linux-stable/drivers/ata/ahci_imx.c
Colin Ian King 3aadcf8382 ata: ahci-imx: remove redundant assignment to ret
The variable ret is being initialized with a value that is never read
and it is being updated later with a new value.  The initialization is
redundant and can be removed.

Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-07 14:49:45 -06:00

1234 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* copyright (c) 2013 Freescale Semiconductor, Inc.
* Freescale IMX AHCI SATA platform driver
*
* based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/ahci_platform.h>
#include <linux/gpio/consumer.h>
#include <linux/of_device.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
#include <linux/libata.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/thermal.h>
#include "ahci.h"
#define DRV_NAME "ahci-imx"
enum {
/* Timer 1-ms Register */
IMX_TIMER1MS = 0x00e0,
/* Port0 PHY Control Register */
IMX_P0PHYCR = 0x0178,
IMX_P0PHYCR_TEST_PDDQ = 1 << 20,
IMX_P0PHYCR_CR_READ = 1 << 19,
IMX_P0PHYCR_CR_WRITE = 1 << 18,
IMX_P0PHYCR_CR_CAP_DATA = 1 << 17,
IMX_P0PHYCR_CR_CAP_ADDR = 1 << 16,
/* Port0 PHY Status Register */
IMX_P0PHYSR = 0x017c,
IMX_P0PHYSR_CR_ACK = 1 << 18,
IMX_P0PHYSR_CR_DATA_OUT = 0xffff << 0,
/* Lane0 Output Status Register */
IMX_LANE0_OUT_STAT = 0x2003,
IMX_LANE0_OUT_STAT_RX_PLL_STATE = 1 << 1,
/* Clock Reset Register */
IMX_CLOCK_RESET = 0x7f3f,
IMX_CLOCK_RESET_RESET = 1 << 0,
/* IMX8QM HSIO AHCI definitions */
IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET = 0x03,
IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET = 0x09,
IMX8QM_SATA_PHY_IMPED_RATIO_85OHM = 0x6c,
IMX8QM_LPCG_PHYX2_OFFSET = 0x00000,
IMX8QM_CSR_PHYX2_OFFSET = 0x90000,
IMX8QM_CSR_PHYX1_OFFSET = 0xa0000,
IMX8QM_CSR_PHYX_STTS0_OFFSET = 0x4,
IMX8QM_CSR_PCIEA_OFFSET = 0xb0000,
IMX8QM_CSR_PCIEB_OFFSET = 0xc0000,
IMX8QM_CSR_SATA_OFFSET = 0xd0000,
IMX8QM_CSR_PCIE_CTRL2_OFFSET = 0x8,
IMX8QM_CSR_MISC_OFFSET = 0xe0000,
IMX8QM_LPCG_PHYX2_PCLK0_MASK = (0x3 << 16),
IMX8QM_LPCG_PHYX2_PCLK1_MASK = (0x3 << 20),
IMX8QM_PHY_APB_RSTN_0 = BIT(0),
IMX8QM_PHY_MODE_SATA = BIT(19),
IMX8QM_PHY_MODE_MASK = (0xf << 17),
IMX8QM_PHY_PIPE_RSTN_0 = BIT(24),
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0 = BIT(25),
IMX8QM_PHY_PIPE_RSTN_1 = BIT(26),
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1 = BIT(27),
IMX8QM_STTS0_LANE0_TX_PLL_LOCK = BIT(4),
IMX8QM_MISC_IOB_RXENA = BIT(0),
IMX8QM_MISC_IOB_TXENA = BIT(1),
IMX8QM_MISC_PHYX1_EPCS_SEL = BIT(12),
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 = BIT(24),
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 = BIT(25),
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 = BIT(28),
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0 = BIT(29),
IMX8QM_SATA_CTRL_RESET_N = BIT(12),
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N = BIT(7),
IMX8QM_CTRL_BUTTON_RST_N = BIT(21),
IMX8QM_CTRL_POWER_UP_RST_N = BIT(23),
IMX8QM_CTRL_LTSSM_ENABLE = BIT(4),
};
enum ahci_imx_type {
AHCI_IMX53,
AHCI_IMX6Q,
AHCI_IMX6QP,
AHCI_IMX8QM,
};
struct imx_ahci_priv {
struct platform_device *ahci_pdev;
enum ahci_imx_type type;
struct clk *sata_clk;
struct clk *sata_ref_clk;
struct clk *ahb_clk;
struct clk *epcs_tx_clk;
struct clk *epcs_rx_clk;
struct clk *phy_apbclk;
struct clk *phy_pclk0;
struct clk *phy_pclk1;
void __iomem *phy_base;
struct gpio_desc *clkreq_gpiod;
struct regmap *gpr;
bool no_device;
bool first_time;
u32 phy_params;
u32 imped_ratio;
};
static int ahci_imx_hotplug;
module_param_named(hotplug, ahci_imx_hotplug, int, 0644);
MODULE_PARM_DESC(hotplug, "AHCI IMX hot-plug support (0=Don't support, 1=support)");
static void ahci_imx_host_stop(struct ata_host *host);
static int imx_phy_crbit_assert(void __iomem *mmio, u32 bit, bool assert)
{
int timeout = 10;
u32 crval;
u32 srval;
/* Assert or deassert the bit */
crval = readl(mmio + IMX_P0PHYCR);
if (assert)
crval |= bit;
else
crval &= ~bit;
writel(crval, mmio + IMX_P0PHYCR);
/* Wait for the cr_ack signal */
do {
srval = readl(mmio + IMX_P0PHYSR);
if ((assert ? srval : ~srval) & IMX_P0PHYSR_CR_ACK)
break;
usleep_range(100, 200);
} while (--timeout);
return timeout ? 0 : -ETIMEDOUT;
}
static int imx_phy_reg_addressing(u16 addr, void __iomem *mmio)
{
u32 crval = addr;
int ret;
/* Supply the address on cr_data_in */
writel(crval, mmio + IMX_P0PHYCR);
/* Assert the cr_cap_addr signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, true);
if (ret)
return ret;
/* Deassert cr_cap_addr */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, false);
if (ret)
return ret;
return 0;
}
static int imx_phy_reg_write(u16 val, void __iomem *mmio)
{
u32 crval = val;
int ret;
/* Supply the data on cr_data_in */
writel(crval, mmio + IMX_P0PHYCR);
/* Assert the cr_cap_data signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, true);
if (ret)
return ret;
/* Deassert cr_cap_data */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, false);
if (ret)
return ret;
if (val & IMX_CLOCK_RESET_RESET) {
/*
* In case we're resetting the phy, it's unable to acknowledge,
* so we return immediately here.
