mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
617a814f14
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ...
1187 lines
33 KiB
C
1187 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2017 - Columbia University and Linaro Ltd.
|
|
* Author: Jintack Lim <jintack.lim@linaro.org>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
#include "sys_regs.h"
|
|
|
|
/* Protection against the sysreg repainting madness... */
|
|
#define NV_FTR(r, f) ID_AA64##r##_EL1_##f
|
|
|
|
/*
|
|
* Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
|
|
* memory usage and potential number of different sets of S2 PTs in
|
|
* the guests. Running out of S2 MMUs only affects performance (we
|
|
* will invalidate them more often).
|
|
*/
|
|
#define S2_MMU_PER_VCPU 2
|
|
|
|
void kvm_init_nested(struct kvm *kvm)
|
|
{
|
|
kvm->arch.nested_mmus = NULL;
|
|
kvm->arch.nested_mmus_size = 0;
|
|
}
|
|
|
|
static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
|
|
{
|
|
/*
|
|
* We only initialise the IPA range on the canonical MMU, which
|
|
* defines the contract between KVM and userspace on where the
|
|
* "hardware" is in the IPA space. This affects the validity of MMIO
|
|
* exits forwarded to userspace, for example.
|
|
*
|
|
* For nested S2s, we use the PARange as exposed to the guest, as it
|
|
* is allowed to use it at will to expose whatever memory map it
|
|
* wants to its own guests as it would be on real HW.
|
|
*/
|
|
return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
|
|
}
|
|
|
|
int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_s2_mmu *tmp;
|
|
int num_mmus, ret = 0;
|
|
|
|
/*
|
|
* Let's treat memory allocation failures as benign: If we fail to
|
|
* allocate anything, return an error and keep the allocated array
|
|
* alive. Userspace may try to recover by intializing the vcpu
|
|
* again, and there is no reason to affect the whole VM for this.
|
|
*/
|
|
num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
|
|
tmp = kvrealloc(kvm->arch.nested_mmus,
|
|
size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
|
|
GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If we went through a realocation, adjust the MMU back-pointers in
|
|
* the previously initialised kvm_pgtable structures.
|
|
*/
|
|
if (kvm->arch.nested_mmus != tmp)
|
|
for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
|
|
tmp[i].pgt->mmu = &tmp[i];
|
|
|
|
for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
|
|
ret = init_nested_s2_mmu(kvm, &tmp[i]);
|
|
|
|
if (ret) {
|
|
for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
|
|
kvm_free_stage2_pgd(&tmp[i]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
kvm->arch.nested_mmus_size = num_mmus;
|
|
kvm->arch.nested_mmus = tmp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct s2_walk_info {
|
|
int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
|
|
void *data;
|
|
u64 baddr;
|
|
unsigned int max_oa_bits;
|
|
unsigned int pgshift;
|
|
unsigned int sl;
|
|
unsigned int t0sz;
|
|
bool be;
|
|
};
|
|
|
|
static u32 compute_fsc(int level, u32 fsc)
|
|
{
|
|
return fsc | (level & 0x3);
|
|
}
|
|
|
|
static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
|
|
{
|
|
u32 esr;
|
|
|
|
esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
|
|
esr |= compute_fsc(level, fsc);
|
|
return esr;
|
|
}
|
|
|
|
static int get_ia_size(struct s2_walk_info *wi)
|
|
{
|
|
return 64 - wi->t0sz;
|
|
}
|
|
|
|
static int check_base_s2_limits(struct s2_walk_info *wi,
|
|
int level, int input_size, int stride)
|
|
{
|
|
int start_size, ia_size;
|
|
|
|
ia_size = get_ia_size(wi);
|
|
|
|
/* Check translation limits */
|
|
switch (BIT(wi->pgshift)) {
|
|
case SZ_64K:
|
|
if (level == 0 || (level == 1 && ia_size <= 42))
|
|
return -EFAULT;
|
|
break;
|
|
case SZ_16K:
|
|
if (level == 0 || (level == 1 && ia_size <= 40))
|
|
return -EFAULT;
|
|
break;
|
|
case SZ_4K:
|
|
if (level < 0 || (level == 0 && ia_size <= 42))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
|
|
/* Check input size limits */
|
|
if (input_size > ia_size)
|
|
return -EFAULT;
|
|
|
|
/* Check number of entries in starting level table */
|
|
start_size = input_size - ((3 - level) * stride + wi->pgshift);
|
|
if (start_size < 1 || start_size > stride + 4)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check if output is within boundaries */
|
|
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
|
|
{
|
|
unsigned int output_size = wi->max_oa_bits;
|
|
|
|
if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is essentially a C-version of the pseudo code from the ARM ARM
|
|
* AArch64.TranslationTableWalk function. I strongly recommend looking at
|
|
* that pseudocode in trying to understand this.
