* Returns: The file associated with @fd (NULL if @fd is not open)
*/
struct file *file_close_fd(unsigned int fd)
{
struct files_struct *files = current->files;
struct file *file;
spin_lock(&files->file_lock);
file = file_close_fd_locked(files, fd);
spin_unlock(&files->file_lock);
return file;
}
void do_close_on_exec(struct files_struct *files)
{
unsigned i;
struct fdtable *fdt;
/* exec unshares first */
spin_lock(&files->file_lock);
for (i = 0; ; i++) {
unsigned long set;
unsigned fd = i * BITS_PER_LONG;
fdt = files_fdtable(files);
if (fd >= fdt->max_fds)
break;
set = fdt->close_on_exec[i];
if (!set)
continue;
fdt->close_on_exec[i] = 0;
for ( ; set ; fd++, set >>= 1) {
struct file *file;
if (!(set & 1))
continue;
file = fdt->fd[fd];
if (!file)
continue;
rcu_assign_pointer(fdt->fd[fd], NULL);
__put_unused_fd(files, fd);
spin_unlock(&files->file_lock);
filp_close(file, files);
cond_resched();
spin_lock(&files->file_lock);
}
}
spin_unlock(&files->file_lock);
}
static struct file *__get_file_rcu(struct file __rcu **f)
{
struct file __rcu *file;
struct file __rcu *file_reloaded;
struct file __rcu *file_reloaded_cmp;
file = rcu_dereference_raw(*f);
if (!file)
return NULL;
if (unlikely(!atomic_long_inc_not_zero(&file->f_count)))
return ERR_PTR(-EAGAIN);
file_reloaded = rcu_dereference_raw(*f);
/*
* Ensure that all accesses have a dependency on the load from
* rcu_dereference_raw() above so we get correct ordering
* between reuse/allocation and the pointer check below.
*/
file_reloaded_cmp = file_reloaded;
OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
/*
* atomic_long_inc_not_zero() above provided a full memory
* barrier when we acquired a reference.
*
* This is paired with the write barrier from assigning to the
* __rcu protected file pointer so that if that pointer still
* matches the current file, we know we have successfully
* acquired a reference to the right file.
*
* If the pointers don't match the file has been reallocated by
* SLAB_TYPESAFE_BY_RCU.
*/
if (file == file_reloaded_cmp)
return file_reloaded;
fput(file);
return ERR_PTR(-EAGAIN);
}
/**
* get_file_rcu - try go get a reference to a file under rcu
* @f: the file to get a reference on
*
* This function tries to get a reference on @f carefully verifying that
* @f hasn't been reused.
*
* This function should rarely have to be used and only by users who
* understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
*
* Return: Returns @f with the reference count increased or NULL.
*/
struct file *get_file_rcu(struct file __rcu **f)
{
for (;;) {
struct file __rcu *file;
file = __get_file_rcu(f);
if (!IS_ERR(file))
return file;
}
}
EXPORT_SYMBOL_GPL(get_file_rcu);
/**
* get_file_active - try go get a reference to a file
* @f: the file to get a reference on
*
* In contast to get_file_rcu() the pointer itself isn't part of the
* reference counting.
*
* This function should rarely have to be used and only by users who
* understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
*
* Return: Returns @f with the reference count increased or NULL.
*/
struct file *get_file_active(struct file **f)
{
struct file __rcu *file;
rcu_read_lock();
file = __get_file_rcu(f);
rcu_read_unlock();
if (IS_ERR(file))
file = NULL;
return file;
}
EXPORT_SYMBOL_GPL(get_file_active);
static inline struct file *__fget_files_rcu(struct files_struct *files,
unsigned int fd, fmode_t mask)
{
for (;;) {
struct file *file;
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
struct file __rcu **fdentry;
unsigned long nospec_mask;
/* Mask is a 0 for invalid fd's, ~0 for valid ones */
nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
/*
* fdentry points to the 'fd' offset, or fdt->fd[0].
* Loading from fdt->fd[0] is always safe, because the
* array always exists.
