linux-stable/net/wireless/mlme.c
Johannes Berg 676a423410 wifi: cfg80211: reject auth/assoc to AP with our address
[ Upstream commit 5d4e04bf3a ]

If the AP uses our own address as its MLD address or BSSID, then
clearly something's wrong. Reject such connections so we don't
try and fail later.

Reported-by: syzbot+2676771ed06a6df166ad@syzkaller.appspotmail.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-23 11:11:03 +02:00

1161 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* cfg80211 MLME SAP interface
*
* Copyright (c) 2009, Jouni Malinen <j@w1.fi>
* Copyright (c) 2015 Intel Deutschland GmbH
* Copyright (C) 2019-2020, 2022 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
#include <linux/nl80211.h>
#include <linux/slab.h>
#include <linux/wireless.h>
#include <net/cfg80211.h>
#include <net/iw_handler.h>
#include "core.h"
#include "nl80211.h"
#include "rdev-ops.h"
void cfg80211_rx_assoc_resp(struct net_device *dev,
struct cfg80211_rx_assoc_resp *data)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)data->buf;
struct cfg80211_connect_resp_params cr = {
.timeout_reason = NL80211_TIMEOUT_UNSPECIFIED,
.req_ie = data->req_ies,
.req_ie_len = data->req_ies_len,
.resp_ie = mgmt->u.assoc_resp.variable,
.resp_ie_len = data->len -
offsetof(struct ieee80211_mgmt,
u.assoc_resp.variable),
.status = le16_to_cpu(mgmt->u.assoc_resp.status_code),
.ap_mld_addr = data->ap_mld_addr,
};
unsigned int link_id;
for (link_id = 0; link_id < ARRAY_SIZE(data->links); link_id++) {
cr.links[link_id].bss = data->links[link_id].bss;
if (!cr.links[link_id].bss)
continue;
cr.links[link_id].bssid = data->links[link_id].bss->bssid;
cr.links[link_id].addr = data->links[link_id].addr;
/* need to have local link addresses for MLO connections */
WARN_ON(cr.ap_mld_addr && !cr.links[link_id].addr);
BUG_ON(!cr.links[link_id].bss->channel);
if (cr.links[link_id].bss->channel->band == NL80211_BAND_S1GHZ) {
WARN_ON(link_id);
cr.resp_ie = (u8 *)&mgmt->u.s1g_assoc_resp.variable;
cr.resp_ie_len = data->len -
offsetof(struct ieee80211_mgmt,
u.s1g_assoc_resp.variable);
}
if (cr.ap_mld_addr)
cr.valid_links |= BIT(link_id);
}
trace_cfg80211_send_rx_assoc(dev, data);
/*
* This is a bit of a hack, we don't notify userspace of
* a (re-)association reply if we tried to send a reassoc
* and got a reject -- we only try again with an assoc
* frame instead of reassoc.
*/
if (cfg80211_sme_rx_assoc_resp(wdev, cr.status)) {
for (link_id = 0; link_id < ARRAY_SIZE(data->links); link_id++) {
struct cfg80211_bss *bss = data->links[link_id].bss;
if (!bss)
continue;
cfg80211_unhold_bss(bss_from_pub(bss));
cfg80211_put_bss(wiphy, bss);
}
return;
}
nl80211_send_rx_assoc(rdev, dev, data);
/* update current_bss etc., consumes the bss reference */
__cfg80211_connect_result(dev, &cr, cr.status == WLAN_STATUS_SUCCESS);
}
EXPORT_SYMBOL(cfg80211_rx_assoc_resp);
static void cfg80211_process_auth(struct wireless_dev *wdev,
const u8 *buf, size_t len)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
nl80211_send_rx_auth(rdev, wdev->netdev, buf, len, GFP_KERNEL);
cfg80211_sme_rx_auth(wdev, buf, len);
}
static void cfg80211_process_deauth(struct wireless_dev *wdev,
const u8 *buf, size_t len,
bool reconnect)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf;
const u8 *bssid = mgmt->bssid;
u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
bool from_ap = !ether_addr_equal(mgmt->sa, wdev->netdev->dev_addr);
nl80211_send_deauth(rdev, wdev->netdev, buf, len, reconnect, GFP_KERNEL);
if (!wdev->connected || !ether_addr_equal(wdev->u.client.connected_addr, bssid))