|
|
*
|
|
* Must be called with the kvm->srcu read lock held
|
|
*/
|
|
static int walk_nested_s2_pgd(phys_addr_t ipa,
|
|
struct s2_walk_info *wi, struct kvm_s2_trans *out)
|
|
{
|
|
int first_block_level, level, stride, input_size, base_lower_bound;
|
|
phys_addr_t base_addr;
|
|
unsigned int addr_top, addr_bottom;
|
|
u64 desc; /* page table entry */
|
|
int ret;
|
|
phys_addr_t paddr;
|
|
|
|
switch (BIT(wi->pgshift)) {
|
|
default:
|
|
case SZ_64K:
|
|
case SZ_16K:
|
|
level = 3 - wi->sl;
|
|
first_block_level = 2;
|
|
break;
|
|
case SZ_4K:
|
|
level = 2 - wi->sl;
|
|
first_block_level = 1;
|
|
break;
|
|
}
|
|
|
|
stride = wi->pgshift - 3;
|
|
input_size = get_ia_size(wi);
|
|
if (input_size > 48 || input_size < 25)
|
|
return -EFAULT;
|
|
|
|
ret = check_base_s2_limits(wi, level, input_size, stride);
|
|
if (WARN_ON(ret))
|
|
return ret;
|
|
|
|
base_lower_bound = 3 + input_size - ((3 - level) * stride +
|
|
wi->pgshift);
|
|
base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
|
|
|
|
if (check_output_size(wi, base_addr)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
|
|
return 1;
|
|
}
|
|
|
|
addr_top = input_size - 1;
|
|
|
|
while (1) {
|
|
phys_addr_t index;
|
|
|
|
addr_bottom = (3 - level) * stride + wi->pgshift;
|
|
index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
|
|
>> (addr_bottom - 3);
|
|
|
|
paddr = base_addr | index;
|
|
ret = wi->read_desc(paddr, &desc, wi->data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Handle reversedescriptors if endianness differs between the
|
|
* host and the guest hypervisor.
|
|
*/
|
|
if (wi->be)
|
|
desc = be64_to_cpu((__force __be64)desc);
|
|
else
|
|
desc = le64_to_cpu((__force __le64)desc);
|
|
|
|
/* Check for valid descriptor at this point */
|
|
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
/* We're at the final level or block translation level */
|
|
if ((desc & 3) == 1 || level == 3)
|
|
break;
|
|
|
|
if (check_output_size(wi, desc)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
base_addr = desc & GENMASK_ULL(47, wi->pgshift);
|
|
|
|
level += 1;
|
|
addr_top = addr_bottom - 1;
|
|
}
|
|
|
|
if (level < first_block_level) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
if (check_output_size(wi, desc)) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
if (!(desc & BIT(10))) {
|
|
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
|
|
out->desc = desc;
|
|
return 1;
|
|
}
|
|
|
|
addr_bottom += contiguous_bit_shift(desc, wi, level);
|
|
|
|
/* Calculate and return the result */
|
|
paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
|
|
(ipa & GENMASK_ULL(addr_bottom - 1, 0));
|
|
out->output = paddr;
|
|
out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
|
|
out->readable = desc & (0b01 << 6);
|
|
out->writable = desc & (0b10 << 6);
|
|
out->level = level;
|
|
out->desc = desc;
|
|
return 0;
|
|
}
|
|
|
|
static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
|
|
{
|
|
struct kvm_vcpu *vcpu = data;
|
|
|
|
return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
|
|
}
|
|
|
|
static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
|
|
{
|
|
wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
|
|
|
|
switch (vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
wi->pgshift = 12; break;
|
|
case VTCR_EL2_TG0_16K:
|
|
wi->pgshift = 14; break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
wi->pgshift = 16; break;
|
|
}
|
|
|
|
wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
|
|
