linux-stable/include/linux/kvm_host.h
Paolo Bonzini d96c77bd4e KVM: x86: switch hugepage recovery thread to vhost_task
kvm_vm_create_worker_thread() is meant to be used for kthreads that
can consume significant amounts of CPU time on behalf of a VM or in
response to how the VM behaves (for example how it accesses its memory).
Therefore it wants to charge the CPU time consumed by that work to
the VM's container.

However, because of these threads, cgroups which have kvm instances
inside never complete freezing.  This can be trivially reproduced:

  root@test ~# mkdir /sys/fs/cgroup/test
  root@test ~# echo $$ > /sys/fs/cgroup/test/cgroup.procs
  root@test ~# qemu-system-x86_64 -nographic -enable-kvm

and in another terminal:

  root@test ~# echo 1 > /sys/fs/cgroup/test/cgroup.freeze
  root@test ~# cat /sys/fs/cgroup/test/cgroup.events
  populated 1
  frozen 0

The cgroup freezing happens in the signal delivery path but
kvm_nx_huge_page_recovery_worker, while joining non-root cgroups, never
calls into the signal delivery path and thus never gets frozen. Because
the cgroup freezer determines whether a given cgroup is frozen by
comparing the number of frozen threads to the total number of threads
in the cgroup, the cgroup never becomes frozen and users waiting for
the state transition may hang indefinitely.

Since the worker kthread is tied to a user process, it's better if
it behaves similarly to user tasks as much as possible, including
being able to send SIGSTOP and SIGCONT.  In fact, vhost_task is all
that kvm_vm_create_worker_thread() wanted to be and more: not only it
inherits the userspace process's cgroups, it has other niceties like
being parented properly in the process tree.  Use it instead of the
homegrown alternative.

Incidentally, the new code is also better behaved when you flip recovery
back and forth to disabled and back to enabled.  If your recovery period
is 1 minute, it will run the next recovery after 1 minute independent
of how many times you flipped the parameter.

(Commit message based on emails from Tejun).

Reported-by: Tejun Heo <tj@kernel.org>
Reported-by: Luca Boccassi <bluca@debian.org>
Acked-by: Tejun Heo <tj@kernel.org>
Tested-by: Luca Boccassi <bluca@debian.org>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-11-14 13:20:04 -05:00

2557 lines
78 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef __KVM_HOST_H
#define __KVM_HOST_H
#include <linux/types.h>
#include <linux/hardirq.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/sched/stat.h>
#include <linux/bug.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/preempt.h>
#include <linux/msi.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/rcupdate.h>
#include <linux/ratelimit.h>
#include <linux/err.h>
#include <linux/irqflags.h>
#include <linux/context_tracking.h>
#include <linux/irqbypass.h>
#include <linux/rcuwait.h>
#include <linux/refcount.h>
#include <linux/nospec.h>
#include <linux/notifier.h>
#include <linux/ftrace.h>
#include <linux/hashtable.h>
#include <linux/instrumentation.h>
#include <linux/interval_tree.h>
#include <linux/rbtree.h>
#include <linux/xarray.h>
#include <asm/signal.h>
#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include <linux/kvm_types.h>
#include <asm/kvm_host.h>
#include <linux/kvm_dirty_ring.h>
#ifndef KVM_MAX_VCPU_IDS
#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
#endif
/*
* The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
* used in kvm, other bits are visible for userspace which are defined in
* include/linux/kvm_h.
*/
#define KVM_MEMSLOT_INVALID (1UL << 16)
/*
* Bit 63 of the memslot generation number is an "update in-progress flag",
* e.g. is temporarily set for the duration of kvm_swap_active_memslots().
* This flag effectively creates a unique generation number that is used to
* mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
* i.e. may (or may not) have come from the previous memslots generation.
*
* This is necessary because the actual memslots update is not atomic with
* respect to the generation number update. Updating the generation number
* first would allow a vCPU to cache a spte from the old memslots using the
* new generation number, and updating the generation number after switching
* to the new memslots would allow cache hits using the old generation number
* to reference the defunct memslots.
*
* This mechanism is used to prevent getting hits in KVM's caches while a
* memslot update is in-progress, and to prevent cache hits *after* updating
* the actual generation number against accesses that were inserted into the
* cache *before* the memslots were updated.
*/
#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
/* Two fragments for cross MMIO pages. */
#define KVM_MAX_MMIO_FRAGMENTS 2
#ifndef KVM_MAX_NR_ADDRESS_SPACES
#define KVM_MAX_NR_ADDRESS_SPACES 1
#endif
/*
* For the normal pfn, the highest 12 bits should be zero,
* so we can mask bit 62 ~ bit 52 to indicate the error pfn,
* mask bit 63 to indicate the noslot pfn.
*/
#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
#define KVM_PFN_NOSLOT (0x1ULL << 63)
#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
/*
* error pfns indicate that the gfn is in slot but faild to
* translate it to pfn on host.
*/
static inline bool is_error_pfn(kvm_pfn_t pfn)
{
return !!(pfn & KVM_PFN_ERR_MASK);
}
/*
* KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
* by a pending signal. Note, the signal may or may not be fatal.
*/
static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
{
return pfn == KVM_PFN_ERR_SIGPENDING;
}
/*
* error_noslot pfns indicate that the gfn can not be
* translated to pfn - it is not in slot or failed to
* translate it to pfn.
*/
static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
{
return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
}
/* noslot pfn indicates that the gfn is not in slot. */
static inline bool is_noslot_pfn(kvm_pfn_t pfn)
{
return pfn == KVM_PFN_NOSLOT;
}
/*
* architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
* provide own defines and kvm_is_error_hva
*/
#ifndef KVM_HVA_ERR_BAD
#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
static inline bool kvm_is_error_hva(unsigned long addr)
{
return addr >= PAGE_OFFSET;
}
#endif
static inline bool kvm_is_error_gpa(gpa_t gpa)
{
return gpa == INVALID_GPA;
}
#define KVM_REQUEST_MASK GENMASK(7,0)
#define KVM_REQUEST_NO_WAKEUP BIT(8)
#define KVM_REQUEST_WAIT BIT(9)
#define KVM_REQUEST_NO_ACTION BIT(10)
/*
* Architecture-independent vcpu->requests bit members
* Bits 3-7 are reserved for more arch-independent bits.
*/
#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_UNBLOCK 2
#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
#define KVM_REQUEST_ARCH_BASE 8
/*
* KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
* OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
* in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
* on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
* kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
* guarantee the vCPU received an IPI and has actually exited guest mode.