return;
__cfg80211_disconnected(wdev->netdev, NULL, 0, reason_code, from_ap);
cfg80211_sme_deauth(wdev);
}
static void cfg80211_process_disassoc(struct wireless_dev *wdev,
const u8 *buf, size_t len,
bool reconnect)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf;
const u8 *bssid = mgmt->bssid;
u16 reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
bool from_ap = !ether_addr_equal(mgmt->sa, wdev->netdev->dev_addr);
nl80211_send_disassoc(rdev, wdev->netdev, buf, len, reconnect,
GFP_KERNEL);
if (WARN_ON(!wdev->connected ||
!ether_addr_equal(wdev->u.client.connected_addr, bssid)))
return;
__cfg80211_disconnected(wdev->netdev, NULL, 0, reason_code, from_ap);
cfg80211_sme_disassoc(wdev);
}
void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct ieee80211_mgmt *mgmt = (void *)buf;
ASSERT_WDEV_LOCK(wdev);
trace_cfg80211_rx_mlme_mgmt(dev, buf, len);
if (WARN_ON(len < 2))
return;
if (ieee80211_is_auth(mgmt->frame_control))
cfg80211_process_auth(wdev, buf, len);
else if (ieee80211_is_deauth(mgmt->frame_control))
cfg80211_process_deauth(wdev, buf, len, false);
else if (ieee80211_is_disassoc(mgmt->frame_control))
cfg80211_process_disassoc(wdev, buf, len, false);
}
EXPORT_SYMBOL(cfg80211_rx_mlme_mgmt);
void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
trace_cfg80211_send_auth_timeout(dev, addr);
nl80211_send_auth_timeout(rdev, dev, addr, GFP_KERNEL);
cfg80211_sme_auth_timeout(wdev);
}
EXPORT_SYMBOL(cfg80211_auth_timeout);
void cfg80211_assoc_failure(struct net_device *dev,
struct cfg80211_assoc_failure *data)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
const u8 *addr = data->ap_mld_addr ?: data->bss[0]->bssid;
int i;
trace_cfg80211_send_assoc_failure(dev, data);
if (data->timeout) {
nl80211_send_assoc_timeout(rdev, dev, addr, GFP_KERNEL);
cfg80211_sme_assoc_timeout(wdev);
} else {
cfg80211_sme_abandon_assoc(wdev);
}
for (i = 0; i < ARRAY_SIZE(data->bss); i++) {
struct cfg80211_bss *bss = data->bss[i];
if (!bss)
continue;
cfg80211_unhold_bss(bss_from_pub(bss));
cfg80211_put_bss(wiphy, bss);
}
}
EXPORT_SYMBOL(cfg80211_assoc_failure);
void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
bool reconnect)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct ieee80211_mgmt *mgmt = (void *)buf;
ASSERT_WDEV_LOCK(wdev);
trace_cfg80211_tx_mlme_mgmt(dev, buf, len, reconnect);
if (WARN_ON(len < 2))
return;
if (ieee80211_is_deauth(mgmt->frame_control))
cfg80211_process_deauth(wdev, buf, len, reconnect);
else
cfg80211_process_disassoc(wdev, buf, len, reconnect);
}
EXPORT_SYMBOL(cfg80211_tx_mlme_mgmt);
void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
enum nl80211_key_type key_type, int key_id,
const u8 *tsc, gfp_t gfp)
{
struct wiphy *wiphy = dev->ieee80211_ptr->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
#ifdef CONFIG_CFG80211_WEXT
union iwreq_data wrqu;
char *buf = kmalloc(128, gfp);
if (buf) {
sprintf(buf, "MLME-MICHAELMICFAILURE.indication("
"keyid=%d %scast addr=%pM)", key_id,
key_type == NL80211_KEYTYPE_GROUP ? "broad" : "uni",
addr);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
}
#endif
trace_cfg80211_michael_mic_failure(dev, addr, key_type, key_id, tsc);
nl80211_michael_mic_failure(rdev, dev, addr, key_type, key_id, tsc, gfp);
}
EXPORT_SYMBOL(cfg80211_michael_mic_failure);
/* some MLME handling for userspace SME */
int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev,
struct net_device *dev,
struct cfg80211_auth_request *req)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
ASSERT_WDEV_LOCK(wdev);
if (!req->bss)