*/
crval |= IMX_P0PHYCR_CR_WRITE;
writel(crval, mmio + IMX_P0PHYCR);
goto out;
}
/* Assert the cr_write signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, true);
if (ret)
return ret;
/* Deassert cr_write */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, false);
if (ret)
return ret;
out:
return 0;
}
static int imx_phy_reg_read(u16 *val, void __iomem *mmio)
{
int ret;
/* Assert the cr_read signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, true);
if (ret)
return ret;
/* Capture the data from cr_data_out[] */
*val = readl(mmio + IMX_P0PHYSR) & IMX_P0PHYSR_CR_DATA_OUT;
/* Deassert cr_read */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, false);
if (ret)
return ret;
return 0;
}
static int imx_sata_phy_reset(struct ahci_host_priv *hpriv)
{
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
void __iomem *mmio = hpriv->mmio;
int timeout = 10;
u16 val;
int ret;
if (imxpriv->type == AHCI_IMX6QP) {
/* 6qp adds the sata reset mechanism, use it for 6qp sata */
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_PD, 0);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_RST, 0);
udelay(50);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_RST,
IMX6Q_GPR5_SATA_SW_RST);
return 0;
}
/* Reset SATA PHY by setting RESET bit of PHY register CLOCK_RESET */
ret = imx_phy_reg_addressing(IMX_CLOCK_RESET, mmio);
if (ret)
return ret;
ret = imx_phy_reg_write(IMX_CLOCK_RESET_RESET, mmio);
if (ret)
return ret;
/* Wait for PHY RX_PLL to be stable */
do {
usleep_range(100, 200);
ret = imx_phy_reg_addressing(IMX_LANE0_OUT_STAT, mmio);
if (ret)
return ret;
ret = imx_phy_reg_read(&val, mmio);
if (ret)
return ret;
if (val & IMX_LANE0_OUT_STAT_RX_PLL_STATE)
break;
} while (--timeout);
return timeout ? 0 : -ETIMEDOUT;
}
enum {
/* SATA PHY Register */
SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT = 0x0001,
SATA_PHY_CR_CLOCK_DAC_CTL = 0x0008,
SATA_PHY_CR_CLOCK_RTUNE_CTL = 0x0009,
SATA_PHY_CR_CLOCK_ADC_OUT = 0x000A,
SATA_PHY_CR_CLOCK_MPLL_TST = 0x0017,
};
static int read_adc_sum(void *dev, u16 rtune_ctl_reg, void __iomem * mmio)
{
u16 adc_out_reg, read_sum;
u32 index, read_attempt;
const u32 attempt_limit = 200;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
imx_phy_reg_write(rtune_ctl_reg, mmio);
/* two dummy read */
index = 0;
read_attempt = 0;
adc_out_reg = 0;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_ADC_OUT, mmio);
while (index < 2) {
imx_phy_reg_read(&adc_out_reg, mmio);
/* check if valid */
if (adc_out_reg & 0x400)
index++;
read_attempt++;
if (read_attempt > attempt_limit) {
dev_err(dev, "Read REG more than %d times!\n",
attempt_limit);
break;
}
}
index = 0;
read_attempt = 0;
read_sum = 0;
while (index < 80) {
imx_phy_reg_read(&adc_out_reg, mmio);
if (adc_out_reg & 0x400) {
read_sum = read_sum + (adc_out_reg & 0x3FF);
index++;
}
read_attempt++;
if (read_attempt > attempt_limit) {
dev_err(dev, "Read REG more than %d times!\n",
attempt_limit);
break;
}
}
/* Use the U32 to make 1000 precision */
return (read_sum * 1000) / 80;
}
/* SATA AHCI temperature monitor */
static int sata_ahci_read_temperature(void *dev, int *temp)
{
u16 mpll_test_reg, rtune_ctl_reg, dac_ctl_reg, read_sum;
u32 str1, str2, str3, str4;
int m1, m2, a;
struct ahci_host_priv *hpriv = dev_get_drvdata(dev);
void __iomem *mmio = hpriv->mmio;
/* check rd-wr to reg */
read_sum = 0;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT, mmio);
imx_phy_reg_write(read_sum, mmio);
imx_phy_reg_read(&read_sum, mmio);
if ((read_sum & 0xffff) != 0)
dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum);
imx_phy_reg_write(0x5A5A, mmio);
imx_phy_reg_read(&read_sum, mmio);
if ((read_sum & 0xffff) != 0x5A5A)
dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum);
imx_phy_reg_write(0x1234, mmio);
imx_phy_reg_read(&read_sum, mmio);
if ((read_sum & 0xffff) != 0x1234)
dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum);
/* start temperature test */
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
imx_phy_reg_read(&mpll_test_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
imx_phy_reg_read(&rtune_ctl_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
imx_phy_reg_read(&dac_ctl_reg, mmio);
/* mpll_tst.meas_iv ([12:2]) */
str1 = (mpll_test_reg >> 2) & 0x7FF;
/* rtune_ctl.mode ([1:0]) */
str2 = (rtune_ctl_reg) & 0x3;
/* dac_ctl.dac_mode ([14:12]) */
str3 = (dac_ctl_reg >> 12) & 0x7;
/* rtune_ctl.sel_atbp ([4]) */
str4 = (rtune_ctl_reg >> 4);
/* Calculate the m1 */