*/
#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
})
#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
unsigned long *vcpu_bitmap);
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
#define KVM_USERSPACE_IRQ_SOURCE_ID 0
#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
extern struct mutex kvm_lock;
extern struct list_head vm_list;
struct kvm_io_range {
gpa_t addr;
int len;
struct kvm_io_device *dev;
};
#define NR_IOBUS_DEVS 1000
struct kvm_io_bus {
int dev_count;
int ioeventfd_count;
struct kvm_io_range range[];
};
enum kvm_bus {
KVM_MMIO_BUS,
KVM_PIO_BUS,
KVM_VIRTIO_CCW_NOTIFY_BUS,
KVM_FAST_MMIO_BUS,
KVM_IOCSR_BUS,
KVM_NR_BUSES
};
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, const void *val);
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
gpa_t addr, int len, const void *val, long cookie);
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, void *val);
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, struct kvm_io_device *dev);
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
struct kvm_io_device *dev);
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
gpa_t addr);
#ifdef CONFIG_KVM_ASYNC_PF
struct kvm_async_pf {
struct work_struct work;
struct list_head link;
struct list_head queue;
struct kvm_vcpu *vcpu;
gpa_t cr2_or_gpa;
unsigned long addr;
struct kvm_arch_async_pf arch;
bool wakeup_all;
bool notpresent_injected;
};
void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
unsigned long hva, struct kvm_arch_async_pf *arch);
int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
#endif
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
union kvm_mmu_notifier_arg {
unsigned long attributes;
};
struct kvm_gfn_range {
struct kvm_memory_slot *slot;
gfn_t start;
gfn_t end;
union kvm_mmu_notifier_arg arg;
bool may_block;
};
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
#endif
enum {
OUTSIDE_GUEST_MODE,
IN_GUEST_MODE,
EXITING_GUEST_MODE,
READING_SHADOW_PAGE_TABLES,
};
struct kvm_host_map {
/*
* Only valid if the 'pfn' is managed by the host kernel (i.e. There is
* a 'struct page' for it. When using mem= kernel parameter some memory
* can be used as guest memory but they are not managed by host
* kernel).
*/
struct page *pinned_page;
struct page *page;
void *hva;
kvm_pfn_t pfn;
kvm_pfn_t gfn;
bool writable;
};
/*
* Used to check if the mapping is valid or not. Never use 'kvm_host_map'
* directly to check for that.
*/
static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
{
return !!map->hva;
}
static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
{
return single_task_running() && !need_resched() && ktime_before(cur, stop);
}
/*
* Sometimes a large or cross-page mmio needs to be broken up into separate
* exits for userspace servicing.
*/
struct kvm_mmio_fragment {
gpa_t gpa;
void *data;
unsigned len;
};
struct kvm_vcpu {
struct kvm *kvm;
#ifdef CONFIG_PREEMPT_NOTIFIERS
struct preempt_notifier preempt_notifier;
#endif
int cpu;
int vcpu_id; /* id given by userspace at creation */
int vcpu_idx; /* index into kvm->vcpu_array */
int ____srcu_idx; /* Don't use this directly. You've been warned. */
#ifdef CONFIG_PROVE_RCU
int srcu_depth;
#endif
int mode;
u64 requests;
unsigned long guest_debug;
struct mutex mutex;
struct kvm_run *run;
#ifndef __KVM_HAVE_ARCH_WQP
struct rcuwait wait;
#endif
struct pid *pid;
rwlock_t pid_lock;
int sigset_active;
sigset_t sigset;
unsigned int halt_poll_ns;
bool valid_wakeup;
#ifdef CONFIG_HAS_IOMEM
int mmio_needed;
int mmio_read_completed;
int mmio_is_write;
int mmio_cur_fragment;
int mmio_nr_fragments;
struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
#endif
#ifdef CONFIG_KVM_ASYNC_PF
struct {
u32 queued;
struct list_head queue;
struct list_head done;
spinlock_t lock;
} async_pf;
#endif
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
/*
* Cpu relax intercept or pause loop exit optimization
* in_spin_loop: set when a vcpu does a pause loop exit
* or cpu relax intercepted.
* dy_eligible: indicates whether vcpu is eligible for directed yield.
*/
struct {
bool in_spin_loop;
bool dy_eligible;
} spin_loop;
#endif
bool wants_to_run;
bool preempted;
bool ready;
bool scheduled_out;
struct kvm_vcpu_arch arch;
struct kvm_vcpu_stat stat;
char stats_id[KVM_STATS_NAME_SIZE];
struct kvm_dirty_ring dirty_ring;
/*
* The most recently used memslot by this vCPU and the slots generation
* for which it is valid.
* No wraparound protection is needed since generations won't overflow in
* thousands of years, even assuming 1M memslot operations per second.
*/
struct kvm_memory_slot *last_used_slot;
u64 last_used_slot_gen;
};
/*
* Start accounting time towards a guest.
* Must be called before entering guest context.
*/
static __always_inline void guest_timing_enter_irqoff(void)
{
/*
* This is running in ioctl context so its safe to assume that it's the
* stime pending cputime to flush.
*/
instrumentation_begin();
vtime_account_guest_enter();
instrumentation_end();
}
/*
* Enter guest context and enter an RCU extended quiescent state.
*
* Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
* unsafe to use any code which may directly or indirectly use RCU, tracing
* (including IRQ flag tracing), or lockdep. All code in this period must be
* non-instrumentable.
*/
static __always_inline void guest_context_enter_irqoff(void)
{
/*
* KVM does not hold any references to rcu protected data when it
* switches CPU into a guest mode. In fact switching to a guest mode
* is very similar to exiting to userspace from rcu point of view. In
* addition CPU may stay in a guest mode for quite a long time (up to
* one time slice). Lets treat guest mode as quiescent state, just like
* we do with user-mode execution.
*/
if (!context_tracking_guest_enter()) {
instrumentation_begin();
rcu_virt_note_context_switch();
instrumentation_end();
}
}
/*
* Deprecated. Architectures should move to guest_timing_enter_irqoff() and
* guest_state_enter_irqoff().
*/
static __always_inline void guest_enter_irqoff(void)
{
guest_timing_enter_irqoff();
guest_context_enter_irqoff();
}
/**
* guest_state_enter_irqoff - Fixup state when entering a guest
*
* Entry to a guest will enable interrupts, but the kernel state is interrupts
* disabled when this is invoked. Also tell RCU about it.
*
* 1) Trace interrupts on state
* 2) Invoke context tracking if enabled to adjust RCU state
* 3) Tell lockdep that interrupts are enabled
*
* Invoked from architecture specific code before entering a guest.
* Must be called with interrupts disabled and the caller must be
* non-instrumentable.
* The caller has to invoke guest_timing_enter_irqoff() before this.
*
* Note: this is analogous to exit_to_user_mode().
*/
static __always_inline void guest_state_enter_irqoff(void)
{
instrumentation_begin();
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
instrumentation_end();
guest_context_enter_irqoff();
lockdep_hardirqs_on(CALLER_ADDR0);
}
/*
* Exit guest context and exit an RCU extended quiescent state.
*
* Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
* unsafe to use any code which may directly or indirectly use RCU, tracing
* (including IRQ flag tracing), or lockdep. All code in this period must be
* non-instrumentable.
*/
static __always_inline void guest_context_exit_irqoff(void)
{
/*
* Guest mode is treated as a quiescent state, see
* guest_context_enter_irqoff() for more details.
*/
if (!context_tracking_guest_exit()) {
instrumentation_begin();
rcu_virt_note_context_switch();
instrumentation_end();
}
}
/*
* Stop accounting time towards a guest.