return -ENOENT;
if (req->link_id >= 0 &&
!(wdev->wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO))
return -EINVAL;
if (req->auth_type == NL80211_AUTHTYPE_SHARED_KEY) {
if (!req->key || !req->key_len ||
req->key_idx < 0 || req->key_idx > 3)
return -EINVAL;
}
if (wdev->connected &&
ether_addr_equal(req->bss->bssid, wdev->u.client.connected_addr))
return -EALREADY;
if (ether_addr_equal(req->bss->bssid, dev->dev_addr) ||
(req->link_id >= 0 &&
ether_addr_equal(req->ap_mld_addr, dev->dev_addr)))
return -EINVAL;
return rdev_auth(rdev, dev, req);
}
/* Do a logical ht_capa &= ht_capa_mask. */
void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa,
const struct ieee80211_ht_cap *ht_capa_mask)
{
int i;
u8 *p1, *p2;
if (!ht_capa_mask) {
memset(ht_capa, 0, sizeof(*ht_capa));
return;
}
p1 = (u8*)(ht_capa);
p2 = (u8*)(ht_capa_mask);
for (i = 0; i < sizeof(*ht_capa); i++)
p1[i] &= p2[i];
}
/* Do a logical vht_capa &= vht_capa_mask. */
void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa,
const struct ieee80211_vht_cap *vht_capa_mask)
{
int i;
u8 *p1, *p2;
if (!vht_capa_mask) {
memset(vht_capa, 0, sizeof(*vht_capa));
return;
}
p1 = (u8*)(vht_capa);
p2 = (u8*)(vht_capa_mask);
for (i = 0; i < sizeof(*vht_capa); i++)
p1[i] &= p2[i];
}
/* Note: caller must cfg80211_put_bss() regardless of result */
int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev,
struct net_device *dev,
struct cfg80211_assoc_request *req)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
int err, i, j;
ASSERT_WDEV_LOCK(wdev);
for (i = 1; i < ARRAY_SIZE(req->links); i++) {
if (!req->links[i].bss)
continue;
for (j = 0; j < i; j++) {
if (req->links[i].bss == req->links[j].bss)
return -EINVAL;
}
if (ether_addr_equal(req->links[i].bss->bssid, dev->dev_addr))
return -EINVAL;
}
if (wdev->connected &&
(!req->prev_bssid ||
!ether_addr_equal(wdev->u.client.connected_addr, req->prev_bssid)))
return -EALREADY;
if ((req->bss && ether_addr_equal(req->bss->bssid, dev->dev_addr)) ||
(req->link_id >= 0 &&
ether_addr_equal(req->ap_mld_addr, dev->dev_addr)))
return -EINVAL;
cfg80211_oper_and_ht_capa(&req->ht_capa_mask,
rdev->wiphy.ht_capa_mod_mask);
cfg80211_oper_and_vht_capa(&req->vht_capa_mask,
rdev->wiphy.vht_capa_mod_mask);
err = rdev_assoc(rdev, dev, req);
if (!err) {
int link_id;
if (req->bss) {
cfg80211_ref_bss(&rdev->wiphy, req->bss);
cfg80211_hold_bss(bss_from_pub(req->bss));
}
for (link_id = 0; link_id < ARRAY_SIZE(req->links); link_id++) {
if (!req->links[link_id].bss)
continue;
cfg80211_ref_bss(&rdev->wiphy, req->links[link_id].bss);
cfg80211_hold_bss(bss_from_pub(req->links[link_id].bss));
}
}
return err;
}
int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev,
struct net_device *dev, const u8 *bssid,
const u8 *ie, int ie_len, u16 reason,
bool local_state_change)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_deauth_request req = {
.bssid = bssid,
.reason_code = reason,
.ie = ie,
.ie_len = ie_len,
.local_state_change = local_state_change,
};
ASSERT_WDEV_LOCK(wdev);
if (local_state_change &&
(!wdev->connected ||
!ether_addr_equal(wdev->u.client.connected_addr, bssid)))
return 0;
if (ether_addr_equal(wdev->disconnect_bssid, bssid) ||
(wdev->connected &&
ether_addr_equal(wdev->u.client.connected_addr, bssid)))
wdev->conn_owner_nlportid = 0;
return rdev_deauth(rdev, dev, &req);
}
int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev,
struct net_device *dev, const u8 *ap_addr,
const u8 *ie, int ie_len, u16 reason,
bool local_state_change)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_disassoc_request req = {