/* mpll_tst.meas_iv */
mpll_test_reg = (mpll_test_reg & 0xE03) | (512) << 2;
/* rtune_ctl.mode */
rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (1);
/* dac_ctl.dac_mode */
dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (4) << 12;
/* rtune_ctl.sel_atbp */
rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (0) << 4;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
imx_phy_reg_write(mpll_test_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
imx_phy_reg_write(dac_ctl_reg, mmio);
m1 = read_adc_sum(dev, rtune_ctl_reg, mmio);
/* Calculate the m2 */
/* rtune_ctl.sel_atbp */
rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (1) << 4;
m2 = read_adc_sum(dev, rtune_ctl_reg, mmio);
/* restore the status */
/* mpll_tst.meas_iv */
mpll_test_reg = (mpll_test_reg & 0xE03) | (str1) << 2;
/* rtune_ctl.mode */
rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (str2);
/* dac_ctl.dac_mode */
dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (str3) << 12;
/* rtune_ctl.sel_atbp */
rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (str4) << 4;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
imx_phy_reg_write(mpll_test_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
imx_phy_reg_write(dac_ctl_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
imx_phy_reg_write(rtune_ctl_reg, mmio);
/* Compute temperature */
if (!(m2 / 1000))
m2 = 1000;
a = (m2 - m1) / (m2/1000);
*temp = ((-559) * a * a) / 1000 + (1379) * a + (-458000);
return 0;
}
static ssize_t sata_ahci_show_temp(struct device *dev,
struct device_attribute *da,
char *buf)
{
unsigned int temp = 0;
int err;
err = sata_ahci_read_temperature(dev, &temp);
if (err < 0)
return err;
return sprintf(buf, "%u\n", temp);
}
static const struct thermal_zone_of_device_ops fsl_sata_ahci_of_thermal_ops = {
.get_temp = sata_ahci_read_temperature,
};
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, sata_ahci_show_temp, NULL, 0);
static struct attribute *fsl_sata_ahci_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(fsl_sata_ahci);
static int imx8_sata_enable(struct ahci_host_priv *hpriv)
{
u32 val, reg;
int i, ret;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
struct device *dev = &imxpriv->ahci_pdev->dev;
/* configure the hsio for sata */
ret = clk_prepare_enable(imxpriv->phy_pclk0);
if (ret < 0) {
dev_err(dev, "can't enable phy_pclk0.\n");
return ret;
}
ret = clk_prepare_enable(imxpriv->phy_pclk1);
if (ret < 0) {
dev_err(dev, "can't enable phy_pclk1.\n");
goto disable_phy_pclk0;
}
ret = clk_prepare_enable(imxpriv->epcs_tx_clk);
if (ret < 0) {
dev_err(dev, "can't enable epcs_tx_clk.\n");
goto disable_phy_pclk1;
}
ret = clk_prepare_enable(imxpriv->epcs_rx_clk);
if (ret < 0) {
dev_err(dev, "can't enable epcs_rx_clk.\n");
goto disable_epcs_tx_clk;
}
ret = clk_prepare_enable(imxpriv->phy_apbclk);
if (ret < 0) {
dev_err(dev, "can't enable phy_apbclk.\n");
goto disable_epcs_rx_clk;
}
/* Configure PHYx2 PIPE_RSTN */
regmap_read(imxpriv->gpr, IMX8QM_CSR_PCIEA_OFFSET +
IMX8QM_CSR_PCIE_CTRL2_OFFSET, &val);
if ((val & IMX8QM_CTRL_LTSSM_ENABLE) == 0) {
/* The link of the PCIEA of HSIO is down */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX2_OFFSET,
IMX8QM_PHY_PIPE_RSTN_0 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0,
IMX8QM_PHY_PIPE_RSTN_0 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0);
}
regmap_read(imxpriv->gpr, IMX8QM_CSR_PCIEB_OFFSET +
IMX8QM_CSR_PCIE_CTRL2_OFFSET, &reg);
if ((reg & IMX8QM_CTRL_LTSSM_ENABLE) == 0) {
/* The link of the PCIEB of HSIO is down */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX2_OFFSET,
IMX8QM_PHY_PIPE_RSTN_1 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1,
IMX8QM_PHY_PIPE_RSTN_1 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1);
}
if (((reg | val) & IMX8QM_CTRL_LTSSM_ENABLE) == 0) {
/* The links of both PCIA and PCIEB of HSIO are down */
regmap_update_bits(imxpriv->gpr,
IMX8QM_LPCG_PHYX2_OFFSET,
IMX8QM_LPCG_PHYX2_PCLK0_MASK |
IMX8QM_LPCG_PHYX2_PCLK1_MASK,
0);
}
/* set PWR_RST and BT_RST of csr_pciea */
val = IMX8QM_CSR_PCIEA_OFFSET + IMX8QM_CSR_PCIE_CTRL2_OFFSET;
regmap_update_bits(imxpriv->gpr,
val,
IMX8QM_CTRL_BUTTON_RST_N,
IMX8QM_CTRL_BUTTON_RST_N);
regmap_update_bits(imxpriv->gpr,
val,
IMX8QM_CTRL_POWER_UP_RST_N,
IMX8QM_CTRL_POWER_UP_RST_N);
/* PHYX1_MODE to SATA */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX1_OFFSET,
IMX8QM_PHY_MODE_MASK,
IMX8QM_PHY_MODE_SATA);
/*
* BIT0 RXENA 1, BIT1 TXENA 0
* BIT12 PHY_X1_EPCS_SEL 1.