* Must be called after exiting guest context.
*/
static __always_inline void guest_timing_exit_irqoff(void)
{
instrumentation_begin();
/* Flush the guest cputime we spent on the guest */
vtime_account_guest_exit();
instrumentation_end();
}
/*
* Deprecated. Architectures should move to guest_state_exit_irqoff() and
* guest_timing_exit_irqoff().
*/
static __always_inline void guest_exit_irqoff(void)
{
guest_context_exit_irqoff();
guest_timing_exit_irqoff();
}
static inline void guest_exit(void)
{
unsigned long flags;
local_irq_save(flags);
guest_exit_irqoff();
local_irq_restore(flags);
}
/**
* guest_state_exit_irqoff - Establish state when returning from guest mode
*
* Entry from a guest disables interrupts, but guest mode is traced as
* interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
*
* 1) Tell lockdep that interrupts are disabled
* 2) Invoke context tracking if enabled to reactivate RCU
* 3) Trace interrupts off state
*
* Invoked from architecture specific code after exiting a guest.
* Must be invoked with interrupts disabled and the caller must be
* non-instrumentable.
* The caller has to invoke guest_timing_exit_irqoff() after this.
*
* Note: this is analogous to enter_from_user_mode().
*/
static __always_inline void guest_state_exit_irqoff(void)
{
lockdep_hardirqs_off(CALLER_ADDR0);
guest_context_exit_irqoff();
instrumentation_begin();
trace_hardirqs_off_finish();
instrumentation_end();
}
static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
{
/*
* The memory barrier ensures a previous write to vcpu->requests cannot
* be reordered with the read of vcpu->mode. It pairs with the general
* memory barrier following the write of vcpu->mode in VCPU RUN.
*/
smp_mb__before_atomic();
return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
}
/*
* Some of the bitops functions do not support too long bitmaps.
* This number must be determined not to exceed such limits.
*/
#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
/*
* Since at idle each memslot belongs to two memslot sets it has to contain
* two embedded nodes for each data structure that it forms a part of.
*
* Two memslot sets (one active and one inactive) are necessary so the VM
* continues to run on one memslot set while the other is being modified.
*
* These two memslot sets normally point to the same set of memslots.
* They can, however, be desynchronized when performing a memslot management
* operation by replacing the memslot to be modified by its copy.
* After the operation is complete, both memslot sets once again point to
* the same, common set of memslot data.
*
* The memslots themselves are independent of each other so they can be
* individually added or deleted.
*/
struct kvm_memory_slot {
struct hlist_node id_node[2];
struct interval_tree_node hva_node[2];
struct rb_node gfn_node[2];
gfn_t base_gfn;
unsigned long npages;
unsigned long *dirty_bitmap;
struct kvm_arch_memory_slot arch;
unsigned long userspace_addr;
u32 flags;
short id;
u16 as_id;
#ifdef CONFIG_KVM_PRIVATE_MEM
struct {
struct file __rcu *file;
pgoff_t pgoff;
} gmem;
#endif
};
static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
{
return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
}
static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
{
return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
}
static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
{
return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
}
static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
{
unsigned long len = kvm_dirty_bitmap_bytes(memslot);
return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
}
#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
#endif
struct kvm_s390_adapter_int {
u64 ind_addr;
u64 summary_addr;
u64 ind_offset;
u32 summary_offset;
u32 adapter_id;
};
struct kvm_hv_sint {
u32 vcpu;
u32 sint;
};
struct kvm_xen_evtchn {
u32 port;
u32 vcpu_id;
int vcpu_idx;
u32 priority;
};
struct kvm_kernel_irq_routing_entry {
u32 gsi;
u32 type;
int (*set)(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status);
union {
struct {
unsigned irqchip;
unsigned pin;
} irqchip;
struct {
u32 address_lo;
u32 address_hi;
u32 data;
u32 flags;
u32 devid;
} msi;
struct kvm_s390_adapter_int adapter;
struct kvm_hv_sint hv_sint;
struct kvm_xen_evtchn xen_evtchn;
};
struct hlist_node link;
};
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
struct kvm_irq_routing_table {
int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
u32 nr_rt_entries;
/*
* Array indexed by gsi. Each entry contains list of irq chips
* the gsi is connected to.
*/
struct hlist_head map[] __counted_by(nr_rt_entries);
};
#endif
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
#ifndef KVM_INTERNAL_MEM_SLOTS
#define KVM_INTERNAL_MEM_SLOTS 0
#endif
#define KVM_MEM_SLOTS_NUM SHRT_MAX
#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
#if KVM_MAX_NR_ADDRESS_SPACES == 1
static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
{
return KVM_MAX_NR_ADDRESS_SPACES;
}
static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
{
return 0;
}
#endif
/*
* Arch code must define kvm_arch_has_private_mem if support for private memory
* is enabled.
*/
#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
{
return false;
}
#endif
#ifndef kvm_arch_has_readonly_mem
static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
{
return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
}
#endif
struct kvm_memslots {
u64 generation;
atomic_long_t last_used_slot;
struct rb_root_cached hva_tree;
struct rb_root gfn_tree;
/*
* The mapping table from slot id to memslot.
*
* 7-bit bucket count matches the size of the old id to index array for
* 512 slots, while giving good performance with this slot count.
* Higher bucket counts bring only small performance improvements but
* always result in higher memory usage (even for lower memslot counts).
*/
DECLARE_HASHTABLE(id_hash, 7);
int node_idx;
};
struct kvm {
#ifdef KVM_HAVE_MMU_RWLOCK
rwlock_t mmu_lock;
#else
spinlock_t mmu_lock;
#endif /* KVM_HAVE_MMU_RWLOCK */
struct mutex slots_lock;
/*
* Protects the arch-specific fields of struct kvm_memory_slots in
* use by the VM. To be used under the slots_lock (above) or in a
* kvm->srcu critical section where acquiring the slots_lock would
* lead to deadlock with the synchronize_srcu in
* kvm_swap_active_memslots().
*/
struct mutex slots_arch_lock;
struct mm_struct *mm; /* userspace tied to this vm */
unsigned long nr_memslot_pages;
/* The two memslot sets - active and inactive (per address space) */
struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
/* The current active memslot set for each address space */
struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
struct xarray vcpu_array;
/*
* Protected by slots_lock, but can be read outside if an
* incorrect answer is acceptable.
*/
atomic_t nr_memslots_dirty_logging;
/* Used to wait for completion of MMU notifiers. */
spinlock_t mn_invalidate_lock;
unsigned long mn_active_invalidate_count;
struct rcuwait mn_memslots_update_rcuwait;
/* For management / invalidation of gfn_to_pfn_caches */
spinlock_t gpc_lock;
struct list_head gpc_list;
/*
* created_vcpus is protected by kvm->lock, and is incremented
* at the beginning of KVM_CREATE_VCPU. online_vcpus is only
* incremented after storing the kvm_vcpu pointer in vcpus,
* and is accessed atomically.