.reason_code = reason,
.local_state_change = local_state_change,
.ie = ie,
.ie_len = ie_len,
.ap_addr = ap_addr,
};
int err;
ASSERT_WDEV_LOCK(wdev);
if (!wdev->connected)
return -ENOTCONN;
if (memcmp(wdev->u.client.connected_addr, ap_addr, ETH_ALEN))
return -ENOTCONN;
err = rdev_disassoc(rdev, dev, &req);
if (err)
return err;
/* driver should have reported the disassoc */
WARN_ON(wdev->connected);
return 0;
}
void cfg80211_mlme_down(struct cfg80211_registered_device *rdev,
struct net_device *dev)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
u8 bssid[ETH_ALEN];
ASSERT_WDEV_LOCK(wdev);
if (!rdev->ops->deauth)
return;
if (!wdev->connected)
return;
memcpy(bssid, wdev->u.client.connected_addr, ETH_ALEN);
cfg80211_mlme_deauth(rdev, dev, bssid, NULL, 0,
WLAN_REASON_DEAUTH_LEAVING, false);
}
struct cfg80211_mgmt_registration {
struct list_head list;
struct wireless_dev *wdev;
u32 nlportid;
int match_len;
__le16 frame_type;
bool multicast_rx;
u8 match[];
};
static void cfg80211_mgmt_registrations_update(struct wireless_dev *wdev)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct wireless_dev *tmp;
struct cfg80211_mgmt_registration *reg;
struct mgmt_frame_regs upd = {};
lockdep_assert_held(&rdev->wiphy.mtx);
spin_lock_bh(&rdev->mgmt_registrations_lock);
if (!wdev->mgmt_registrations_need_update) {
spin_unlock_bh(&rdev->mgmt_registrations_lock);
return;
}
rcu_read_lock();
list_for_each_entry_rcu(tmp, &rdev->wiphy.wdev_list, list) {
list_for_each_entry(reg, &tmp->mgmt_registrations, list) {
u32 mask = BIT(le16_to_cpu(reg->frame_type) >> 4);
u32 mcast_mask = 0;
if (reg->multicast_rx)
mcast_mask = mask;
upd.global_stypes |= mask;
upd.global_mcast_stypes |= mcast_mask;
if (tmp == wdev) {
upd.interface_stypes |= mask;
upd.interface_mcast_stypes |= mcast_mask;
}
}
}
rcu_read_unlock();
wdev->mgmt_registrations_need_update = 0;
spin_unlock_bh(&rdev->mgmt_registrations_lock);
rdev_update_mgmt_frame_registrations(rdev, wdev, &upd);
}
void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk)
{
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
rdev = container_of(wk, struct cfg80211_registered_device,
mgmt_registrations_update_wk);
wiphy_lock(&rdev->wiphy);
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
cfg80211_mgmt_registrations_update(wdev);
wiphy_unlock(&rdev->wiphy);
}
int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_portid,
u16 frame_type, const u8 *match_data,
int match_len, bool multicast_rx,
struct netlink_ext_ack *extack)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_mgmt_registration *reg, *nreg;
int err = 0;
u16 mgmt_type;
bool update_multicast = false;
if (!wdev->wiphy->mgmt_stypes)
return -EOPNOTSUPP;
if ((frame_type & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT) {
NL_SET_ERR_MSG(extack, "frame type not management");
return -EINVAL;
}
if (frame_type & ~(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) {
NL_SET_ERR_MSG(extack, "Invalid frame type");
return -EINVAL;
}
mgmt_type = (frame_type & IEEE80211_FCTL_STYPE) >> 4;
if (!(wdev->wiphy->mgmt_stypes[wdev->iftype].rx & BIT(mgmt_type))) {
NL_SET_ERR_MSG(extack,
"Registration to specific type not supported");
return -EINVAL;
}
/*
* To support Pre Association Security Negotiation (PASN), registration
* for authentication frames should be supported. However, as some
* versions of the user space daemons wrongly register to all types of
* authentication frames (which might result in unexpected behavior)
* allow such registration if the request is for a specific
* authentication algorithm number.