*/
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_IOB_RXENA,
IMX8QM_MISC_IOB_RXENA);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_IOB_TXENA,
0);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_PHYX1_EPCS_SEL,
IMX8QM_MISC_PHYX1_EPCS_SEL);
/*
* It is possible, for PCIe and SATA are sharing
* the same clock source, HPLL or external oscillator.
* When PCIe is in low power modes (L1.X or L2 etc),
* the clock source can be turned off. In this case,
* if this clock source is required to be toggling by
* SATA, then SATA functions will be abnormal.
* Set the override here to avoid it.
*/
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0,
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0);
/* clear PHY RST, then set it */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N,
0);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N,
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N);
/* CTRL RST: SET -> delay 1 us -> CLEAR -> SET */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_RESET_N,
IMX8QM_SATA_CTRL_RESET_N);
udelay(1);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_RESET_N,
0);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_RESET_N,
IMX8QM_SATA_CTRL_RESET_N);
/* APB reset */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX1_OFFSET,
IMX8QM_PHY_APB_RSTN_0,
IMX8QM_PHY_APB_RSTN_0);
for (i = 0; i < 100; i++) {
reg = IMX8QM_CSR_PHYX1_OFFSET +
IMX8QM_CSR_PHYX_STTS0_OFFSET;
regmap_read(imxpriv->gpr, reg, &val);
val &= IMX8QM_STTS0_LANE0_TX_PLL_LOCK;
if (val == IMX8QM_STTS0_LANE0_TX_PLL_LOCK)
break;
udelay(1);
}
if (val != IMX8QM_STTS0_LANE0_TX_PLL_LOCK) {
dev_err(dev, "TX PLL of the PHY is not locked\n");
ret = -ENODEV;
} else {
writeb(imxpriv->imped_ratio, imxpriv->phy_base +
IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET);
writeb(imxpriv->imped_ratio, imxpriv->phy_base +
IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET);
reg = readb(imxpriv->phy_base +
IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET);
if (unlikely(reg != imxpriv->imped_ratio))
dev_info(dev, "Can't set PHY RX impedance ratio.\n");
reg = readb(imxpriv->phy_base +
IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET);
if (unlikely(reg != imxpriv->imped_ratio))
dev_info(dev, "Can't set PHY TX impedance ratio.\n");
usleep_range(50, 100);
/*
* To reduce the power consumption, gate off
* the PHY clks
*/
clk_disable_unprepare(imxpriv->phy_apbclk);
clk_disable_unprepare(imxpriv->phy_pclk1);
clk_disable_unprepare(imxpriv->phy_pclk0);
return ret;
}
clk_disable_unprepare(imxpriv->phy_apbclk);
disable_epcs_rx_clk:
clk_disable_unprepare(imxpriv->epcs_rx_clk);
disable_epcs_tx_clk:
clk_disable_unprepare(imxpriv->epcs_tx_clk);
disable_phy_pclk1:
clk_disable_unprepare(imxpriv->phy_pclk1);
disable_phy_pclk0:
clk_disable_unprepare(imxpriv->phy_pclk0);
return ret;
}
static int imx_sata_enable(struct ahci_host_priv *hpriv)
{
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
struct device *dev = &imxpriv->ahci_pdev->dev;
int ret;
if (imxpriv->no_device)
return 0;
ret = ahci_platform_enable_regulators(hpriv);
if (ret)
return ret;
ret = clk_prepare_enable(imxpriv->sata_ref_clk);
if (ret < 0)
goto disable_regulator;
if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) {
/*
* set PHY Paremeters, two steps to configure the GPR13,
* one write for rest of parameters, mask of first write
* is 0x07ffffff, and the other one write for setting
* the mpll_clk_en.