*/
atomic_t online_vcpus;
int max_vcpus;
int created_vcpus;
int last_boosted_vcpu;
struct list_head vm_list;
struct mutex lock;
struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
#ifdef CONFIG_HAVE_KVM_IRQCHIP
struct {
spinlock_t lock;
struct list_head items;
/* resampler_list update side is protected by resampler_lock. */
struct list_head resampler_list;
struct mutex resampler_lock;
} irqfds;
#endif
struct list_head ioeventfds;
struct kvm_vm_stat stat;
struct kvm_arch arch;
refcount_t users_count;
#ifdef CONFIG_KVM_MMIO
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
spinlock_t ring_lock;
struct list_head coalesced_zones;
#endif
struct mutex irq_lock;
#ifdef CONFIG_HAVE_KVM_IRQCHIP
/*
* Update side is protected by irq_lock.
*/
struct kvm_irq_routing_table __rcu *irq_routing;
struct hlist_head irq_ack_notifier_list;
#endif
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
struct mmu_notifier mmu_notifier;
unsigned long mmu_invalidate_seq;
long mmu_invalidate_in_progress;
gfn_t mmu_invalidate_range_start;
gfn_t mmu_invalidate_range_end;
#endif
struct list_head devices;
u64 manual_dirty_log_protect;
struct dentry *debugfs_dentry;
struct kvm_stat_data **debugfs_stat_data;
struct srcu_struct srcu;
struct srcu_struct irq_srcu;
pid_t userspace_pid;
bool override_halt_poll_ns;
unsigned int max_halt_poll_ns;
u32 dirty_ring_size;
bool dirty_ring_with_bitmap;
bool vm_bugged;
bool vm_dead;
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
struct notifier_block pm_notifier;
#endif
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
/* Protected by slots_locks (for writes) and RCU (for reads) */
struct xarray mem_attr_array;
#endif
char stats_id[KVM_STATS_NAME_SIZE];
};
#define kvm_err(fmt, ...) \
pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_info(fmt, ...) \
pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_debug(fmt, ...) \
pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_debug_ratelimited(fmt, ...) \
pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
## __VA_ARGS__)
#define kvm_pr_unimpl(fmt, ...) \
pr_err_ratelimited("kvm [%i]: " fmt, \
task_tgid_nr(current), ## __VA_ARGS__)
/* The guest did something we don't support. */
#define vcpu_unimpl(vcpu, fmt, ...) \
kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
#define vcpu_debug(vcpu, fmt, ...) \
kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
## __VA_ARGS__)
#define vcpu_err(vcpu, fmt, ...) \
kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
static inline void kvm_vm_dead(struct kvm *kvm)
{
kvm->vm_dead = true;
kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
}
static inline void kvm_vm_bugged(struct kvm *kvm)
{
kvm->vm_bugged = true;
kvm_vm_dead(kvm);
}
#define KVM_BUG(cond, kvm, fmt...) \
({ \
bool __ret = !!(cond); \
\
if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
kvm_vm_bugged(kvm); \
unlikely(__ret); \
})
#define KVM_BUG_ON(cond, kvm) \
({ \
bool __ret = !!(cond); \
\
if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
kvm_vm_bugged(kvm); \
unlikely(__ret); \
})
/*
* Note, "data corruption" refers to corruption of host kernel data structures,
* not guest data. Guest data corruption, suspected or confirmed, that is tied
* and contained to a single VM should *never* BUG() and potentially panic the
* host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
* is corrupted and that corruption can have a cascading effect to other parts
* of the hosts and/or to other VMs.
*/
#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
({ \
bool __ret = !!(cond); \
\
if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
BUG_ON(__ret); \
else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
kvm_vm_bugged(kvm); \
unlikely(__ret); \
})
static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PROVE_RCU
WARN_ONCE(vcpu->srcu_depth++,
"KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
#endif
vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
}
static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
{
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
#ifdef CONFIG_PROVE_RCU
WARN_ONCE(--vcpu->srcu_depth,
"KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
#endif
}
static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
{
return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
}
static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
{
return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
lockdep_is_held(&kvm->slots_lock) ||
!refcount_read(&kvm->users_count));
}
static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
{
int num_vcpus = atomic_read(&kvm->online_vcpus);
i = array_index_nospec(i, num_vcpus);
/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
smp_rmb();
return xa_load(&kvm->vcpu_array, i);
}
#define kvm_for_each_vcpu(idx, vcpup, kvm) \
xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
(atomic_read(&kvm->online_vcpus) - 1))
static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
{
struct kvm_vcpu *vcpu = NULL;
unsigned long i;
if (id < 0)
return NULL;
if (id < KVM_MAX_VCPUS)
vcpu = kvm_get_vcpu(kvm, id);
if (vcpu && vcpu->vcpu_id == id)
return vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
if (vcpu->vcpu_id == id)
return vcpu;
return NULL;
}
void kvm_destroy_vcpus(struct kvm *kvm);
void vcpu_load(struct kvm_vcpu *vcpu);
void vcpu_put(struct kvm_vcpu *vcpu);
#ifdef __KVM_HAVE_IOAPIC
void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
void kvm_arch_post_irq_routing_update(struct kvm *kvm);
#else
static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
{
}
static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
{
}
#endif
#ifdef CONFIG_HAVE_KVM_IRQCHIP
int kvm_irqfd_init(void);
void kvm_irqfd_exit(void);
#else
static inline int kvm_irqfd_init(void)
{
return 0;
}
static inline void kvm_irqfd_exit(void)
{
}
#endif
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
void kvm_exit(void);
void kvm_get_kvm(struct kvm *kvm);
bool kvm_get_kvm_safe(struct kvm *kvm);
void kvm_put_kvm(struct kvm *kvm);
bool file_is_kvm(struct file *file);
void kvm_put_kvm_no_destroy(struct kvm *kvm);
static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
{
as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
lockdep_is_held(&kvm->slots_lock) ||
!refcount_read(&kvm->users_count));
}
static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
{
return __kvm_memslots(kvm, 0);
}
static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
{
int as_id = kvm_arch_vcpu_memslots_id(vcpu);
return __kvm_memslots(vcpu->kvm, as_id);
}
static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
{
return RB_EMPTY_ROOT(&slots->gfn_tree);
}
bool kvm_are_all_memslots_empty(struct kvm *kvm);
#define kvm_for_each_memslot(memslot, bkt, slots) \
hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
if (WARN_ON_ONCE(!memslot->npages)) { \
} else
static inline
struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
{
struct kvm_memory_slot *slot;
int idx = slots->node_idx;
hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
if (slot->id == id)
return slot;
}
return NULL;
}
/* Iterator used for walking memslots that overlap a gfn range. */
struct kvm_memslot_iter {
struct kvm_memslots *slots;
struct rb_node *node;
struct kvm_memory_slot *slot;
};
static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
{
iter->node = rb_next(iter->node);
if (!iter->node)
return;
iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
}
static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
struct kvm_memslots *slots,
gfn_t start)
{
int idx = slots->node_idx;
struct rb_node *tmp;
struct kvm_memory_slot *slot;
iter->slots = slots;
/*
* Find the so called "upper bound" of a key - the first node that has
* its key strictly greater than the searched one (the start gfn in our case).
