mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 18:26:42 +00:00
8c01031abe
This prepares the pwm-ntxec driver to further changes of the pwm core outlined in the commit introducing devm_pwmchip_alloc(). There is no intended semantical change and the driver should behave as before. Link: https://lore.kernel.org/r/c0c9d6cb3a6662268e660f4f6c89b32268ecf019.1707900770.git.u.kleine-koenig@pengutronix.de Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
166 lines
4.8 KiB
C
166 lines
4.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* The Netronix embedded controller is a microcontroller found in some
|
|
* e-book readers designed by the original design manufacturer Netronix, Inc.
|
|
* It contains RTC, battery monitoring, system power management, and PWM
|
|
* functionality.
|
|
*
|
|
* This driver implements PWM output.
|
|
*
|
|
* Copyright 2020 Jonathan Neuschäfer <j.neuschaefer@gmx.net>
|
|
*
|
|
* Limitations:
|
|
* - The get_state callback is not implemented, because the current state of
|
|
* the PWM output can't be read back from the hardware.
|
|
* - The hardware can only generate normal polarity output.
|
|
* - The period and duty cycle can't be changed together in one atomic action.
|
|
*/
|
|
|
|
#include <linux/mfd/ntxec.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pwm.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/types.h>
|
|
|
|
struct ntxec_pwm {
|
|
struct ntxec *ec;
|
|
};
|
|
|
|
static struct ntxec_pwm *ntxec_pwm_from_chip(struct pwm_chip *chip)
|
|
{
|
|
return pwmchip_get_drvdata(chip);
|
|
}
|
|
|
|
#define NTXEC_REG_AUTO_OFF_HI 0xa1
|
|
#define NTXEC_REG_AUTO_OFF_LO 0xa2
|
|
#define NTXEC_REG_ENABLE 0xa3
|
|
#define NTXEC_REG_PERIOD_LOW 0xa4
|
|
#define NTXEC_REG_PERIOD_HIGH 0xa5
|
|
#define NTXEC_REG_DUTY_LOW 0xa6
|
|
#define NTXEC_REG_DUTY_HIGH 0xa7
|
|
|
|
/*
|
|
* The time base used in the EC is 8MHz, or 125ns. Period and duty cycle are
|
|
* measured in this unit.
|
|
*/
|
|
#define TIME_BASE_NS 125
|
|
|
|
/*
|
|
* The maximum input value (in nanoseconds) is determined by the time base and
|
|
* the range of the hardware registers that hold the converted value.
|
|
* It fits into 32 bits, so we can do our calculations in 32 bits as well.
|
|
*/
|
|
#define MAX_PERIOD_NS (TIME_BASE_NS * 0xffff)
|
|
|
|
static int ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip *chip,
|
|
int period, int duty)
|
|
{
|
|
struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
|
|
|
|
/*
|
|
* Changes to the period and duty cycle take effect as soon as the
|
|
* corresponding low byte is written, so the hardware may be configured
|
|
* to an inconsistent state after the period is written and before the
|
|
* duty cycle is fully written. If, in such a case, the old duty cycle
|
|
* is longer than the new period, the EC may output 100% for a moment.
|
|
*
|
|
* To minimize the time between the changes to period and duty cycle
|
|
* taking effect, the writes are interleaved.
|
|
*/
|
|
|
|
struct reg_sequence regs[] = {
|
|
{ NTXEC_REG_PERIOD_HIGH, ntxec_reg8(period >> 8) },
|
|
{ NTXEC_REG_DUTY_HIGH, ntxec_reg8(duty >> 8) },
|
|
{ NTXEC_REG_PERIOD_LOW, ntxec_reg8(period) },
|
|
{ NTXEC_REG_DUTY_LOW, ntxec_reg8(duty) },
|
|
};
|
|
|
|
return regmap_multi_reg_write(priv->ec->regmap, regs, ARRAY_SIZE(regs));
|
|
}
|
|
|
|
static int ntxec_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm_dev,
|
|
const struct pwm_state *state)
|
|
{
|
|
struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
|
|
unsigned int period, duty;
|
|
int res;
|
|
|
|
if (state->polarity != PWM_POLARITY_NORMAL)
|
|
return -EINVAL;
|
|
|
|
period = min_t(u64, state->period, MAX_PERIOD_NS);
|
|
duty = min_t(u64, state->duty_cycle, period);
|
|
|
|
period /= TIME_BASE_NS;
|
|
duty /= TIME_BASE_NS;
|
|
|
|
/*
|
|
* Writing a duty cycle of zero puts the device into a state where
|
|
* writing a higher duty cycle doesn't result in the brightness that it
|
|
* usually results in. This can be fixed by cycling the ENABLE register.
|
|
*
|
|
* As a workaround, write ENABLE=0 when the duty cycle is zero.
|
|
* The case that something has previously set the duty cycle to zero
|
|
* but ENABLE=1, is not handled.
|
|
*/
|
|
if (state->enabled && duty != 0) {
|
|
res = ntxec_pwm_set_raw_period_and_duty_cycle(chip, period, duty);
|
|
if (res)
|
|
return res;
|
|
|
|
res = regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(1));
|
|
if (res)
|
|
return res;
|
|
|
|
/* Disable the auto-off timer */
|
|
res = regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_HI, ntxec_reg8(0xff));
|
|
if (res)
|
|
return res;
|
|
|
|
return regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_LO, ntxec_reg8(0xff));
|
|
} else {
|
|
return regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(0));
|
|
}
|
|
}
|
|
|
|
static const struct pwm_ops ntxec_pwm_ops = {
|
|
.apply = ntxec_pwm_apply,
|
|
/*
|
|
* No .get_state callback, because the current state cannot be read
|
|
* back from the hardware.
|
|
*/
|
|
};
|
|
|
|
static int ntxec_pwm_probe(struct platform_device *pdev)
|
|
{
|
|
struct ntxec *ec = dev_get_drvdata(pdev->dev.parent);
|
|
struct ntxec_pwm *priv;
|
|
struct pwm_chip *chip;
|
|
|
|
device_set_of_node_from_dev(&pdev->dev, pdev->dev.parent);
|
|
|
|
chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*priv));
|
|
if (IS_ERR(chip))
|
|
return PTR_ERR(chip);
|
|
priv = ntxec_pwm_from_chip(chip);
|
|
|
|
priv->ec = ec;
|
|
chip->ops = &ntxec_pwm_ops;
|
|
|
|
return devm_pwmchip_add(&pdev->dev, chip);
|
|
}
|
|
|
|
static struct platform_driver ntxec_pwm_driver = {
|
|
.driver = {
|
|
.name = "ntxec-pwm",
|
|
},
|
|
.probe = ntxec_pwm_probe,
|
|
};
|
|
module_platform_driver(ntxec_pwm_driver);
|
|
|
|
MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
|
|
MODULE_DESCRIPTION("PWM driver for Netronix EC");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:ntxec-pwm");
|