*/
if (wdev->iftype == NL80211_IFTYPE_STATION &&
(frame_type & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_AUTH &&
!(match_data && match_len >= 2)) {
NL_SET_ERR_MSG(extack,
"Authentication algorithm number required");
return -EINVAL;
}
nreg = kzalloc(sizeof(*reg) + match_len, GFP_KERNEL);
if (!nreg)
return -ENOMEM;
spin_lock_bh(&rdev->mgmt_registrations_lock);
list_for_each_entry(reg, &wdev->mgmt_registrations, list) {
int mlen = min(match_len, reg->match_len);
if (frame_type != le16_to_cpu(reg->frame_type))
continue;
if (memcmp(reg->match, match_data, mlen) == 0) {
if (reg->multicast_rx != multicast_rx) {
update_multicast = true;
reg->multicast_rx = multicast_rx;
break;
}
NL_SET_ERR_MSG(extack, "Match already configured");
err = -EALREADY;
break;
}
}
if (err)
goto out;
if (update_multicast) {
kfree(nreg);
} else {
memcpy(nreg->match, match_data, match_len);
nreg->match_len = match_len;
nreg->nlportid = snd_portid;
nreg->frame_type = cpu_to_le16(frame_type);
nreg->wdev = wdev;
nreg->multicast_rx = multicast_rx;
list_add(&nreg->list, &wdev->mgmt_registrations);
}
wdev->mgmt_registrations_need_update = 1;
spin_unlock_bh(&rdev->mgmt_registrations_lock);
cfg80211_mgmt_registrations_update(wdev);
return 0;
out:
kfree(nreg);
spin_unlock_bh(&rdev->mgmt_registrations_lock);
return err;
}
void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlportid)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_mgmt_registration *reg, *tmp;
spin_lock_bh(&rdev->mgmt_registrations_lock);
list_for_each_entry_safe(reg, tmp, &wdev->mgmt_registrations, list) {
if (reg->nlportid != nlportid)
continue;
list_del(&reg->list);
kfree(reg);
wdev->mgmt_registrations_need_update = 1;
schedule_work(&rdev->mgmt_registrations_update_wk);
}
spin_unlock_bh(&rdev->mgmt_registrations_lock);
if (nlportid && rdev->crit_proto_nlportid == nlportid) {
rdev->crit_proto_nlportid = 0;
rdev_crit_proto_stop(rdev, wdev);
}
if (nlportid == wdev->ap_unexpected_nlportid)
wdev->ap_unexpected_nlportid = 0;
}
void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_mgmt_registration *reg, *tmp;
spin_lock_bh(&rdev->mgmt_registrations_lock);
list_for_each_entry_safe(reg, tmp, &wdev->mgmt_registrations, list) {
list_del(&reg->list);
kfree(reg);
}
wdev->mgmt_registrations_need_update = 1;
spin_unlock_bh(&rdev->mgmt_registrations_lock);
cfg80211_mgmt_registrations_update(wdev);
}
static bool cfg80211_allowed_address(struct wireless_dev *wdev, const u8 *addr)
{
int i;
for_each_valid_link(wdev, i) {
if (ether_addr_equal(addr, wdev->links[i].addr))
return true;
}
return ether_addr_equal(addr, wdev_address(wdev));
}
int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev,
struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params, u64 *cookie)
{
const struct ieee80211_mgmt *mgmt;
u16 stype;
if (!wdev->wiphy->mgmt_stypes)
return -EOPNOTSUPP;
if (!rdev->ops->mgmt_tx)
return -EOPNOTSUPP;
if (params->len < 24 + 1)
return -EINVAL;
mgmt = (const struct ieee80211_mgmt *)params->buf;
if (!ieee80211_is_mgmt(mgmt->frame_control))
return -EINVAL;
stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE;
if (!(wdev->wiphy->mgmt_stypes[wdev->iftype].tx & BIT(stype >> 4)))
return -EINVAL;
if (ieee80211_is_action(mgmt->frame_control) &&
mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) {
int err = 0;
wdev_lock(wdev);
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
/*
* check for IBSS DA must be done by driver as
* cfg80211 doesn't track the stations
*/
if (!wdev->u.ibss.current_bss ||
!ether_addr_equal(wdev->u.ibss.current_bss->pub.bssid,