*/
iter->node = NULL;
for (tmp = slots->gfn_tree.rb_node; tmp; ) {
slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
if (start < slot->base_gfn) {
iter->node = tmp;
tmp = tmp->rb_left;
} else {
tmp = tmp->rb_right;
}
}
/*
* Find the slot with the lowest gfn that can possibly intersect with
* the range, so we'll ideally have slot start <= range start
*/
if (iter->node) {
/*
* A NULL previous node means that the very first slot
* already has a higher start gfn.
* In this case slot start > range start.
*/
tmp = rb_prev(iter->node);
if (tmp)
iter->node = tmp;
} else {
/* a NULL node below means no slots */
iter->node = rb_last(&slots->gfn_tree);
}
if (iter->node) {
iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
/*
* It is possible in the slot start < range start case that the
* found slot ends before or at range start (slot end <= range start)
* and so it does not overlap the requested range.
*
* In such non-overlapping case the next slot (if it exists) will
* already have slot start > range start, otherwise the logic above
* would have found it instead of the current slot.
*/
if (iter->slot->base_gfn + iter->slot->npages <= start)
kvm_memslot_iter_next(iter);
}
}
static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
{
if (!iter->node)
return false;
/*
* If this slot starts beyond or at the end of the range so does
* every next one
*/
return iter->slot->base_gfn < end;
}
/* Iterate over each memslot at least partially intersecting [start, end) range */
#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
for (kvm_memslot_iter_start(iter, slots, start); \
kvm_memslot_iter_is_valid(iter, end); \
kvm_memslot_iter_next(iter))
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
/*
* KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
* - create a new memory slot
* - delete an existing memory slot
* - modify an existing memory slot
* -- move it in the guest physical memory space
* -- just change its flags
*
* Since flags can be changed by some of these operations, the following
* differentiation is the best we can do for __kvm_set_memory_region():
*/
enum kvm_mr_change {
KVM_MR_CREATE,
KVM_MR_DELETE,
KVM_MR_MOVE,
KVM_MR_FLAGS_ONLY,
};
int kvm_set_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region2 *mem);
int __kvm_set_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region2 *mem);
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change);
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change);
/* flush all memory translations */
void kvm_arch_flush_shadow_all(struct kvm *kvm);
/* flush memory translations pointing to 'slot' */
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot);
int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
struct page **pages, int nr_pages);
struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_page(kvm, gfn, true);
}
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
bool *writable);
static inline void kvm_release_page_unused(struct page *page)
{
if (!page)
return;
put_page(page);
}
void kvm_release_page_clean(struct page *page);
void kvm_release_page_dirty(struct page *page);
static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
bool unused, bool dirty)
{
lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
if (!page)
return;
/*
* If the page that KVM got from the *primary MMU* is writable, and KVM
* installed or reused a SPTE, mark the page/folio dirty. Note, this
* may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
* the GFN is write-protected. Folios can't be safely marked dirty
* outside of mmu_lock as doing so could race with writeback on the
* folio. As a result, KVM can't mark folios dirty in the fast page
* fault handler, and so KVM must (somewhat) speculatively mark the
* folio dirty if KVM could locklessly make the SPTE writable.
*/
if (unused)
kvm_release_page_unused(page);
else if (dirty)
kvm_release_page_dirty(page);
else
kvm_release_page_clean(page);
}
kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
unsigned int foll, bool *writable,
struct page **refcounted_page);
static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
bool write, bool *writable,
struct page **refcounted_page)
{
return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
write ? FOLL_WRITE : 0, writable, refcounted_page);
}
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int len);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len);
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned int offset,
unsigned long len);
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
int offset, int len);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len);
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len);
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned int offset,
unsigned long len);
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
gpa_t gpa, unsigned long len);
#define __kvm_get_guest(kvm, gfn, offset, v) \
({ \
unsigned long __addr = gfn_to_hva(kvm, gfn); \
typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
int __ret = -EFAULT; \
\
if (!kvm_is_error_hva(__addr)) \
__ret = get_user(v, __uaddr); \
__ret; \
})
#define kvm_get_guest(kvm, gpa, v) \
({ \
gpa_t __gpa = gpa; \
struct kvm *__kvm = kvm; \
\
__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
offset_in_page(__gpa), v); \
})
#define __kvm_put_guest(kvm, gfn, offset, v) \
({ \
unsigned long __addr = gfn_to_hva(kvm, gfn); \
typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
int __ret = -EFAULT; \
\
if (!kvm_is_error_hva(__addr)) \
__ret = put_user(v, __uaddr); \
if (!__ret) \
mark_page_dirty(kvm, gfn); \
__ret; \
})
#define kvm_put_guest(kvm, gpa, v) \
({ \
gpa_t __gpa = gpa; \
struct kvm *__kvm = kvm; \
\
__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
offset_in_page(__gpa), v); \
})
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
bool writable);
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
struct kvm_host_map *map)
{
return __kvm_vcpu_map(vcpu, gpa, map, true);
}
static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
struct kvm_host_map *map)
{
return __kvm_vcpu_map(vcpu, gpa, map, false);
}
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
int len);
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
unsigned long len);
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
unsigned long len);
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
int offset, int len);
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
unsigned long len);
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
/**
* kvm_gpc_init - initialize gfn_to_pfn_cache.
*
* @gpc: struct gfn_to_pfn_cache object.
* @kvm: pointer to kvm instance.
*
* This sets up a gfn_to_pfn_cache by initializing locks and assigning the
* immutable attributes. Note, the cache must be zero-allocated (or zeroed by
* the caller before init).
*/
void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
/**
* kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
* physical address.
*
* @gpc: struct gfn_to_pfn_cache object.
* @gpa: guest physical address to map.
* @len: sanity check; the range being access must fit a single page.
*
* @return: 0 for success.
* -EINVAL for a mapping which would cross a page boundary.
* -EFAULT for an untranslatable guest physical address.
*
* This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
* invalidations to be processed. Callers are required to use kvm_gpc_check()
* to ensure that the cache is valid before accessing the target page.
*/
int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
/**
* kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
*
* @gpc: struct gfn_to_pfn_cache object.
* @hva: userspace virtual address to map.
* @len: sanity check; the range being access must fit a single page.
*
* @return: 0 for success.
* -EINVAL for a mapping which would cross a page boundary.
* -EFAULT for an untranslatable guest physical address.
*
* The semantics of this function are the same as those of kvm_gpc_activate(). It
* merely bypasses a layer of address translation.
*/
int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
/**
* kvm_gpc_check - check validity of a gfn_to_pfn_cache.
*
* @gpc: struct gfn_to_pfn_cache object.
* @len: sanity check; the range being access must fit a single page.
*
* @return: %true if the cache is still valid and the address matches.
* %false if the cache is not valid.
*
* Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
* while calling this function, and then continue to hold the lock until the
* access is complete.
*
* Callers in IN_GUEST_MODE may do so without locking, although they should
* still hold a read lock on kvm->scru for the memslot checks.
