linux-stable/lib/zstd/compress.c
Gustavo A. R. Silva 6a9dc5fd61 lib: Revert use of fallthrough pseudo-keyword in lib/
The following build error for powerpc64 was reported by Nathan Chancellor:

  "$ scripts/config --file arch/powerpc/configs/powernv_defconfig -e KERNEL_XZ

   $ make -skj"$(nproc)" ARCH=powerpc CROSS_COMPILE=powerpc64le-linux- distclean powernv_defconfig zImage
   ...
   In file included from arch/powerpc/boot/../../../lib/decompress_unxz.c:234,
                    from arch/powerpc/boot/decompress.c:38:
   arch/powerpc/boot/../../../lib/xz/xz_dec_stream.c: In function 'dec_main':
   arch/powerpc/boot/../../../lib/xz/xz_dec_stream.c:586:4: error: 'fallthrough' undeclared (first use in this function)
     586 |    fallthrough;
         |    ^~~~~~~~~~~

   This will end up affecting distribution configurations such as Debian
   and OpenSUSE according to my testing. I am not sure what the solution
   is, the PowerPC wrapper does not set -D__KERNEL__ so I am not sure
   that compiler_attributes.h can be safely included."

In order to avoid these sort of problems, it seems that the best
solution is to use /* fall through */ comments instead of the
fallthrough pseudo-keyword macro in lib/, for now.

Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Fixes: df561f6688 ("treewide: Use fallthrough pseudo-keyword")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-and-tested-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-24 14:17:44 -07:00