*/
fdentry = fdt->fd + (fd & nospec_mask);
/* Do the load, then mask any invalid result */
file = rcu_dereference_raw(*fdentry);
file = (void *)(nospec_mask & (unsigned long)file);
if (unlikely(!file))
return NULL;
/*
* Ok, we have a file pointer that was valid at
* some point, but it might have become stale since.
*
* We need to confirm it by incrementing the refcount
* and then check the lookup again.
*
* atomic_long_inc_not_zero() gives us a full memory
* barrier. We only really need an 'acquire' one to
* protect the loads below, but we don't have that.
*/
if (unlikely(!atomic_long_inc_not_zero(&file->f_count)))
continue;
/*
* Such a race can take two forms:
*
* (a) the file ref already went down to zero and the
* file hasn't been reused yet or the file count
* isn't zero but the file has already been reused.
*
* (b) the file table entry has changed under us.
* Note that we don't need to re-check the 'fdt->fd'
* pointer having changed, because it always goes
* hand-in-hand with 'fdt'.
*
* If so, we need to put our ref and try again.
*/
if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
fput(file);
continue;
}
/*
* This isn't the file we're looking for or we're not
* allowed to get a reference to it.
*/
if (unlikely(file->f_mode & mask)) {
fput(file);
return NULL;
}
/*
* Ok, we have a ref to the file, and checked that it
* still exists.
*/
return file;
}
}
static struct file *__fget_files(struct files_struct *files, unsigned int fd,
fmode_t mask)
{
struct file *file;
rcu_read_lock();
file = __fget_files_rcu(files, fd, mask);
rcu_read_unlock();
return file;
}
static inline struct file *__fget(unsigned int fd, fmode_t mask)
{
return __fget_files(current->files, fd, mask);
}
struct file *fget(unsigned int fd)
{
return __fget(fd, FMODE_PATH);
}
EXPORT_SYMBOL(fget);
struct file *fget_raw(unsigned int fd)
{
return __fget(fd, 0);
}
EXPORT_SYMBOL(fget_raw);
struct file *fget_task(struct task_struct *task, unsigned int fd)
{
struct file *file = NULL;
task_lock(task);
if (task->files)
file = __fget_files(task->files, fd, 0);
task_unlock(task);
return file;
}
struct file *lookup_fdget_rcu(unsigned int fd)
{
return __fget_files_rcu(current->files, fd, 0);
}
EXPORT_SYMBOL_GPL(lookup_fdget_rcu);
struct file *task_lookup_fdget_rcu(struct task_struct *task, unsigned int fd)
{
/* Must be called with rcu_read_lock held */
struct files_struct *files;
struct file *file = NULL;
task_lock(task);
files = task->files;
if (files)
file = __fget_files_rcu(files, fd, 0);
task_unlock(task);
return file;
}
struct file *task_lookup_next_fdget_rcu(struct task_struct *task, unsigned int *ret_fd)
{
/* Must be called with rcu_read_lock held */
struct files_struct *files;
unsigned int fd = *ret_fd;
struct file *file = NULL;
task_lock(task);
files = task->files;
if (files) {
for (; fd < files_fdtable(files)->max_fds; fd++) {
file = __fget_files_rcu(files, fd, 0);
if (file)
break;
}
}
task_unlock(task);
*ret_fd = fd;
return file;
}
EXPORT_SYMBOL(task_lookup_next_fdget_rcu);
/*
* Lightweight file lookup - no refcnt increment if fd table isn't shared.
*
* You can use this instead of fget if you satisfy all of the following
* conditions:
* 1) You must call fput_light before exiting the syscall and returning control
* to userspace (i.e. you cannot remember the returned struct file * after
* returning to userspace).
* 2) You must not call filp_close on the returned struct file * in between
* calls to fget_light and fput_light.
* 3) You must not clone the current task in between the calls to fget_light
* and fput_light.
*
* The fput_needed flag returned by fget_light should be passed to the
* corresponding fput_light.