mgmt->bssid)) {
err = -ENOTCONN;
break;
}
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
if (!wdev->connected) {
err = -ENOTCONN;
break;
}
/* FIXME: MLD may address this differently */
if (!ether_addr_equal(wdev->u.client.connected_addr,
mgmt->bssid)) {
err = -ENOTCONN;
break;
}
/* for station, check that DA is the AP */
if (!ether_addr_equal(wdev->u.client.connected_addr,
mgmt->da)) {
err = -ENOTCONN;
break;
}
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_AP_VLAN:
if (!ether_addr_equal(mgmt->bssid, wdev_address(wdev)))
err = -EINVAL;
break;
case NL80211_IFTYPE_MESH_POINT:
if (!ether_addr_equal(mgmt->sa, mgmt->bssid)) {
err = -EINVAL;
break;
}
/*
* check for mesh DA must be done by driver as
* cfg80211 doesn't track the stations
*/
break;
case NL80211_IFTYPE_P2P_DEVICE:
/*
* fall through, P2P device only supports
* public action frames
*/
case NL80211_IFTYPE_NAN:
default:
err = -EOPNOTSUPP;
break;
}
wdev_unlock(wdev);
if (err)
return err;
}
if (!cfg80211_allowed_address(wdev, mgmt->sa)) {
/* Allow random TA to be used with Public Action frames if the
* driver has indicated support for this. Otherwise, only allow
* the local address to be used.
*/
if (!ieee80211_is_action(mgmt->frame_control) ||
mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
return -EINVAL;
if (!wdev->connected &&
!wiphy_ext_feature_isset(
&rdev->wiphy,
NL80211_EXT_FEATURE_MGMT_TX_RANDOM_TA))
return -EINVAL;
if (wdev->connected &&
!wiphy_ext_feature_isset(
&rdev->wiphy,
NL80211_EXT_FEATURE_MGMT_TX_RANDOM_TA_CONNECTED))
return -EINVAL;
}
/* Transmit the management frame as requested by user space */
return rdev_mgmt_tx(rdev, wdev, params, cookie);
}
bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
struct cfg80211_rx_info *info)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_mgmt_registration *reg;
const struct ieee80211_txrx_stypes *stypes =
&wiphy->mgmt_stypes[wdev->iftype];
struct ieee80211_mgmt *mgmt = (void *)info->buf;
const u8 *data;
int data_len;
bool result = false;
__le16 ftype = mgmt->frame_control &
cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE);
u16 stype;
trace_cfg80211_rx_mgmt(wdev, info);
stype = (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) >> 4;
if (!(stypes->rx & BIT(stype))) {
trace_cfg80211_return_bool(false);
return false;
}
data = info->buf + ieee80211_hdrlen(mgmt->frame_control);
data_len = info->len - ieee80211_hdrlen(mgmt->frame_control);
spin_lock_bh(&rdev->mgmt_registrations_lock);
list_for_each_entry(reg, &wdev->mgmt_registrations, list) {
if (reg->frame_type != ftype)
continue;
if (reg->match_len > data_len)
continue;
if (memcmp(reg->match, data, reg->match_len))
continue;
/* found match! */
/* Indicate the received Action frame to user space */
if (nl80211_send_mgmt(rdev, wdev, reg->nlportid, info,
GFP_ATOMIC))
continue;
result = true;
break;
}
spin_unlock_bh(&rdev->mgmt_registrations_lock);
trace_cfg80211_return_bool(result);
return result;
}
EXPORT_SYMBOL(cfg80211_rx_mgmt_ext);
void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev)
{
cancel_delayed_work(&rdev->dfs_update_channels_wk);
queue_delayed_work(cfg80211_wq, &rdev->dfs_update_channels_wk, 0);
}
void cfg80211_dfs_channels_update_work(struct work_struct *work)
{
struct delayed_work *delayed_work = to_delayed_work(work);
struct cfg80211_registered_device *rdev;
struct cfg80211_chan_def chandef;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *c;
struct wiphy *wiphy;
bool check_again = false;
unsigned long timeout, next_time = 0;
unsigned long time_dfs_update;