3486 lines
127 KiB
C

/**
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of https://github.com/facebook/zstd.
* An additional grant of patent rights can be found in the PATENTS file in the
* same directory.
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation. This program is dual-licensed; you may select
* either version 2 of the GNU General Public License ("GPL") or BSD license
* ("BSD").
*/
/*-*************************************
* Dependencies
***************************************/
#include "fse.h"
#include "huf.h"
#include "mem.h"
#include "zstd_internal.h" /* includes zstd.h */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h> /* memset */
/*-*************************************
* Constants
***************************************/
static const U32 g_searchStrength = 8; /* control skip over incompressible data */
#define HASH_READ_SIZE 8
typedef enum { ZSTDcs_created = 0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
/*-*************************************
* Helper functions
***************************************/
size_t ZSTD_compressBound(size_t srcSize) { return FSE_compressBound(srcSize) + 12; }
/*-*************************************
* Sequence storage
***************************************/
static void ZSTD_resetSeqStore(seqStore_t *ssPtr)
{
ssPtr->lit = ssPtr->litStart;
ssPtr->sequences = ssPtr->sequencesStart;
ssPtr->longLengthID = 0;
}
/*-*************************************
* Context memory management
***************************************/
struct ZSTD_CCtx_s {
const BYTE *nextSrc; /* next block here to continue on curr prefix */
const BYTE *base; /* All regular indexes relative to this position */
const BYTE *dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more data */
U32 nextToUpdate; /* index from which to continue dictionary update */
U32 nextToUpdate3; /* index from which to continue dictionary update */
U32 hashLog3; /* dispatch table : larger == faster, more memory */
U32 loadedDictEnd; /* index of end of dictionary */
U32 forceWindow; /* force back-references to respect limit of 1<<wLog, even for dictionary */
U32 forceRawDict; /* Force loading dictionary in "content-only" mode (no header analysis) */
ZSTD_compressionStage_e stage;
U32 rep[ZSTD_REP_NUM];
U32 repToConfirm[ZSTD_REP_NUM];
U32 dictID;
ZSTD_parameters params;
void *workSpace;
size_t workSpaceSize;
size_t blockSize;
U64 frameContentSize;
struct xxh64_state xxhState;
ZSTD_customMem customMem;
seqStore_t seqStore; /* sequences storage ptrs */
U32 *hashTable;
U32 *hashTable3;
U32 *chainTable;
HUF_CElt *hufTable;
U32 flagStaticTables;
HUF_repeat flagStaticHufTable;
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
unsigned tmpCounters[HUF_COMPRESS_WORKSPACE_SIZE_U32];
};
size_t ZSTD_CCtxWorkspaceBound(ZSTD_compressionParameters cParams)
{
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << cParams.windowLog);
U32 const divider = (cParams.searchLength == 3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = blockSize + 11 * maxNbSeq;
size_t const chainSize = (cParams.strategy == ZSTD_fast) ? 0 : (1 << cParams.chainLog);
size_t const hSize = ((size_t)1) << cParams.hashLog;
U32 const hashLog3 = (cParams.searchLength > 3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog);
size_t const h3Size = ((size_t)1) << hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
size_t const optSpace =
((MaxML + 1) + (MaxLL + 1) + (MaxOff + 1) + (1 << Litbits)) * sizeof(U32) + (ZSTD_OPT_NUM + 1) * (sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
size_t const workspaceSize = tableSpace + (256 * sizeof(U32)) /* huffTable */ + tokenSpace +
(((cParams.strategy == ZSTD_btopt) || (cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_CCtx)) + ZSTD_ALIGN(workspaceSize);
}
static ZSTD_CCtx *ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
{
ZSTD_CCtx *cctx;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
cctx = (ZSTD_CCtx *)ZSTD_malloc(sizeof(ZSTD_CCtx), customMem);
if (!cctx)
return NULL;
memset(cctx, 0, sizeof(ZSTD_CCtx));
cctx->customMem = customMem;
return cctx;
}
ZSTD_CCtx *ZSTD_initCCtx(void *workspace, size_t workspaceSize)
{
ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
ZSTD_CCtx *cctx = ZSTD_createCCtx_advanced(stackMem);
if (cctx) {
cctx->workSpace = ZSTD_stackAllocAll(cctx->customMem.opaque, &cctx->workSpaceSize);
}
return cctx;
}
size_t ZSTD_freeCCtx(ZSTD_CCtx *cctx)
{
if (cctx == NULL)
return 0; /* support free on NULL */
ZSTD_free(cctx->workSpace, cctx->customMem);
ZSTD_free(cctx, cctx->customMem);
return 0; /* reserved as a potential error code in the future */
}
const seqStore_t *ZSTD_getSeqStore(const ZSTD_CCtx *ctx) /* hidden interface */ { return &(ctx->seqStore); }
static ZSTD_parameters ZSTD_getParamsFromCCtx(const ZSTD_CCtx *cctx) { return cctx->params; }
/** ZSTD_checkParams() :
ensure param values remain within authorized range.
@return : 0, or an error code if one value is beyond authorized range */
size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
{
#define CLAMPCHECK(val, min, max) \
{ \
if ((val < min) | (val > max)) \
return ERROR(compressionParameter_unsupported); \