*/
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_RX_EQ_VAL_MASK |
IMX6Q_GPR13_SATA_RX_LOS_LVL_MASK |
IMX6Q_GPR13_SATA_RX_DPLL_MODE_MASK |
IMX6Q_GPR13_SATA_SPD_MODE_MASK |
IMX6Q_GPR13_SATA_MPLL_SS_EN |
IMX6Q_GPR13_SATA_TX_ATTEN_MASK |
IMX6Q_GPR13_SATA_TX_BOOST_MASK |
IMX6Q_GPR13_SATA_TX_LVL_MASK |
IMX6Q_GPR13_SATA_MPLL_CLK_EN |
IMX6Q_GPR13_SATA_TX_EDGE_RATE,
imxpriv->phy_params);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_MPLL_CLK_EN,
IMX6Q_GPR13_SATA_MPLL_CLK_EN);
usleep_range(100, 200);
ret = imx_sata_phy_reset(hpriv);
if (ret) {
dev_err(dev, "failed to reset phy: %d\n", ret);
goto disable_clk;
}
} else if (imxpriv->type == AHCI_IMX8QM) {
ret = imx8_sata_enable(hpriv);
}
usleep_range(1000, 2000);
return 0;
disable_clk:
clk_disable_unprepare(imxpriv->sata_ref_clk);
disable_regulator:
ahci_platform_disable_regulators(hpriv);
return ret;
}
static void imx_sata_disable(struct ahci_host_priv *hpriv)
{
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
if (imxpriv->no_device)
return;
switch (imxpriv->type) {
case AHCI_IMX6QP:
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_PD,
IMX6Q_GPR5_SATA_SW_PD);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_MPLL_CLK_EN,
!IMX6Q_GPR13_SATA_MPLL_CLK_EN);
break;
case AHCI_IMX6Q:
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_MPLL_CLK_EN,
!IMX6Q_GPR13_SATA_MPLL_CLK_EN);
break;
case AHCI_IMX8QM:
clk_disable_unprepare(imxpriv->epcs_rx_clk);
clk_disable_unprepare(imxpriv->epcs_tx_clk);
break;
default:
break;
}
clk_disable_unprepare(imxpriv->sata_ref_clk);
ahci_platform_disable_regulators(hpriv);
}
static void ahci_imx_error_handler(struct ata_port *ap)
{
u32 reg_val;
struct ata_device *dev;
struct ata_host *host = dev_get_drvdata(ap->dev);
struct ahci_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->mmio;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
ahci_error_handler(ap);
if (!(imxpriv->first_time) || ahci_imx_hotplug)
return;
imxpriv->first_time = false;
ata_for_each_dev(dev, &ap->link, ENABLED)
return;
/*
* Disable link to save power. An imx ahci port can't be recovered
* without full reset once the pddq mode is enabled making it
* impossible to use as part of libata LPM.
*/
reg_val = readl(mmio + IMX_P0PHYCR);
writel(reg_val | IMX_P0PHYCR_TEST_PDDQ, mmio + IMX_P0PHYCR);
imx_sata_disable(hpriv);
imxpriv->no_device = true;
dev_info(ap->dev, "no device found, disabling link.\n");
dev_info(ap->dev, "pass " MODULE_PARAM_PREFIX ".hotplug=1 to enable hotplug\n");
}
static int ahci_imx_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct ata_host *host = dev_get_drvdata(ap->dev);
struct ahci_host_priv *hpriv = host->private_data;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
int ret;
if (imxpriv->type == AHCI_IMX53)
ret = ahci_pmp_retry_srst_ops.softreset(link, class, deadline);
else
ret = ahci_ops.softreset(link, class, deadline);
return ret;
}
static struct ata_port_operations ahci_imx_ops = {
.inherits = &ahci_ops,
.host_stop = ahci_imx_host_stop,
.error_handler = ahci_imx_error_handler,
.softreset = ahci_imx_softreset,
};
static const struct ata_port_info ahci_imx_port_info = {
.flags = AHCI_FLAG_COMMON,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &ahci_imx_ops,
};
static const struct of_device_id imx_ahci_of_match[] = {
{ .compatible = "fsl,imx53-ahci", .data = (void *)AHCI_IMX53 },
{ .compatible = "fsl,imx6q-ahci", .data = (void *)AHCI_IMX6Q },
{ .compatible = "fsl,imx6qp-ahci", .data = (void *)AHCI_IMX6QP },
{ .compatible = "fsl,imx8qm-ahci", .data = (void *)AHCI_IMX8QM },
{},
};
MODULE_DEVICE_TABLE(of, imx_ahci_of_match);
struct reg_value {
u32 of_value;
u32 reg_value;
};
struct reg_property {
const char *name;
const struct reg_value *values;
size_t num_values;