*/
static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
{
struct files_struct *files = current->files;
struct file *file;
/*
* If another thread is concurrently calling close_fd() followed
* by put_files_struct(), we must not observe the old table
* entry combined with the new refcount - otherwise we could
* return a file that is concurrently being freed.
*
* atomic_read_acquire() pairs with atomic_dec_and_test() in
* put_files_struct().
*/
if (likely(atomic_read_acquire(&files->count) == 1)) {
file = files_lookup_fd_raw(files, fd);
if (!file || unlikely(file->f_mode & mask))
return EMPTY_FD;
return BORROWED_FD(file);
} else {
file = __fget_files(files, fd, mask);
if (!file)
return EMPTY_FD;
return CLONED_FD(file);
}
}
struct fd fdget(unsigned int fd)
{
return __fget_light(fd, FMODE_PATH);
}
EXPORT_SYMBOL(fdget);
struct fd fdget_raw(unsigned int fd)
{
return __fget_light(fd, 0);
}
/*
* Try to avoid f_pos locking. We only need it if the
* file is marked for FMODE_ATOMIC_POS, and it can be
* accessed multiple ways.
*
* Always do it for directories, because pidfd_getfd()
* can make a file accessible even if it otherwise would
* not be, and for directories this is a correctness
* issue, not a "POSIX requirement".
*/
static inline bool file_needs_f_pos_lock(struct file *file)
{
return (file->f_mode & FMODE_ATOMIC_POS) &&
(file_count(file) > 1 || file->f_op->iterate_shared);
}
struct fd fdget_pos(unsigned int fd)
{
struct fd f = fdget(fd);
struct file *file = fd_file(f);
if (file && file_needs_f_pos_lock(file)) {
f.word |= FDPUT_POS_UNLOCK;
mutex_lock(&file->f_pos_lock);
}
return f;
}
void __f_unlock_pos(struct file *f)
{
mutex_unlock(&f->f_pos_lock);
}
/*
* We only lock f_pos if we have threads or if the file might be
* shared with another process. In both cases we'll have an elevated
* file count (done either by fdget() or by fork()).
*/
void set_close_on_exec(unsigned int fd, int flag)
{
struct files_struct *files = current->files;
struct fdtable *fdt;
spin_lock(&files->file_lock);
fdt = files_fdtable(files);
if (flag)
__set_close_on_exec(fd, fdt);
else
__clear_close_on_exec(fd, fdt);
spin_unlock(&files->file_lock);
}
bool get_close_on_exec(unsigned int fd)
{
bool res;
rcu_read_lock();
res = close_on_exec(fd, current->files);
rcu_read_unlock();
return res;
}
static int do_dup2(struct files_struct *files,
struct file *file, unsigned fd, unsigned flags)
__releases(&files->file_lock)
{
struct file *tofree;
struct fdtable *fdt;
/*
* We need to detect attempts to do dup2() over allocated but still
* not finished descriptor. NB: OpenBSD avoids that at the price of
* extra work in their equivalent of fget() - they insert struct
* file immediately after grabbing descriptor, mark it larval if
* more work (e.g. actual opening) is needed and make sure that
* fget() treats larval files as absent. Potentially interesting,
* but while extra work in fget() is trivial, locking implications
* and amount of surgery on open()-related paths in VFS are not.
* FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
* deadlocks in rather amusing ways, AFAICS. All of that is out of
* scope of POSIX or SUS, since neither considers shared descriptor
* tables and this condition does not arise without those.