/* Global limit for now, should eventually be per-VM */
|
|
wi->max_oa_bits = min(get_kvm_ipa_limit(),
|
|
ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
|
|
}
|
|
|
|
int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
|
|
struct kvm_s2_trans *result)
|
|
{
|
|
u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
|
|
struct s2_walk_info wi;
|
|
int ret;
|
|
|
|
result->esr = 0;
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
return 0;
|
|
|
|
wi.read_desc = read_guest_s2_desc;
|
|
wi.data = vcpu;
|
|
wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
|
|
|
|
vtcr_to_walk_info(vtcr, &wi);
|
|
|
|
wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
|
|
|
|
ret = walk_nested_s2_pgd(gipa, &wi, result);
|
|
if (ret)
|
|
result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int ttl_to_size(u8 ttl)
|
|
{
|
|
int level = ttl & 3;
|
|
int gran = (ttl >> 2) & 3;
|
|
unsigned int max_size = 0;
|
|
|
|
switch (gran) {
|
|
case TLBI_TTL_TG_4K:
|
|
switch (level) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
max_size = SZ_1G;
|
|
break;
|
|
case 2:
|
|
max_size = SZ_2M;
|
|
break;
|
|
case 3:
|
|
max_size = SZ_4K;
|
|
break;
|
|
}
|
|
break;
|
|
case TLBI_TTL_TG_16K:
|
|
switch (level) {
|
|
case 0:
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
max_size = SZ_32M;
|
|
break;
|
|
case 3:
|
|
max_size = SZ_16K;
|
|
break;
|
|
}
|
|
break;
|
|
case TLBI_TTL_TG_64K:
|
|
switch (level) {
|
|
case 0:
|
|
case 1:
|
|
/* No 52bit IPA support */
|
|
break;
|
|
case 2:
|
|
max_size = SZ_512M;
|
|
break;
|
|
case 3:
|
|
max_size = SZ_64K;
|
|
break;
|
|
}
|
|
break;
|
|
default: /* No size information */
|
|
break;
|
|
}
|
|
|
|
return max_size;
|
|
}
|
|
|
|
/*
|
|
* Compute the equivalent of the TTL field by parsing the shadow PT. The
|
|
* granule size is extracted from the cached VTCR_EL2.TG0 while the level is
|
|
* retrieved from first entry carrying the level as a tag.
|
|
*/
|
|
static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
|
|
{
|
|
u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
|
|
kvm_pte_t pte;
|
|
u8 ttl, level;
|
|
|
|
lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
|
|
|
|
switch (vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
ttl = (TLBI_TTL_TG_4K << 2);
|
|
break;
|
|
case VTCR_EL2_TG0_16K:
|
|
ttl = (TLBI_TTL_TG_16K << 2);
|
|
break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
ttl = (TLBI_TTL_TG_64K << 2);
|
|
break;
|
|
}
|
|
|
|
tmp = addr;
|
|
|
|
again:
|
|
/* Iteratively compute the block sizes for a particular granule size */
|
|
switch (vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
if (sz < SZ_4K) sz = SZ_4K;
|
|
else if (sz < SZ_2M) sz = SZ_2M;
|
|
else if (sz < SZ_1G) sz = SZ_1G;
|
|
else sz = 0;
|
|
break;
|
|
case VTCR_EL2_TG0_16K:
|
|
if (sz < SZ_16K) sz = SZ_16K;
|
|
else if (sz < SZ_32M) sz = SZ_32M;
|
|
else sz = 0;
|
|
break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
if (sz < SZ_64K) sz = SZ_64K;
|
|
else if (sz < SZ_512M) sz = SZ_512M;
|
|
else sz = 0;
|
|
break;
|
|
}
|
|
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
tmp &= ~(sz - 1);
|
|
if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
|
|
goto again;
|
|
if (!(pte & PTE_VALID))
|
|
goto again;
|
|
level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
|
|
if (!level)
|
|
goto again;
|
|
|
|
ttl |= level;
|
|
|
|
/*
|
|
* We now have found some level information in the shadow S2. Check
|
|
* that the resulting range is actually including the original IPA.