u32 def_value;
u32 set_value;
};
static const struct reg_value gpr13_tx_level[] = {
{ 937, IMX6Q_GPR13_SATA_TX_LVL_0_937_V },
{ 947, IMX6Q_GPR13_SATA_TX_LVL_0_947_V },
{ 957, IMX6Q_GPR13_SATA_TX_LVL_0_957_V },
{ 966, IMX6Q_GPR13_SATA_TX_LVL_0_966_V },
{ 976, IMX6Q_GPR13_SATA_TX_LVL_0_976_V },
{ 986, IMX6Q_GPR13_SATA_TX_LVL_0_986_V },
{ 996, IMX6Q_GPR13_SATA_TX_LVL_0_996_V },
{ 1005, IMX6Q_GPR13_SATA_TX_LVL_1_005_V },
{ 1015, IMX6Q_GPR13_SATA_TX_LVL_1_015_V },
{ 1025, IMX6Q_GPR13_SATA_TX_LVL_1_025_V },
{ 1035, IMX6Q_GPR13_SATA_TX_LVL_1_035_V },
{ 1045, IMX6Q_GPR13_SATA_TX_LVL_1_045_V },
{ 1054, IMX6Q_GPR13_SATA_TX_LVL_1_054_V },
{ 1064, IMX6Q_GPR13_SATA_TX_LVL_1_064_V },
{ 1074, IMX6Q_GPR13_SATA_TX_LVL_1_074_V },
{ 1084, IMX6Q_GPR13_SATA_TX_LVL_1_084_V },
{ 1094, IMX6Q_GPR13_SATA_TX_LVL_1_094_V },
{ 1104, IMX6Q_GPR13_SATA_TX_LVL_1_104_V },
{ 1113, IMX6Q_GPR13_SATA_TX_LVL_1_113_V },
{ 1123, IMX6Q_GPR13_SATA_TX_LVL_1_123_V },
{ 1133, IMX6Q_GPR13_SATA_TX_LVL_1_133_V },
{ 1143, IMX6Q_GPR13_SATA_TX_LVL_1_143_V },
{ 1152, IMX6Q_GPR13_SATA_TX_LVL_1_152_V },
{ 1162, IMX6Q_GPR13_SATA_TX_LVL_1_162_V },
{ 1172, IMX6Q_GPR13_SATA_TX_LVL_1_172_V },
{ 1182, IMX6Q_GPR13_SATA_TX_LVL_1_182_V },
{ 1191, IMX6Q_GPR13_SATA_TX_LVL_1_191_V },
{ 1201, IMX6Q_GPR13_SATA_TX_LVL_1_201_V },
{ 1211, IMX6Q_GPR13_SATA_TX_LVL_1_211_V },
{ 1221, IMX6Q_GPR13_SATA_TX_LVL_1_221_V },
{ 1230, IMX6Q_GPR13_SATA_TX_LVL_1_230_V },
{ 1240, IMX6Q_GPR13_SATA_TX_LVL_1_240_V }
};
static const struct reg_value gpr13_tx_boost[] = {
{ 0, IMX6Q_GPR13_SATA_TX_BOOST_0_00_DB },
{ 370, IMX6Q_GPR13_SATA_TX_BOOST_0_37_DB },
{ 740, IMX6Q_GPR13_SATA_TX_BOOST_0_74_DB },
{ 1110, IMX6Q_GPR13_SATA_TX_BOOST_1_11_DB },
{ 1480, IMX6Q_GPR13_SATA_TX_BOOST_1_48_DB },
{ 1850, IMX6Q_GPR13_SATA_TX_BOOST_1_85_DB },
{ 2220, IMX6Q_GPR13_SATA_TX_BOOST_2_22_DB },
{ 2590, IMX6Q_GPR13_SATA_TX_BOOST_2_59_DB },
{ 2960, IMX6Q_GPR13_SATA_TX_BOOST_2_96_DB },
{ 3330, IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB },
{ 3700, IMX6Q_GPR13_SATA_TX_BOOST_3_70_DB },
{ 4070, IMX6Q_GPR13_SATA_TX_BOOST_4_07_DB },
{ 4440, IMX6Q_GPR13_SATA_TX_BOOST_4_44_DB },
{ 4810, IMX6Q_GPR13_SATA_TX_BOOST_4_81_DB },
{ 5280, IMX6Q_GPR13_SATA_TX_BOOST_5_28_DB },
{ 5750, IMX6Q_GPR13_SATA_TX_BOOST_5_75_DB }
};
static const struct reg_value gpr13_tx_atten[] = {
{ 8, IMX6Q_GPR13_SATA_TX_ATTEN_8_16 },
{ 9, IMX6Q_GPR13_SATA_TX_ATTEN_9_16 },
{ 10, IMX6Q_GPR13_SATA_TX_ATTEN_10_16 },
{ 12, IMX6Q_GPR13_SATA_TX_ATTEN_12_16 },
{ 14, IMX6Q_GPR13_SATA_TX_ATTEN_14_16 },
{ 16, IMX6Q_GPR13_SATA_TX_ATTEN_16_16 },
};
static const struct reg_value gpr13_rx_eq[] = {
{ 500, IMX6Q_GPR13_SATA_RX_EQ_VAL_0_5_DB },
{ 1000, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_0_DB },
{ 1500, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_5_DB },
{ 2000, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_0_DB },
{ 2500, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_5_DB },
{ 3000, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB },
{ 3500, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_5_DB },
{ 4000, IMX6Q_GPR13_SATA_RX_EQ_VAL_4_0_DB },
};
static const struct reg_property gpr13_props[] = {
{
.name = "fsl,transmit-level-mV",
.values = gpr13_tx_level,
.num_values = ARRAY_SIZE(gpr13_tx_level),
.def_value = IMX6Q_GPR13_SATA_TX_LVL_1_025_V,
}, {
.name = "fsl,transmit-boost-mdB",
.values = gpr13_tx_boost,
.num_values = ARRAY_SIZE(gpr13_tx_boost),
.def_value = IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB,
}, {
.name = "fsl,transmit-atten-16ths",
.values = gpr13_tx_atten,
.num_values = ARRAY_SIZE(gpr13_tx_atten),
.def_value = IMX6Q_GPR13_SATA_TX_ATTEN_9_16,
}, {
.name = "fsl,receive-eq-mdB",
.values = gpr13_rx_eq,
.num_values = ARRAY_SIZE(gpr13_rx_eq),