*/
fdt = files_fdtable(files);
fd = array_index_nospec(fd, fdt->max_fds);
tofree = fdt->fd[fd];
if (!tofree && fd_is_open(fd, fdt))
goto Ebusy;
get_file(file);
rcu_assign_pointer(fdt->fd[fd], file);
__set_open_fd(fd, fdt);
if (flags & O_CLOEXEC)
__set_close_on_exec(fd, fdt);
else
__clear_close_on_exec(fd, fdt);
spin_unlock(&files->file_lock);
if (tofree)
filp_close(tofree, files);
return fd;
Ebusy:
spin_unlock(&files->file_lock);
return -EBUSY;
}
int replace_fd(unsigned fd, struct file *file, unsigned flags)
{
int err;
struct files_struct *files = current->files;
if (!file)
return close_fd(fd);
if (fd >= rlimit(RLIMIT_NOFILE))
return -EBADF;
spin_lock(&files->file_lock);
err = expand_files(files, fd);
if (unlikely(err < 0))
goto out_unlock;
return do_dup2(files, file, fd, flags);
out_unlock:
spin_unlock(&files->file_lock);
return err;
}
/**
* receive_fd() - Install received file into file descriptor table
* @file: struct file that was received from another process
* @ufd: __user pointer to write new fd number to
* @o_flags: the O_* flags to apply to the new fd entry
*
* Installs a received file into the file descriptor table, with appropriate
* checks and count updates. Optionally writes the fd number to userspace, if
* @ufd is non-NULL.
*
* This helper handles its own reference counting of the incoming
* struct file.
*
* Returns newly install fd or -ve on error.
*/
int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
{
int new_fd;
int error;
error = security_file_receive(file);
if (error)
return error;
new_fd = get_unused_fd_flags(o_flags);
if (new_fd < 0)
return new_fd;
if (ufd) {
error = put_user(new_fd, ufd);
if (error) {
put_unused_fd(new_fd);
return error;
}
}
fd_install(new_fd, get_file(file));
__receive_sock(file);
return new_fd;
}
EXPORT_SYMBOL_GPL(receive_fd);
int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
{
int error;
error = security_file_receive(file);
if (error)
return error;
error = replace_fd(new_fd, file, o_flags);
if (error)
return error;
__receive_sock(file);
return new_fd;
}
static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
{
int err = -EBADF;
struct file *file;
struct files_struct *files = current->files;
if ((flags & ~O_CLOEXEC) != 0)
return -EINVAL;
if (unlikely(oldfd == newfd))
return -EINVAL;
if (newfd >= rlimit(RLIMIT_NOFILE))
return -EBADF;
spin_lock(&files->file_lock);
err = expand_files(files, newfd);
file = files_lookup_fd_locked(files, oldfd);
if (unlikely(!file))
goto Ebadf;
if (unlikely(err < 0)) {
if (err == -EMFILE)
goto Ebadf;
goto out_unlock;
}
return do_dup2(files, file, newfd, flags);
Ebadf:
err = -EBADF;
out_unlock:
spin_unlock(&files->file_lock);
return err;
}
SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
{
return ksys_dup3(oldfd, newfd, flags);
}
SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
{
if (unlikely(newfd == oldfd)) { /* corner case */
struct files_struct *files = current->files;
struct file *f;
int retval = oldfd;
rcu_read_lock();
f = __fget_files_rcu(files, oldfd, 0);
if (!f)
retval = -EBADF;
rcu_read_unlock();
if (f)
fput(f);
return retval;
}
return ksys_dup3(oldfd, newfd, 0);
}
SYSCALL_DEFINE1(dup, unsigned int, fildes)
{
int ret = -EBADF;
struct file *file = fget_raw(fildes);
if (file) {
ret = get_unused_fd_flags(0);
if (ret >= 0)
fd_install(ret, file);
else
fput(file);
}
return ret;
}
int f_dupfd(unsigned int from, struct file *file, unsigned flags)
{
unsigned long nofile = rlimit(RLIMIT_NOFILE);
int err;
if (from >= nofile)
return -EINVAL;
err = alloc_fd(from, nofile, flags);
if (err >= 0) {
get_file(file);
fd_install(err, file);
}
return err;
}
int iterate_fd(struct files_struct *files, unsigned n,
int (*f)(const void *, struct file *, unsigned),
const void *p)
{
struct fdtable *fdt;
int res = 0;
if (!files)
return 0;
spin_lock(&files->file_lock);
for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
struct file *file;
file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
if (!file)
continue;
res = f(p, file, n);
if (res)
break;
}
spin_unlock(&files->file_lock);
return res;
}
EXPORT_SYMBOL(iterate_fd);