|
|
*/
|
|
sz = ttl_to_size(ttl);
|
|
if (addr < (tmp + sz))
|
|
return ttl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
|
|
{
|
|
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
|
|
unsigned long max_size;
|
|
u8 ttl;
|
|
|
|
ttl = FIELD_GET(TLBI_TTL_MASK, val);
|
|
|
|
if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
|
|
/* No TTL, check the shadow S2 for a hint */
|
|
u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
|
|
ttl = get_guest_mapping_ttl(mmu, addr);
|
|
}
|
|
|
|
max_size = ttl_to_size(ttl);
|
|
|
|
if (!max_size) {
|
|
/* Compute the maximum extent of the invalidation */
|
|
switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
|
|
case VTCR_EL2_TG0_4K:
|
|
max_size = SZ_1G;
|
|
break;
|
|
case VTCR_EL2_TG0_16K:
|
|
max_size = SZ_32M;
|
|
break;
|
|
case VTCR_EL2_TG0_64K:
|
|
default: /* IMPDEF: treat any other value as 64k */
|
|
/*
|
|
* No, we do not support 52bit IPA in nested yet. Once
|
|
* we do, this should be 4TB.
|
|
*/
|
|
max_size = SZ_512M;
|
|
break;
|
|
}
|
|
}
|
|
|
|
WARN_ON(!max_size);
|
|
return max_size;
|
|
}
|
|
|
|
/*
|
|
* We can have multiple *different* MMU contexts with the same VMID:
|
|
*
|
|
* - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
|
|
*
|
|
* - Multiple vcpus using private S2s (huh huh...), hence differing by the
|
|
* VBBTR_EL2.BADDR address
|
|
*
|
|
* - A combination of the above...
|
|
*
|
|
* We can always identify which MMU context to pick at run-time. However,
|
|
* TLB invalidation involving a VMID must take action on all the TLBs using
|
|
* this particular VMID. This translates into applying the same invalidation
|
|
* operation to all the contexts that are using this VMID. Moar phun!
|
|
*/
|
|
void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
|
|
const union tlbi_info *info,
|
|
void (*tlbi_callback)(struct kvm_s2_mmu *,
|
|
const union tlbi_info *))
|
|
{
|
|
write_lock(&kvm->mmu_lock);
|
|
|
|
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (!kvm_s2_mmu_valid(mmu))
|
|
continue;
|
|
|
|
if (vmid == get_vmid(mmu->tlb_vttbr))
|
|
tlbi_callback(mmu, info);
|
|
}
|
|
|
|
write_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
bool nested_stage2_enabled;
|
|
u64 vttbr, vtcr, hcr;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
|
|
vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
|
|
hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
|
|
|
|
nested_stage2_enabled = hcr & HCR_VM;
|
|
|
|
/* Don't consider the CnP bit for the vttbr match */
|
|
vttbr &= ~VTTBR_CNP_BIT;
|
|
|
|
/*
|
|
* Two possibilities when looking up a S2 MMU context:
|
|
*
|
|
* - either S2 is enabled in the guest, and we need a context that is
|
|
* S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
|
|
* which makes it safe from a TLB conflict perspective (a broken
|
|
* guest won't be able to generate them),
|
|
*
|
|
* - or S2 is disabled, and we need a context that is S2-disabled
|
|
* and matches the VMID only, as all TLBs are tagged by VMID even
|
|
* if S2 translation is disabled.