enum nl80211_radar_event radar_event;
int bandid, i;
rdev = container_of(delayed_work, struct cfg80211_registered_device,
dfs_update_channels_wk);
wiphy = &rdev->wiphy;
rtnl_lock();
for (bandid = 0; bandid < NUM_NL80211_BANDS; bandid++) {
sband = wiphy->bands[bandid];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
c = &sband->channels[i];
if (!(c->flags & IEEE80211_CHAN_RADAR))
continue;
if (c->dfs_state != NL80211_DFS_UNAVAILABLE &&
c->dfs_state != NL80211_DFS_AVAILABLE)
continue;
if (c->dfs_state == NL80211_DFS_UNAVAILABLE) {
time_dfs_update = IEEE80211_DFS_MIN_NOP_TIME_MS;
radar_event = NL80211_RADAR_NOP_FINISHED;
} else {
if (regulatory_pre_cac_allowed(wiphy) ||
cfg80211_any_wiphy_oper_chan(wiphy, c))
continue;
time_dfs_update = REG_PRE_CAC_EXPIRY_GRACE_MS;
radar_event = NL80211_RADAR_PRE_CAC_EXPIRED;
}
timeout = c->dfs_state_entered +
msecs_to_jiffies(time_dfs_update);
if (time_after_eq(jiffies, timeout)) {
c->dfs_state = NL80211_DFS_USABLE;
c->dfs_state_entered = jiffies;
cfg80211_chandef_create(&chandef, c,
NL80211_CHAN_NO_HT);
nl80211_radar_notify(rdev, &chandef,
radar_event, NULL,
GFP_ATOMIC);
regulatory_propagate_dfs_state(wiphy, &chandef,
c->dfs_state,
radar_event);
continue;
}
if (!check_again)
next_time = timeout - jiffies;
else
next_time = min(next_time, timeout - jiffies);
check_again = true;
}
}
rtnl_unlock();
/* reschedule if there are other channels waiting to be cleared again */
if (check_again)
queue_delayed_work(cfg80211_wq, &rdev->dfs_update_channels_wk,
next_time);
}
void __cfg80211_radar_event(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
bool offchan, gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
trace_cfg80211_radar_event(wiphy, chandef, offchan);
/* only set the chandef supplied channel to unavailable, in
* case the radar is detected on only one of multiple channels
* spanned by the chandef.
*/
cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_UNAVAILABLE);
if (offchan)
queue_work(cfg80211_wq, &rdev->background_cac_abort_wk);
cfg80211_sched_dfs_chan_update(rdev);
nl80211_radar_notify(rdev, chandef, NL80211_RADAR_DETECTED, NULL, gfp);
memcpy(&rdev->radar_chandef, chandef, sizeof(struct cfg80211_chan_def));
queue_work(cfg80211_wq, &rdev->propagate_radar_detect_wk);
}
EXPORT_SYMBOL(__cfg80211_radar_event);
void cfg80211_cac_event(struct net_device *netdev,
const struct cfg80211_chan_def *chandef,
enum nl80211_radar_event event, gfp_t gfp)
{
struct wireless_dev *wdev = netdev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
unsigned long timeout;
/* not yet supported */
if (wdev->valid_links)
return;
trace_cfg80211_cac_event(netdev, event);
if (WARN_ON(!wdev->cac_started && event != NL80211_RADAR_CAC_STARTED))
return;
switch (event) {
case NL80211_RADAR_CAC_FINISHED:
timeout = wdev->cac_start_time +
msecs_to_jiffies(wdev->cac_time_ms);
WARN_ON(!time_after_eq(jiffies, timeout));
cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_AVAILABLE);
memcpy(&rdev->cac_done_chandef, chandef,
sizeof(struct cfg80211_chan_def));
queue_work(cfg80211_wq, &rdev->propagate_cac_done_wk);
cfg80211_sched_dfs_chan_update(rdev);
fallthrough;
case NL80211_RADAR_CAC_ABORTED:
wdev->cac_started = false;
break;
case NL80211_RADAR_CAC_STARTED:
wdev->cac_started = true;
break;
default:
WARN_ON(1);
return;
}
nl80211_radar_notify(rdev, chandef, event, netdev, gfp);
}
EXPORT_SYMBOL(cfg80211_cac_event);
static void
__cfg80211_background_cac_event(struct cfg80211_registered_device *rdev,
struct wireless_dev *wdev,
const struct cfg80211_chan_def *chandef,