}
CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
if ((U32)(cParams.strategy) > (U32)ZSTD_btopt2)
return ERROR(compressionParameter_unsupported);
return 0;
}
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
{
U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
return hashLog - btScale;
}
/** ZSTD_adjustCParams() :
optimize `cPar` for a given input (`srcSize` and `dictSize`).
mostly downsizing to reduce memory consumption and initialization.
Both `srcSize` and `dictSize` are optional (use 0 if unknown),
but if both are 0, no optimization can be done.
Note : cPar is considered validated at this stage. Use ZSTD_checkParams() to ensure that. */
ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
{
if (srcSize + dictSize == 0)
return cPar; /* no size information available : no adjustment */
/* resize params, to use less memory when necessary */
{
U32 const minSrcSize = (srcSize == 0) ? 500 : 0;
U64 const rSize = srcSize + dictSize + minSrcSize;
if (rSize < ((U64)1 << ZSTD_WINDOWLOG_MAX)) {
U32 const srcLog = MAX(ZSTD_HASHLOG_MIN, ZSTD_highbit32((U32)(rSize)-1) + 1);
if (cPar.windowLog > srcLog)
cPar.windowLog = srcLog;
}
}
if (cPar.hashLog > cPar.windowLog)
cPar.hashLog = cPar.windowLog;
{
U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
if (cycleLog > cPar.windowLog)
cPar.chainLog -= (cycleLog - cPar.windowLog);
}
if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */
return cPar;
}
static U32 ZSTD_equivalentParams(ZSTD_parameters param1, ZSTD_parameters param2)
{
return (param1.cParams.hashLog == param2.cParams.hashLog) & (param1.cParams.chainLog == param2.cParams.chainLog) &
(param1.cParams.strategy == param2.cParams.strategy) & ((param1.cParams.searchLength == 3) == (param2.cParams.searchLength == 3));
}
/*! ZSTD_continueCCtx() :
reuse CCtx without reset (note : requires no dictionary) */
static size_t ZSTD_continueCCtx(ZSTD_CCtx *cctx, ZSTD_parameters params, U64 frameContentSize)
{
U32 const end = (U32)(cctx->nextSrc - cctx->base);
cctx->params = params;
cctx->frameContentSize = frameContentSize;
cctx->lowLimit = end;
cctx->dictLimit = end;
cctx->nextToUpdate = end + 1;
cctx->stage = ZSTDcs_init;
cctx->dictID = 0;
cctx->loadedDictEnd = 0;
{
int i;
for (i = 0; i < ZSTD_REP_NUM; i++)
cctx->rep[i] = repStartValue[i];
}
cctx->seqStore.litLengthSum = 0; /* force reset of btopt stats */
xxh64_reset(&cctx->xxhState, 0);
return 0;
}
typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset, ZSTDcrp_fullReset } ZSTD_compResetPolicy_e;
/*! ZSTD_resetCCtx_advanced() :
note : `params` must be validated */
static size_t ZSTD_resetCCtx_advanced(ZSTD_CCtx *zc, ZSTD_parameters params, U64 frameContentSize, ZSTD_compResetPolicy_e const crp)
{
if (crp == ZSTDcrp_continue)
if (ZSTD_equivalentParams(params, zc->params)) {
zc->flagStaticTables = 0;
zc->flagStaticHufTable = HUF_repeat_none;
return ZSTD_continueCCtx(zc, params, frameContentSize);
}
{
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << params.cParams.windowLog);
U32 const divider = (params.cParams.searchLength == 3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = blockSize + 11 * maxNbSeq;
size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ? 0 : (1 << params.cParams.chainLog);
size_t const hSize = ((size_t)1) << params.cParams.hashLog;
U32 const hashLog3 = (params.cParams.searchLength > 3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog);
size_t const h3Size = ((size_t)1) << hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
void *ptr;
/* Check if workSpace is large enough, alloc a new one if needed */
{
size_t const optSpace = ((MaxML + 1) + (MaxLL + 1) + (MaxOff + 1) + (1 << Litbits)) * sizeof(U32) +
(ZSTD_OPT_NUM + 1) * (sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
size_t const neededSpace = tableSpace + (256 * sizeof(U32)) /* huffTable */ + tokenSpace +
(((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
if (zc->workSpaceSize < neededSpace) {
ZSTD_free(zc->workSpace, zc->customMem);
zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
if (zc->workSpace == NULL)
return ERROR(memory_allocation);
zc->workSpaceSize = neededSpace;
}
}
if (crp != ZSTDcrp_noMemset)
memset(zc->workSpace, 0, tableSpace); /* reset tables only */
xxh64_reset(&zc->xxhState, 0);
zc->hashLog3 = hashLog3;
zc->hashTable = (U32 *)(zc->workSpace);
zc->chainTable = zc->hashTable + hSize;
zc->hashTable3 = zc->chainTable + chainSize;
ptr = zc->hashTable3 + h3Size;
zc->hufTable = (HUF_CElt *)ptr;
zc->flagStaticTables = 0;
zc->flagStaticHufTable = HUF_repeat_none;
ptr = ((U32 *)ptr) + 256; /* note : HUF_CElt* is incomplete type, size is simulated using U32 */
zc->nextToUpdate = 1;
zc->nextSrc = NULL;
zc->base = NULL;
zc->dictBase = NULL;
zc->dictLimit = 0;
zc->lowLimit = 0;
zc->params = params;
zc->blockSize = blockSize;
zc->frameContentSize = frameContentSize;
{
int i;
for (i = 0; i < ZSTD_REP_NUM; i++)
zc->rep[i] = repStartValue[i];
}
if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) {
zc->seqStore.litFreq = (U32 *)ptr;
zc->seqStore.litLengthFreq = zc->seqStore.litFreq + (1 << Litbits);