|
|
*/
|
|
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (!kvm_s2_mmu_valid(mmu))
|
|
continue;
|
|
|
|
if (nested_stage2_enabled &&
|
|
mmu->nested_stage2_enabled &&
|
|
vttbr == mmu->tlb_vttbr &&
|
|
vtcr == mmu->tlb_vtcr)
|
|
return mmu;
|
|
|
|
if (!nested_stage2_enabled &&
|
|
!mmu->nested_stage2_enabled &&
|
|
get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
|
|
return mmu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_s2_mmu *s2_mmu;
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
|
|
|
|
s2_mmu = lookup_s2_mmu(vcpu);
|
|
if (s2_mmu)
|
|
goto out;
|
|
|
|
/*
|
|
* Make sure we don't always search from the same point, or we
|
|
* will always reuse a potentially active context, leaving
|
|
* free contexts unused.
|
|
*/
|
|
for (i = kvm->arch.nested_mmus_next;
|
|
i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
|
|
i++) {
|
|
s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
|
|
|
|
if (atomic_read(&s2_mmu->refcnt) == 0)
|
|
break;
|
|
}
|
|
BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
|
|
|
|
/* Set the scene for the next search */
|
|
kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
|
|
|
|
/* Clear the old state */
|
|
if (kvm_s2_mmu_valid(s2_mmu))
|
|
kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));
|
|
|
|
/*
|
|
* The virtual VMID (modulo CnP) will be used as a key when matching
|
|
* an existing kvm_s2_mmu.
|
|
*
|
|
* We cache VTCR at allocation time, once and for all. It'd be great
|
|
* if the guest didn't screw that one up, as this is not very
|
|
* forgiving...
|
|
*/
|
|
s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
|
|
s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
|
|
s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
|
|
|
|
out:
|
|
atomic_inc(&s2_mmu->refcnt);
|
|
return s2_mmu;
|
|
}
|
|
|
|
void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
|
|
{
|
|
/* CnP being set denotes an invalid entry */
|
|
mmu->tlb_vttbr = VTTBR_CNP_BIT;
|
|
mmu->nested_stage2_enabled = false;
|
|
atomic_set(&mmu->refcnt, 0);
|
|
}
|
|
|
|
void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_hyp_ctxt(vcpu)) {
|
|
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
|
|
} else {
|
|
write_lock(&vcpu->kvm->mmu_lock);
|
|
vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
|
|
write_unlock(&vcpu->kvm->mmu_lock);
|
|
}
|
|
}
|
|
|
|
void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
|
|
atomic_dec(&vcpu->arch.hw_mmu->refcnt);
|
|
vcpu->arch.hw_mmu = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if permission fault is handled by injecting it to the next
|
|
* level hypervisor.
|
|
*/
|
|
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
|
|
{
|
|
bool forward_fault = false;
|
|
|
|
trans->esr = 0;
|
|
|
|
if (!kvm_vcpu_trap_is_permission_fault(vcpu))
|
|
return 0;
|
|
|
|
if (kvm_vcpu_trap_is_iabt(vcpu)) {
|
|
forward_fault = !kvm_s2_trans_executable(trans);
|
|
} else {
|
|
bool write_fault = kvm_is_write_fault(vcpu);
|
|
|
|
forward_fault = ((write_fault && !trans->writable) ||
|
|
(!write_fault && !trans->readable));
|
|
}
|
|
|
|
if (forward_fault)
|
|
trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
|
|
|
|
return forward_fault;
|
|
}
|
|
|
|
int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
|
|
{
|
|
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
|
|
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
|
|
|
|
return kvm_inject_nested_sync(vcpu, esr_el2);
|
|
}
|
|
|
|
void kvm_nested_s2_wp(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (kvm_s2_mmu_valid(mmu))
|
|
kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
|
|
}
|
|
}
|
|
|
|
void kvm_nested_s2_unmap(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (kvm_s2_mmu_valid(mmu))
|
|
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
|
|
}
|
|
}
|
|
|
|
void kvm_nested_s2_flush(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (kvm_s2_mmu_valid(mmu))
|
|
kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
|
|
}
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
|
|
|
|
if (!WARN_ON(atomic_read(&mmu->refcnt)))
|
|
kvm_free_stage2_pgd(mmu);
|
|
}
|
|
kvfree(kvm->arch.nested_mmus);
|
|
kvm->arch.nested_mmus = NULL;
|
|
kvm->arch.nested_mmus_size = 0;
|
|
kvm_uninit_stage2_mmu(kvm);
|
|
}
|
|
|
|
/*
|
|
* Our emulated CPU doesn't support all the possible features. For the
|
|
* sake of simplicity (and probably mental sanity), wipe out a number
|
|
* of feature bits we don't intend to support for the time being.