*/
bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
/**
* kvm_gpc_refresh - update a previously initialized cache.
*
* @gpc: struct gfn_to_pfn_cache object.
* @len: sanity check; the range being access must fit a single page.
*
* @return: 0 for success.
* -EINVAL for a mapping which would cross a page boundary.
* -EFAULT for an untranslatable guest physical address.
*
* This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
* return from this function does not mean the page can be immediately
* accessed because it may have raced with an invalidation. Callers must
* still lock and check the cache status, as this function does not return
* with the lock still held to permit access.
*/
int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
/**
* kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
*
* @gpc: struct gfn_to_pfn_cache object.
*
* This removes a cache from the VM's list to be processed on MMU notifier
* invocation.
*/
void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
{
return gpc->active && !kvm_is_error_gpa(gpc->gpa);
}
static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
{
return gpc->active && kvm_is_error_gpa(gpc->gpa);
}
void kvm_sigset_activate(struct kvm_vcpu *vcpu);
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
int kvm_vcpu_yield_to(struct kvm_vcpu *target);
void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
void kvm_flush_remote_tlbs(struct kvm *kvm);
void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
const struct kvm_memory_slot *memslot);
#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
#endif
void kvm_mmu_invalidate_begin(struct kvm *kvm);
void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
void kvm_mmu_invalidate_end(struct kvm *kvm);
bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask);
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
int *is_dirty, struct kvm_memory_slot **memslot);
#endif
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
bool line_status);
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap);
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
unsigned long arg);
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr);
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg);
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
#endif
#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
#else
static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
#endif
#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
/*
* kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
* kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
* kvm_usage_count, i.e. at the beginning of the generic hardware enabling
* sequence, and at the end of the generic hardware disabling sequence.
*/
void kvm_arch_enable_virtualization(void);
void kvm_arch_disable_virtualization(void);
/*
* kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
* do the actual twiddling of hardware bits. The hooks are called on all
* online CPUs when KVM enables/disabled virtualization, and on a single CPU
* when that CPU is onlined/offlined (including for Resume/Suspend).
*/
int kvm_arch_enable_virtualization_cpu(void);
void kvm_arch_disable_virtualization_cpu(void);
#endif
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
int kvm_arch_post_init_vm(struct kvm *kvm);
void kvm_arch_pre_destroy_vm(struct kvm *kvm);
void kvm_arch_create_vm_debugfs(struct kvm *kvm);
#ifndef __KVM_HAVE_ARCH_VM_ALLOC
/*
* All architectures that want to use vzalloc currently also
* need their own kvm_arch_alloc_vm implementation.
*/
static inline struct kvm *kvm_arch_alloc_vm(void)
{
return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
}
#endif
static inline void __kvm_arch_free_vm(struct kvm *kvm)
{
kvfree(kvm);
}
#ifndef __KVM_HAVE_ARCH_VM_FREE
static inline void kvm_arch_free_vm(struct kvm *kvm)
{
__kvm_arch_free_vm(kvm);
}
#endif
#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
{
return -ENOTSUPP;
}
#else
int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
#endif
#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
gfn_t gfn, u64 nr_pages)
{
return -EOPNOTSUPP;
}
#else
int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
#endif
#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
#else
static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
{
}
static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
{
}
static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
{
return false;
}
#endif
#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
void kvm_arch_start_assignment(struct kvm *kvm);
void kvm_arch_end_assignment(struct kvm *kvm);
bool kvm_arch_has_assigned_device(struct kvm *kvm);
#else
static inline void kvm_arch_start_assignment(struct kvm *kvm)
{
}
static inline void kvm_arch_end_assignment(struct kvm *kvm)
{
}
static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
{
return false;
}
#endif
static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
{
#ifdef __KVM_HAVE_ARCH_WQP
return vcpu->arch.waitp;
#else
return &vcpu->wait;
#endif
}
/*
* Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
* true if the vCPU was blocking and was awakened, false otherwise.
*/
static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
{
return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
}
static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
{
return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
}
#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
/*
* returns true if the virtual interrupt controller is initialized and
* ready to accept virtual IRQ. On some architectures the virtual interrupt
* controller is dynamically instantiated and this is not always true.
*/
bool kvm_arch_intc_initialized(struct kvm *kvm);
#else
static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
{
return true;
}
#endif
#ifdef CONFIG_GUEST_PERF_EVENTS
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
void kvm_unregister_perf_callbacks(void);
#else
static inline void kvm_register_perf_callbacks(void *ign) {}
static inline void kvm_unregister_perf_callbacks(void) {}
#endif /* CONFIG_GUEST_PERF_EVENTS */
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
void kvm_arch_destroy_vm(struct kvm *kvm);
void kvm_arch_sync_events(struct kvm *kvm);
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
struct kvm_irq_ack_notifier {
struct hlist_node link;
unsigned gsi;
void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
};
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries, int gsi);
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
bool line_status);
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
int irq_source_id, int level, bool line_status);
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id,
int level, bool line_status);
bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
void kvm_register_irq_ack_notifier(struct kvm *kvm,
struct kvm_irq_ack_notifier *kian);
void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
struct kvm_irq_ack_notifier *kian);
int kvm_request_irq_source_id(struct kvm *kvm);
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
/*
* Returns a pointer to the memslot if it contains gfn.
* Otherwise returns NULL.
*/
static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
{
if (!slot)
return NULL;
if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
return slot;
else
return NULL;
}
/*
* Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
*
* With "approx" set returns the memslot also when the address falls
* in a hole. In that case one of the memslots bordering the hole is
* returned.
*/
static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
{
struct kvm_memory_slot *slot;
struct rb_node *node;
int idx = slots->node_idx;
slot = NULL;
for (node = slots->gfn_tree.rb_node; node; ) {
slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
if (gfn >= slot->base_gfn) {
if (gfn < slot->base_gfn + slot->npages)
return slot;
node = node->rb_right;
} else
node = node->rb_left;
}
return approx ? slot : NULL;
}
static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
{
struct kvm_memory_slot *slot;
slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
slot = try_get_memslot(slot, gfn);
if (slot)
return slot;
slot = search_memslots(slots, gfn, approx);
if (slot) {
atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
return slot;
}
return NULL;
}
/*
* __gfn_to_memslot() and its descendants are here to allow arch code to inline
* the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
* because that would bloat other code too much.
*/
static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
{
return ____gfn_to_memslot(slots, gfn, false);
}
static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
{
/*
* The index was checked originally in search_memslots. To avoid
* that a malicious guest builds a Spectre gadget out of e.g. page
* table walks, do not let the processor speculate loads outside
* the guest's registered memslots.