.def_value = IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB,
}, {
.name = "fsl,no-spread-spectrum",
.def_value = IMX6Q_GPR13_SATA_MPLL_SS_EN,
.set_value = 0,
},
};
static u32 imx_ahci_parse_props(struct device *dev,
const struct reg_property *prop, size_t num)
{
struct device_node *np = dev->of_node;
u32 reg_value = 0;
int i, j;
for (i = 0; i < num; i++, prop++) {
u32 of_val;
if (prop->num_values == 0) {
if (of_property_read_bool(np, prop->name))
reg_value |= prop->set_value;
else
reg_value |= prop->def_value;
continue;
}
if (of_property_read_u32(np, prop->name, &of_val)) {
dev_info(dev, "%s not specified, using %08x\n",
prop->name, prop->def_value);
reg_value |= prop->def_value;
continue;
}
for (j = 0; j < prop->num_values; j++) {
if (prop->values[j].of_value == of_val) {
dev_info(dev, "%s value %u, using %08x\n",
prop->name, of_val, prop->values[j].reg_value);
reg_value |= prop->values[j].reg_value;
break;
}
}
if (j == prop->num_values) {
dev_err(dev, "DT property %s is not a valid value\n",
prop->name);
reg_value |= prop->def_value;
}
}
return reg_value;
}
static struct scsi_host_template ahci_platform_sht = {
AHCI_SHT(DRV_NAME),
};
static int imx8_sata_probe(struct device *dev, struct imx_ahci_priv *imxpriv)
{
struct resource *phy_res;
struct platform_device *pdev = imxpriv->ahci_pdev;
struct device_node *np = dev->of_node;
if (of_property_read_u32(np, "fsl,phy-imp", &imxpriv->imped_ratio))
imxpriv->imped_ratio = IMX8QM_SATA_PHY_IMPED_RATIO_85OHM;
phy_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
if (phy_res) {
imxpriv->phy_base = devm_ioremap(dev, phy_res->start,
resource_size(phy_res));
if (!imxpriv->phy_base) {
dev_err(dev, "error with ioremap\n");
return -ENOMEM;
}
} else {
dev_err(dev, "missing *phy* reg region.\n");
return -ENOMEM;
}
imxpriv->gpr =
syscon_regmap_lookup_by_phandle(np, "hsio");
if (IS_ERR(imxpriv->gpr)) {
dev_err(dev, "unable to find gpr registers\n");
return PTR_ERR(imxpriv->gpr);
}
imxpriv->epcs_tx_clk = devm_clk_get(dev, "epcs_tx");
if (IS_ERR(imxpriv->epcs_tx_clk)) {
dev_err(dev, "can't get epcs_tx_clk clock.\n");
return PTR_ERR(imxpriv->epcs_tx_clk);
}
imxpriv->epcs_rx_clk = devm_clk_get(dev, "epcs_rx");
if (IS_ERR(imxpriv->epcs_rx_clk)) {
dev_err(dev, "can't get epcs_rx_clk clock.\n");
return PTR_ERR(imxpriv->epcs_rx_clk);
}
imxpriv->phy_pclk0 = devm_clk_get(dev, "phy_pclk0");
if (IS_ERR(imxpriv->phy_pclk0)) {
dev_err(dev, "can't get phy_pclk0 clock.\n");
return PTR_ERR(imxpriv->phy_pclk0);
}
imxpriv->phy_pclk1 = devm_clk_get(dev, "phy_pclk1");
if (IS_ERR(imxpriv->phy_pclk1)) {
dev_err(dev, "can't get phy_pclk1 clock.\n");
return PTR_ERR(imxpriv->phy_pclk1);
}
imxpriv->phy_apbclk = devm_clk_get(dev, "phy_apbclk");
if (IS_ERR(imxpriv->phy_apbclk)) {
dev_err(dev, "can't get phy_apbclk clock.\n");
return PTR_ERR(imxpriv->phy_apbclk);
}
/* Fetch GPIO, then enable the external OSC */
imxpriv->clkreq_gpiod = devm_gpiod_get_optional(dev, "clkreq",
GPIOD_OUT_LOW | GPIOD_FLAGS_BIT_NONEXCLUSIVE);
if (IS_ERR(imxpriv->clkreq_gpiod))
return PTR_ERR(imxpriv->clkreq_gpiod);
if (imxpriv->clkreq_gpiod)
gpiod_set_consumer_name(imxpriv->clkreq_gpiod, "SATA CLKREQ");
return 0;
}
static int imx_ahci_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *of_id;
struct ahci_host_priv *hpriv;
struct imx_ahci_priv *imxpriv;
unsigned int reg_val;
int ret;
of_id = of_match_device(imx_ahci_of_match, dev);
if (!of_id)
return -EINVAL;
imxpriv = devm_kzalloc(dev, sizeof(*imxpriv), GFP_KERNEL);
if (!imxpriv)
return -ENOMEM;
imxpriv->ahci_pdev = pdev;
imxpriv->no_device = false;
imxpriv->first_time = true;
imxpriv->type = (enum ahci_imx_type)of_id->data;
imxpriv->sata_clk = devm_clk_get(dev, "sata");
if (IS_ERR(imxpriv->sata_clk)) {
dev_err(dev, "can't get sata clock.\n");