|
|
* This list should get updated as new features get added to the NV
|
|
* support, and new extension to the architecture.
|
|
*/
|
|
static void limit_nv_id_regs(struct kvm *kvm)
|
|
{
|
|
u64 val, tmp;
|
|
|
|
/* Support everything but TME */
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1);
|
|
val &= ~NV_FTR(ISAR0, TME);
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val);
|
|
|
|
/* Support everything but Spec Invalidation and LS64 */
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1);
|
|
val &= ~(NV_FTR(ISAR1, LS64) |
|
|
NV_FTR(ISAR1, SPECRES));
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val);
|
|
|
|
/* No AMU, MPAM, S-EL2, or RAS */
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1);
|
|
val &= ~(GENMASK_ULL(55, 52) |
|
|
NV_FTR(PFR0, AMU) |
|
|
NV_FTR(PFR0, MPAM) |
|
|
NV_FTR(PFR0, SEL2) |
|
|
NV_FTR(PFR0, RAS) |
|
|
NV_FTR(PFR0, EL3) |
|
|
NV_FTR(PFR0, EL2) |
|
|
NV_FTR(PFR0, EL1));
|
|
/* 64bit EL1/EL2/EL3 only */
|
|
val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
|
|
val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
|
|
val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);
|
|
|
|
/* Only support BTI, SSBS, CSV2_frac */
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1);
|
|
val &= (NV_FTR(PFR1, BT) |
|
|
NV_FTR(PFR1, SSBS) |
|
|
NV_FTR(PFR1, CSV2_frac));
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val);
|
|
|
|
/* Hide ECV, ExS, Secure Memory */
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1);
|
|
val &= ~(NV_FTR(MMFR0, ECV) |
|
|
NV_FTR(MMFR0, EXS) |
|
|
NV_FTR(MMFR0, TGRAN4_2) |
|
|
NV_FTR(MMFR0, TGRAN16_2) |
|
|
NV_FTR(MMFR0, TGRAN64_2) |
|
|
NV_FTR(MMFR0, SNSMEM));
|
|
|
|
/* Disallow unsupported S2 page sizes */
|
|
switch (PAGE_SIZE) {
|
|
case SZ_64K:
|
|
val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
|
|
fallthrough;
|
|
case SZ_16K:
|
|
val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
|
|
fallthrough;
|
|
case SZ_4K:
|
|
/* Support everything */
|
|
break;
|
|
}
|
|
/*
|
|
* Since we can't support a guest S2 page size smaller than
|
|
* the host's own page size (due to KVM only populating its
|
|
* own S2 using the kernel's page size), advertise the
|
|
* limitation using FEAT_GTG.