*/
unsigned long offset = gfn - slot->base_gfn;
offset = array_index_nospec(offset, slot->npages);
return slot->userspace_addr + offset * PAGE_SIZE;
}
static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_memslot(kvm, gfn)->id;
}
static inline gfn_t
hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
{
gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
return slot->base_gfn + gfn_offset;
}
static inline gpa_t gfn_to_gpa(gfn_t gfn)
{
return (gpa_t)gfn << PAGE_SHIFT;
}
static inline gfn_t gpa_to_gfn(gpa_t gpa)
{
return (gfn_t)(gpa >> PAGE_SHIFT);
}
static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
{
return (hpa_t)pfn << PAGE_SHIFT;
}
static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
{
unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
return !kvm_is_error_hva(hva);
}
static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
{
lockdep_assert_held(&gpc->lock);
if (!gpc->memslot)
return;
mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
}
enum kvm_stat_kind {
KVM_STAT_VM,
KVM_STAT_VCPU,
};
struct kvm_stat_data {
struct kvm *kvm;
const struct _kvm_stats_desc *desc;
enum kvm_stat_kind kind;
};
struct _kvm_stats_desc {
struct kvm_stats_desc desc;
char name[KVM_STATS_NAME_SIZE];
};
#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
.flags = type | unit | base | \
BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
.exponent = exp, \
.size = sz, \
.bucket_size = bsz
#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vm_stat, generic.stat) \
}, \
.name = #stat, \
}
#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
}, \
.name = #stat, \
}
#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vm_stat, stat) \
}, \
.name = #stat, \
}
#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vcpu_stat, stat) \
}, \
.name = #stat, \
}
/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
unit, base, exponent, 1, 0)
#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
unit, base, exponent, 1, 0)
#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
unit, base, exponent, 1, 0)
#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
unit, base, exponent, sz, bsz)
#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
unit, base, exponent, sz, 0)
/* Cumulative counter, read/write */
#define STATS_DESC_COUNTER(SCOPE, name) \
STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
KVM_STATS_BASE_POW10, 0)
/* Instantaneous counter, read only */
#define STATS_DESC_ICOUNTER(SCOPE, name) \
STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
KVM_STATS_BASE_POW10, 0)
/* Peak counter, read/write */
#define STATS_DESC_PCOUNTER(SCOPE, name) \
STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
KVM_STATS_BASE_POW10, 0)
/* Instantaneous boolean value, read only */
#define STATS_DESC_IBOOLEAN(SCOPE, name) \
STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
KVM_STATS_BASE_POW10, 0)
/* Peak (sticky) boolean value, read/write */
#define STATS_DESC_PBOOLEAN(SCOPE, name) \
STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
KVM_STATS_BASE_POW10, 0)
/* Cumulative time in nanosecond */
#define STATS_DESC_TIME_NSEC(SCOPE, name) \
STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
KVM_STATS_BASE_POW10, -9)
/* Linear histogram for time in nanosecond */
#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
KVM_STATS_BASE_POW10, -9, sz, bsz)
/* Logarithmic histogram for time in nanosecond */
#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
KVM_STATS_BASE_POW10, -9, sz)
#define KVM_GENERIC_VM_STATS() \
STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
#define KVM_GENERIC_VCPU_STATS() \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
HALT_POLL_HIST_COUNT), \
STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
HALT_POLL_HIST_COUNT), \
STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
HALT_POLL_HIST_COUNT), \
STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
const struct _kvm_stats_desc *desc,
void *stats, size_t size_stats,
char __user *user_buffer, size_t size, loff_t *offset);
/**
* kvm_stats_linear_hist_update() - Update bucket value for linear histogram
* statistics data.
*
* @data: start address of the stats data
* @size: the number of bucket of the stats data
* @value: the new value used to update the linear histogram's bucket
* @bucket_size: the size (width) of a bucket
*/
static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
u64 value, size_t bucket_size)
{
size_t index = div64_u64(value, bucket_size);
index = min(index, size - 1);
++data[index];
}
/**
* kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
* statistics data.
*
* @data: start address of the stats data
* @size: the number of bucket of the stats data
* @value: the new value used to update the logarithmic histogram's bucket
*/
static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
{
size_t index = fls64(value);
index = min(index, size - 1);
++data[index];
}
#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
extern const struct kvm_stats_header kvm_vm_stats_header;
extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
extern const struct kvm_stats_header kvm_vcpu_stats_header;
extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
{
if (unlikely(kvm->mmu_invalidate_in_progress))
return 1;
/*
* Ensure the read of mmu_invalidate_in_progress happens before
* the read of mmu_invalidate_seq. This interacts with the
* smp_wmb() in mmu_notifier_invalidate_range_end to make sure
* that the caller either sees the old (non-zero) value of
* mmu_invalidate_in_progress or the new (incremented) value of
* mmu_invalidate_seq.
*
* PowerPC Book3s HV KVM calls this under a per-page lock rather
* than under kvm->mmu_lock, for scalability, so can't rely on
* kvm->mmu_lock to keep things ordered.
*/
smp_rmb();
if (kvm->mmu_invalidate_seq != mmu_seq)
return 1;
return 0;
}
static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
unsigned long mmu_seq,
gfn_t gfn)
{
lockdep_assert_held(&kvm->mmu_lock);
/*
* If mmu_invalidate_in_progress is non-zero, then the range maintained
* by kvm_mmu_notifier_invalidate_range_start contains all addresses
* that might be being invalidated. Note that it may include some false
* positives, due to shortcuts when handing concurrent invalidations.
*/
if (unlikely(kvm->mmu_invalidate_in_progress)) {
/*
* Dropping mmu_lock after bumping mmu_invalidate_in_progress
* but before updating the range is a KVM bug.
*/
if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
kvm->mmu_invalidate_range_end == INVALID_GPA))
return 1;
if (gfn >= kvm->mmu_invalidate_range_start &&
gfn < kvm->mmu_invalidate_range_end)
return 1;
}
if (kvm->mmu_invalidate_seq != mmu_seq)
return 1;
return 0;
}
/*
* This lockless version of the range-based retry check *must* be paired with a
* call to the locked version after acquiring mmu_lock, i.e. this is safe to
* use only as a pre-check to avoid contending mmu_lock. This version *will*
* get false negatives and false positives.
*/
static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
unsigned long mmu_seq,
gfn_t gfn)
{
/*
* Use READ_ONCE() to ensure the in-progress flag and sequence counter
* are always read from memory, e.g. so that checking for retry in a
* loop won't result in an infinite retry loop. Don't force loads for
* start+end, as the key to avoiding infinite retry loops is observing
* the 1=>0 transition of in-progress, i.e. getting false negatives
* due to stale start+end values is acceptable.