return PTR_ERR(imxpriv->sata_clk);
}
imxpriv->sata_ref_clk = devm_clk_get(dev, "sata_ref");
if (IS_ERR(imxpriv->sata_ref_clk)) {
dev_err(dev, "can't get sata_ref clock.\n");
return PTR_ERR(imxpriv->sata_ref_clk);
}
imxpriv->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(imxpriv->ahb_clk)) {
dev_err(dev, "can't get ahb clock.\n");
return PTR_ERR(imxpriv->ahb_clk);
}
if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) {
u32 reg_value;
imxpriv->gpr = syscon_regmap_lookup_by_compatible(
"fsl,imx6q-iomuxc-gpr");
if (IS_ERR(imxpriv->gpr)) {
dev_err(dev,
"failed to find fsl,imx6q-iomux-gpr regmap\n");
return PTR_ERR(imxpriv->gpr);
}
reg_value = imx_ahci_parse_props(dev, gpr13_props,
ARRAY_SIZE(gpr13_props));
imxpriv->phy_params =
IMX6Q_GPR13_SATA_RX_LOS_LVL_SATA2M |
IMX6Q_GPR13_SATA_RX_DPLL_MODE_2P_4F |
IMX6Q_GPR13_SATA_SPD_MODE_3P0G |
reg_value;
} else if (imxpriv->type == AHCI_IMX8QM) {
ret = imx8_sata_probe(dev, imxpriv);
if (ret)
return ret;
}
hpriv = ahci_platform_get_resources(pdev, 0);
if (IS_ERR(hpriv))
return PTR_ERR(hpriv);
hpriv->plat_data = imxpriv;
ret = clk_prepare_enable(imxpriv->sata_clk);
if (ret)
return ret;
if (imxpriv->type == AHCI_IMX53 &&
IS_ENABLED(CONFIG_HWMON)) {
/* Add the temperature monitor */
struct device *hwmon_dev;
hwmon_dev =
devm_hwmon_device_register_with_groups(dev,
"sata_ahci",
hpriv,
fsl_sata_ahci_groups);
if (IS_ERR(hwmon_dev)) {
ret = PTR_ERR(hwmon_dev);
goto disable_clk;
}
devm_thermal_zone_of_sensor_register(hwmon_dev, 0, hwmon_dev,
&fsl_sata_ahci_of_thermal_ops);
dev_info(dev, "%s: sensor 'sata_ahci'\n", dev_name(hwmon_dev));
}
ret = imx_sata_enable(hpriv);
if (ret)
goto disable_clk;
/*
* Configure the HWINIT bits of the HOST_CAP and HOST_PORTS_IMPL,
* and IP vendor specific register IMX_TIMER1MS.
* Configure CAP_SSS (support stagered spin up).
* Implement the port0.
* Get the ahb clock rate, and configure the TIMER1MS register.
*/
reg_val = readl(hpriv->mmio + HOST_CAP);
if (!(reg_val & HOST_CAP_SSS)) {
reg_val |= HOST_CAP_SSS;
writel(reg_val, hpriv->mmio + HOST_CAP);
}
reg_val = readl(hpriv->mmio + HOST_PORTS_IMPL);
if (!(reg_val & 0x1)) {
reg_val |= 0x1;
writel(reg_val, hpriv->mmio + HOST_PORTS_IMPL);
}
reg_val = clk_get_rate(imxpriv->ahb_clk) / 1000;
writel(reg_val, hpriv->mmio + IMX_TIMER1MS);
ret = ahci_platform_init_host(pdev, hpriv, &ahci_imx_port_info,
&ahci_platform_sht);
if (ret)
goto disable_sata;
return 0;
disable_sata:
imx_sata_disable(hpriv);
disable_clk:
clk_disable_unprepare(imxpriv->sata_clk);
return ret;
}
static void ahci_imx_host_stop(struct ata_host *host)
{
struct ahci_host_priv *hpriv = host->private_data;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
imx_sata_disable(hpriv);
clk_disable_unprepare(imxpriv->sata_clk);
}
#ifdef CONFIG_PM_SLEEP
static int imx_ahci_suspend(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct ahci_host_priv *hpriv = host->private_data;
int ret;
ret = ahci_platform_suspend_host(dev);
if (ret)
return ret;
imx_sata_disable(hpriv);
return 0;
}
static int imx_ahci_resume(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct ahci_host_priv *hpriv = host->private_data;
int ret;
ret = imx_sata_enable(hpriv);
if (ret)
return ret;
return ahci_platform_resume_host(dev);
}
#endif
static SIMPLE_DEV_PM_OPS(ahci_imx_pm_ops, imx_ahci_suspend, imx_ahci_resume);
static struct platform_driver imx_ahci_driver = {
.probe = imx_ahci_probe,
.remove = ata_platform_remove_one,
.driver = {
.name = DRV_NAME,
.of_match_table = imx_ahci_of_match,
.pm = &ahci_imx_pm_ops,
},
};
module_platform_driver(imx_ahci_driver);
MODULE_DESCRIPTION("Freescale i.MX AHCI SATA platform driver");
MODULE_AUTHOR("Richard Zhu <Hong-Xing.Zhu@freescale.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("ahci:imx");