|
|
*/
|
|
switch (PAGE_SIZE) {
|
|
case SZ_4K:
|
|
val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
|
|
fallthrough;
|
|
case SZ_16K:
|
|
val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
|
|
fallthrough;
|
|
case SZ_64K:
|
|
val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
|
|
break;
|
|
}
|
|
/* Cap PARange to 48bits */
|
|
tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
|
|
if (tmp > 0b0101) {
|
|
val &= ~NV_FTR(MMFR0, PARANGE);
|
|
val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
|
|
}
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val);
|
|
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1);
|
|
val &= (NV_FTR(MMFR1, HCX) |
|
|
NV_FTR(MMFR1, PAN) |
|
|
NV_FTR(MMFR1, LO) |
|
|
NV_FTR(MMFR1, HPDS) |
|
|
NV_FTR(MMFR1, VH) |
|
|
NV_FTR(MMFR1, VMIDBits));
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val);
|
|
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1);
|
|
val &= ~(NV_FTR(MMFR2, BBM) |
|
|
NV_FTR(MMFR2, TTL) |
|
|
GENMASK_ULL(47, 44) |
|
|
NV_FTR(MMFR2, ST) |
|
|
NV_FTR(MMFR2, CCIDX) |
|
|
NV_FTR(MMFR2, VARange));
|
|
|
|
/* Force TTL support */
|
|
val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val);
|
|
|
|
val = 0;
|
|
if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
|
|
val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
|
|
ID_AA64MMFR4_EL1_E2H0_NI_NV1);
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val);
|
|
|
|
/* Only limited support for PMU, Debug, BPs and WPs */
|
|
val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
|
|
val &= (NV_FTR(DFR0, PMUVer) |
|
|
NV_FTR(DFR0, WRPs) |
|
|
NV_FTR(DFR0, BRPs) |
|
|
NV_FTR(DFR0, DebugVer));
|
|
|
|
/* Cap Debug to ARMv8.1 */
|
|
tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
|
|
if (tmp > 0b0111) {
|
|
val &= ~NV_FTR(DFR0, DebugVer);
|
|
val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
|
|
}
|
|
kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val);
|
|
}
|
|
|
|
u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
|
|
{
|
|
u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
|
|
struct kvm_sysreg_masks *masks;
|
|
|
|
masks = vcpu->kvm->arch.sysreg_masks;
|
|
|
|
if (masks) {
|
|
sr -= __VNCR_START__;
|
|
|
|
v &= ~masks->mask[sr].res0;
|
|
v |= masks->mask[sr].res1;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
|
|
{
|
|
int i = sr - __VNCR_START__;
|
|
|
|
kvm->arch.sysreg_masks->mask[i].res0 = res0;
|
|
kvm->arch.sysreg_masks->mask[i].res1 = res1;
|
|
}
|
|
|
|
int kvm_init_nv_sysregs(struct kvm *kvm)
|
|
{
|
|
u64 res0, res1;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
if (kvm->arch.sysreg_masks)
|
|
return 0;
|
|
|
|
kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!kvm->arch.sysreg_masks)
|
|
return -ENOMEM;
|
|
|
|
limit_nv_id_regs(kvm);
|
|
|
|
/* VTTBR_EL2 */
|
|
res0 = res1 = 0;
|
|
if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
|
|
res0 |= GENMASK(63, 56);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
|
|
res0 |= VTTBR_CNP_BIT;
|
|
set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
|
|
|
|
/* VTCR_EL2 */
|
|
res0 = GENMASK(63, 32) | GENMASK(30, 20);
|
|
res1 = BIT(31);
|
|
set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
|
|
|
|
/* VMPIDR_EL2 */
|
|
res0 = GENMASK(63, 40) | GENMASK(30, 24);
|
|
res1 = BIT(31);
|
|
set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
|
|
|
|
/* HCR_EL2 */
|
|
res0 = BIT(48);
|
|
res1 = HCR_RW;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
|
|
res0 |= GENMASK(63, 59);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
|
|
res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
|
|
res0 |= (HCR_TTLBIS | HCR_TTLBOS);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
|
|
!kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
|
|
res0 |= HCR_ENSCXT;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
|
|
res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
|
|
res0 |= HCR_AMVOFFEN;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
|
|
res0 |= HCR_FIEN;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
|
|
res0 |= HCR_FWB;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
|
|
res0 |= HCR_NV2;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
|
|
res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
|
|
if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
|
|
__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
|
|
res0 |= (HCR_API | HCR_APK);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
|
|
res0 |= BIT(39);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
|
|
res0 |= (HCR_TEA | HCR_TERR);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
|
|
res0 |= HCR_TLOR;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
|
|
res1 |= HCR_E2H;
|
|
set_sysreg_masks(kvm, HCR_EL2, res0, res1);
|
|
|
|
/* HCRX_EL2 */
|
|
res0 = HCRX_EL2_RES0;
|
|
res1 = HCRX_EL2_RES1;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
|
|
res0 |= HCRX_EL2_PACMEn;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
|
|
res0 |= HCRX_EL2_EnFPM;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
|
|
res0 |= HCRX_EL2_GCSEn;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
|
|
res0 |= HCRX_EL2_EnIDCP128;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
|
|
res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
|
|
res0 |= HCRX_EL2_TMEA;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
|
|
res0 |= HCRX_EL2_D128En;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
|
|
res0 |= HCRX_EL2_PTTWI;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
|
|
res0 |= HCRX_EL2_SCTLR2En;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
|
|
res0 |= HCRX_EL2_TCR2En;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
|
|
res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
|
|
res0 |= HCRX_EL2_CMOW;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
|
|
res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
|
|
!(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
|
|
res0 |= HCRX_EL2_SMPME;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
|
|
res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
|
|
res0 |= HCRX_EL2_EnASR;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