*/
if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
gfn >= kvm->mmu_invalidate_range_start &&
gfn < kvm->mmu_invalidate_range_end)
return true;
return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
}
#endif
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
int kvm_set_irq_routing(struct kvm *kvm,
const struct kvm_irq_routing_entry *entries,
unsigned nr,
unsigned flags);
int kvm_init_irq_routing(struct kvm *kvm);
int kvm_set_routing_entry(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *e,
const struct kvm_irq_routing_entry *ue);
void kvm_free_irq_routing(struct kvm *kvm);
#else
static inline void kvm_free_irq_routing(struct kvm *kvm) {}
static inline int kvm_init_irq_routing(struct kvm *kvm)
{
return 0;
}
#endif
int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
void kvm_eventfd_init(struct kvm *kvm);
int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
#ifdef CONFIG_HAVE_KVM_IRQCHIP
int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
void kvm_irqfd_release(struct kvm *kvm);
bool kvm_notify_irqfd_resampler(struct kvm *kvm,
unsigned int irqchip,
unsigned int pin);
void kvm_irq_routing_update(struct kvm *);
#else
static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
{
return -EINVAL;
}
static inline void kvm_irqfd_release(struct kvm *kvm) {}
static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
unsigned int irqchip,
unsigned int pin)
{
return false;
}
#endif /* CONFIG_HAVE_KVM_IRQCHIP */
void kvm_arch_irq_routing_update(struct kvm *kvm);
static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
{
/*
* Ensure the rest of the request is published to kvm_check_request's
* caller. Paired with the smp_mb__after_atomic in kvm_check_request.
*/
smp_wmb();
set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
}
static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
{
/*
* Request that don't require vCPU action should never be logged in
* vcpu->requests. The vCPU won't clear the request, so it will stay
* logged indefinitely and prevent the vCPU from entering the guest.
*/
BUILD_BUG_ON(!__builtin_constant_p(req) ||
(req & KVM_REQUEST_NO_ACTION));
__kvm_make_request(req, vcpu);
}
static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
{
return READ_ONCE(vcpu->requests);
}
static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
{
return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
}
static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
{
clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
}
static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
{
if (kvm_test_request(req, vcpu)) {
kvm_clear_request(req, vcpu);
/*
* Ensure the rest of the request is visible to kvm_check_request's
* caller. Paired with the smp_wmb in kvm_make_request.
*/
smp_mb__after_atomic();
return true;
} else {
return false;
}
}
#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
extern bool kvm_rebooting;
#endif
extern unsigned int halt_poll_ns;
extern unsigned int halt_poll_ns_grow;
extern unsigned int halt_poll_ns_grow_start;
extern unsigned int halt_poll_ns_shrink;
struct kvm_device {
const struct kvm_device_ops *ops;
struct kvm *kvm;
void *private;
struct list_head vm_node;
};
/* create, destroy, and name are mandatory */
struct kvm_device_ops {
const char *name;
/*
* create is called holding kvm->lock and any operations not suitable
* to do while holding the lock should be deferred to init (see
* below).
*/
int (*create)(struct kvm_device *dev, u32 type);
/*
* init is called after create if create is successful and is called
* outside of holding kvm->lock.
*/
void (*init)(struct kvm_device *dev);
/*
* Destroy is responsible for freeing dev.
*
* Destroy may be called before or after destructors are called
* on emulated I/O regions, depending on whether a reference is
* held by a vcpu or other kvm component that gets destroyed
* after the emulated I/O.
*/
void (*destroy)(struct kvm_device *dev);
/*
* Release is an alternative method to free the device. It is
* called when the device file descriptor is closed. Once
* release is called, the destroy method will not be called
* anymore as the device is removed from the device list of
* the VM. kvm->lock is held.
*/
void (*release)(struct kvm_device *dev);
int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
unsigned long arg);
int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
};
struct kvm_device *kvm_device_from_filp(struct file *filp);
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
void kvm_unregister_device_ops(u32 type);
extern struct kvm_device_ops kvm_mpic_ops;
extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
vcpu->spin_loop.in_spin_loop = val;
}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
vcpu->spin_loop.dy_eligible = val;
}
#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
}
#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
{
return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
!(memslot->flags & KVM_MEMSLOT_INVALID));
}
struct kvm_vcpu *kvm_get_running_vcpu(void);
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
bool kvm_arch_has_irq_bypass(void);
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
struct irq_bypass_producer *);
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
struct irq_bypass_producer *);
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set);
bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
struct kvm_kernel_irq_routing_entry *);
#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
/* If we wakeup during the poll time, was it a sucessful poll? */
static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
{
return vcpu->valid_wakeup;
}
#else
static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
{
return true;
}
#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
#ifdef CONFIG_HAVE_KVM_NO_POLL
/* Callback that tells if we must not poll */
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
#else
static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
{
return false;
}
#endif /* CONFIG_HAVE_KVM_NO_POLL */
#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
#else
static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl,
unsigned long arg)
{
return -ENOIOCTLCMD;
}
#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
#else
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
{
return 0;
}
#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_INTR;
vcpu->stat.signal_exits++;
}
#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
/*
* If more than one page is being (un)accounted, @virt must be the address of
* the first page of a block of pages what were allocated together (i.e
* accounted together).
*
* kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
* is thread-safe.
*/
static inline void kvm_account_pgtable_pages(void *virt, int nr)
{
mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
}
/*
* This defines how many reserved entries we want to keep before we
* kick the vcpu to the userspace to avoid dirty ring full. This
* value can be tuned to higher if e.g. PML is enabled on the host.
*/
#define KVM_DIRTY_RING_RSVD_ENTRIES 64
/* Max number of entries allowed for each kvm dirty ring */
#define KVM_DIRTY_RING_MAX_ENTRIES 65536
static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
gpa_t gpa, gpa_t size,
bool is_write, bool is_exec,
bool is_private)
{
vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
vcpu->run->memory_fault.gpa = gpa;
vcpu->run->memory_fault.size = size;
/* RWX flags are not (yet) defined or communicated to userspace. */
vcpu->run->memory_fault.flags = 0;
if (is_private)
vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
}
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
{
return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
}
bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
unsigned long mask, unsigned long attrs);
bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
struct kvm_gfn_range *range);
bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
struct kvm_gfn_range *range);
static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
{
return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
}
#else
static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
{
return false;
}
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
#ifdef CONFIG_KVM_PRIVATE_MEM
int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
int *max_order);
#else
static inline int kvm_gmem_get_pfn(struct kvm *kvm,
struct kvm_memory_slot *slot, gfn_t gfn,
kvm_pfn_t *pfn, struct page **page,
int *max_order)
{
KVM_BUG_ON(1, kvm);
return -EIO;
}
#endif /* CONFIG_KVM_PRIVATE_MEM */
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
#endif
#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
/**
* kvm_gmem_populate() - Populate/prepare a GPA range with guest data
*
* @kvm: KVM instance
* @gfn: starting GFN to be populated
* @src: userspace-provided buffer containing data to copy into GFN range
* (passed to @post_populate, and incremented on each iteration
* if not NULL)
* @npages: number of pages to copy from userspace-buffer
* @post_populate: callback to issue for each gmem page that backs the GPA
* range
* @opaque: opaque data to pass to @post_populate callback
*
* This is primarily intended for cases where a gmem-backed GPA range needs
* to be initialized with userspace-provided data prior to being mapped into
* the guest as a private page. This should be called with the slots->lock
* held so that caller-enforced invariants regarding the expected memory
* attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
*
* Returns the number of pages that were populated.
*/
typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
void __user *src, int order, void *opaque);
long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
kvm_gmem_populate_cb post_populate, void *opaque);
#endif
#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
#endif
#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
struct kvm_pre_fault_memory *range);
#endif
#endif