enum nl80211_radar_event event)
{
struct wiphy *wiphy = &rdev->wiphy;
struct net_device *netdev;
lockdep_assert_wiphy(&rdev->wiphy);
if (!cfg80211_chandef_valid(chandef))
return;
if (!rdev->background_radar_wdev)
return;
switch (event) {
case NL80211_RADAR_CAC_FINISHED:
cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_AVAILABLE);
memcpy(&rdev->cac_done_chandef, chandef, sizeof(*chandef));
queue_work(cfg80211_wq, &rdev->propagate_cac_done_wk);
cfg80211_sched_dfs_chan_update(rdev);
wdev = rdev->background_radar_wdev;
break;
case NL80211_RADAR_CAC_ABORTED:
if (!cancel_delayed_work(&rdev->background_cac_done_wk))
return;
wdev = rdev->background_radar_wdev;
break;
case NL80211_RADAR_CAC_STARTED:
break;
default:
return;
}
netdev = wdev ? wdev->netdev : NULL;
nl80211_radar_notify(rdev, chandef, event, netdev, GFP_KERNEL);
}
static void
cfg80211_background_cac_event(struct cfg80211_registered_device *rdev,
const struct cfg80211_chan_def *chandef,
enum nl80211_radar_event event)
{
wiphy_lock(&rdev->wiphy);
__cfg80211_background_cac_event(rdev, rdev->background_radar_wdev,
chandef, event);
wiphy_unlock(&rdev->wiphy);
}
void cfg80211_background_cac_done_wk(struct work_struct *work)
{
struct delayed_work *delayed_work = to_delayed_work(work);
struct cfg80211_registered_device *rdev;
rdev = container_of(delayed_work, struct cfg80211_registered_device,
background_cac_done_wk);
cfg80211_background_cac_event(rdev, &rdev->background_radar_chandef,
NL80211_RADAR_CAC_FINISHED);
}
void cfg80211_background_cac_abort_wk(struct work_struct *work)
{
struct cfg80211_registered_device *rdev;
rdev = container_of(work, struct cfg80211_registered_device,
background_cac_abort_wk);
cfg80211_background_cac_event(rdev, &rdev->background_radar_chandef,
NL80211_RADAR_CAC_ABORTED);
}
void cfg80211_background_cac_abort(struct wiphy *wiphy)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
queue_work(cfg80211_wq, &rdev->background_cac_abort_wk);
}
EXPORT_SYMBOL(cfg80211_background_cac_abort);
int
cfg80211_start_background_radar_detection(struct cfg80211_registered_device *rdev,
struct wireless_dev *wdev,
struct cfg80211_chan_def *chandef)
{
unsigned int cac_time_ms;
int err;
lockdep_assert_wiphy(&rdev->wiphy);
if (!wiphy_ext_feature_isset(&rdev->wiphy,
NL80211_EXT_FEATURE_RADAR_BACKGROUND))
return -EOPNOTSUPP;
/* Offchannel chain already locked by another wdev */
if (rdev->background_radar_wdev && rdev->background_radar_wdev != wdev)
return -EBUSY;
/* CAC already in progress on the offchannel chain */
if (rdev->background_radar_wdev == wdev &&
delayed_work_pending(&rdev->background_cac_done_wk))
return -EBUSY;
err = rdev_set_radar_background(rdev, chandef);
if (err)
return err;
cac_time_ms = cfg80211_chandef_dfs_cac_time(&rdev->wiphy, chandef);
if (!cac_time_ms)
cac_time_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
rdev->background_radar_chandef = *chandef;
rdev->background_radar_wdev = wdev; /* Get offchain ownership */
__cfg80211_background_cac_event(rdev, wdev, chandef,
NL80211_RADAR_CAC_STARTED);
queue_delayed_work(cfg80211_wq, &rdev->background_cac_done_wk,
msecs_to_jiffies(cac_time_ms));
return 0;
}
void cfg80211_stop_background_radar_detection(struct wireless_dev *wdev)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
lockdep_assert_wiphy(wiphy);
if (wdev != rdev->background_radar_wdev)
return;
rdev_set_radar_background(rdev, NULL);
rdev->background_radar_wdev = NULL; /* Release offchain ownership */
__cfg80211_background_cac_event(rdev, wdev,
&rdev->background_radar_chandef,
NL80211_RADAR_CAC_ABORTED);
}