|
|
res0 |= HCRX_EL2_EnALS;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
|
|
res0 |= HCRX_EL2_EnAS0;
|
|
set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
|
|
|
|
/* HFG[RW]TR_EL2 */
|
|
res0 = res1 = 0;
|
|
if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
|
|
__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
|
|
res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
|
|
HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
|
|
HFGxTR_EL2_APIBKey);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
|
|
res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
|
|
HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
|
|
HFGxTR_EL2_LORSA_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
|
|
!kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
|
|
res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
|
|
res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
|
|
res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
|
|
HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
|
|
HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
|
|
HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
|
|
HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
|
|
res0 |= HFGxTR_EL2_nACCDATA_EL1;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
|
|
res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
|
|
res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
|
|
res0 |= HFGxTR_EL2_nRCWMASK_EL1;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
|
|
res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
|
|
res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
|
|
res0 |= HFGxTR_EL2_nS2POR_EL1;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
|
|
res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
|
|
set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
|
|
set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
|
|
|
|
/* HDFG[RW]TR_EL2 */
|
|
res0 = res1 = 0;
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
|
|
res0 |= HDFGRTR_EL2_OSDLR_EL1;
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
|
|
res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
|
|
HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
|
|
HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
|
|
HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
|
|
HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
|
|
HDFGRTR_EL2_PMCEIDn_EL0);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
|
|
res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
|
|
HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
|
|
HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
|
|
HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
|
|
HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
|
|
HDFGRTR_EL2_PMBIDR_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
|
|
res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
|
|
HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
|
|
HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
|
|
HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
|
|
HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
|
|
HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
|
|
HDFGRTR_EL2_TRCVICTLR);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
|
|
res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
|
|
HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
|
|
HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
|
|
HDFGRTR_EL2_TRBTRG_EL1);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
|
|
res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
|
|
HDFGRTR_EL2_nBRBDATA);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
|
|
res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
|
|
set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
|
|
|
|
/* Reuse the bits from the read-side and add the write-specific stuff */
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
|
|
res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
|
|
res0 |= HDFGWTR_EL2_TRCOSLAR;
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
|
|
res0 |= HDFGWTR_EL2_TRFCR_EL1;
|
|
set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
|
|
|
|
/* HFGITR_EL2 */
|
|
res0 = HFGITR_EL2_RES0;
|
|
res1 = HFGITR_EL2_RES1;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
|
|
res0 |= HFGITR_EL2_DCCVADP;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
|
|
res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
|
|
res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
|
|
HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
|
|
HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
|
|
HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
|
|
HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
|
|
res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
|
|
HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
|
|
HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
|
|
HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
|
|
HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
|
|
HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
|
|
res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
|
|
HFGITR_EL2_CPPRCTX);
|
|
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
|
|
res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
|
|
res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
|
|
HFGITR_EL2_nGCSEPP);
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
|
|
res0 |= HFGITR_EL2_COSPRCTX;
|
|
if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
|
|
res0 |= HFGITR_EL2_ATS1E1A;
|
|
set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
|
|
|
|
/* HAFGRTR_EL2 - not a lot to see here */
|
|
res0 = HAFGRTR_EL2_RES0;
|
|
res1 = HAFGRTR_EL2_RES1;
|
|
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
|
|
res0 |= ~(res0 | res1);
|
|
set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
|
|
|
|
/* SCTLR_EL1 */
|
|
res0 = SCTLR_EL1_RES0;
|
|
res1 = SCTLR_EL1_RES1;
|
|
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
|
|
res0 |= SCTLR_EL1_EPAN;
|
|
set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
|
|
|
|
return 0;
|
|
}
|