zc->seqStore.matchLengthFreq = zc->seqStore.litLengthFreq + (MaxLL + 1);
zc->seqStore.offCodeFreq = zc->seqStore.matchLengthFreq + (MaxML + 1);
ptr = zc->seqStore.offCodeFreq + (MaxOff + 1);
zc->seqStore.matchTable = (ZSTD_match_t *)ptr;
ptr = zc->seqStore.matchTable + ZSTD_OPT_NUM + 1;
zc->seqStore.priceTable = (ZSTD_optimal_t *)ptr;
ptr = zc->seqStore.priceTable + ZSTD_OPT_NUM + 1;
zc->seqStore.litLengthSum = 0;
}
zc->seqStore.sequencesStart = (seqDef *)ptr;
ptr = zc->seqStore.sequencesStart + maxNbSeq;
zc->seqStore.llCode = (BYTE *)ptr;
zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
zc->stage = ZSTDcs_init;
zc->dictID = 0;
zc->loadedDictEnd = 0;
return 0;
}
}
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx *cctx)
{
int i;
for (i = 0; i < ZSTD_REP_NUM; i++)
cctx->rep[i] = 0;
}
/*! ZSTD_copyCCtx() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* @return : 0, or an error code */
size_t ZSTD_copyCCtx(ZSTD_CCtx *dstCCtx, const ZSTD_CCtx *srcCCtx, unsigned long long pledgedSrcSize)
{
if (srcCCtx->stage != ZSTDcs_init)
return ERROR(stage_wrong);
memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
{
ZSTD_parameters params = srcCCtx->params;
params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
ZSTD_resetCCtx_advanced(dstCCtx, params, pledgedSrcSize, ZSTDcrp_noMemset);
}
/* copy tables */
{
size_t const chainSize = (srcCCtx->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << srcCCtx->params.cParams.chainLog);
size_t const hSize = ((size_t)1) << srcCCtx->params.cParams.hashLog;
size_t const h3Size = (size_t)1 << srcCCtx->hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
memcpy(dstCCtx->workSpace, srcCCtx->workSpace, tableSpace);
}
/* copy dictionary offsets */
dstCCtx->nextToUpdate = srcCCtx->nextToUpdate;
dstCCtx->nextToUpdate3 = srcCCtx->nextToUpdate3;
dstCCtx->nextSrc = srcCCtx->nextSrc;
dstCCtx->base = srcCCtx->base;
dstCCtx->dictBase = srcCCtx->dictBase;
dstCCtx->dictLimit = srcCCtx->dictLimit;
dstCCtx->lowLimit = srcCCtx->lowLimit;
dstCCtx->loadedDictEnd = srcCCtx->loadedDictEnd;
dstCCtx->dictID = srcCCtx->dictID;
/* copy entropy tables */
dstCCtx->flagStaticTables = srcCCtx->flagStaticTables;
dstCCtx->flagStaticHufTable = srcCCtx->flagStaticHufTable;
if (srcCCtx->flagStaticTables) {
memcpy(dstCCtx->litlengthCTable, srcCCtx->litlengthCTable, sizeof(dstCCtx->litlengthCTable));
memcpy(dstCCtx->matchlengthCTable, srcCCtx->matchlengthCTable, sizeof(dstCCtx->matchlengthCTable));
memcpy(dstCCtx->offcodeCTable, srcCCtx->offcodeCTable, sizeof(dstCCtx->offcodeCTable));
}
if (srcCCtx->flagStaticHufTable) {
memcpy(dstCCtx->hufTable, srcCCtx->hufTable, 256 * 4);
}
return 0;
}
/*! ZSTD_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_reduceTable(U32 *const table, U32 const size, U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u] < reducerValue)
table[u] = 0;
else
table[u] -= reducerValue;
}
}
/*! ZSTD_reduceIndex() :
* rescale all indexes to avoid future overflow (indexes are U32) */
static void ZSTD_reduceIndex(ZSTD_CCtx *zc, const U32 reducerValue)
{
{
U32 const hSize = 1 << zc->params.cParams.hashLog;
ZSTD_reduceTable(zc->hashTable, hSize, reducerValue);
}
{
U32 const chainSize = (zc->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << zc->params.cParams.chainLog);
ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue);
}
{
U32 const h3Size = (zc->hashLog3) ? 1 << zc->hashLog3 : 0;
ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue);
}
}
/*-*******************************************************
* Block entropic compression
*********************************************************/
/* See doc/zstd_compression_format.md for detailed format description */
size_t ZSTD_noCompressBlock(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
if (srcSize + ZSTD_blockHeaderSize > dstCapacity)
return ERROR(dstSize_tooSmall);
memcpy((BYTE *)dst + ZSTD_blockHeaderSize, src, srcSize);
ZSTD_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw);
return ZSTD_blockHeaderSize + srcSize;
}
static size_t ZSTD_noCompressLiterals(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
BYTE *const ostart = (BYTE * const)dst;
U32 const flSize = 1 + (srcSize > 31) + (srcSize > 4095);
if (srcSize + flSize > dstCapacity)
return ERROR(dstSize_tooSmall);
switch (flSize) {
case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_basic + (srcSize << 3)); break;
case 2: /* 2 - 2 - 12 */ ZSTD_writeLE16(ostart, (U16)((U32)set_basic + (1 << 2) + (srcSize << 4))); break;
default: /*note : should not be necessary : flSize is within {1,2,3} */
case 3: /* 2 - 2 - 20 */ ZSTD_writeLE32(ostart, (U32)((U32)set_basic + (3 << 2) + (srcSize << 4))); break;
}
memcpy(ostart + flSize, src, srcSize);
return srcSize + flSize;
}
static size_t ZSTD_compressRleLiteralsBlock(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
BYTE *const ostart = (BYTE * const)dst;
U32 const flSize = 1 + (srcSize > 31) + (srcSize > 4095);
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch (flSize) {
case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_rle + (srcSize << 3)); break;
case 2: /* 2 - 2 - 12 */ ZSTD_writeLE16(ostart, (U16)((U32)set_rle + (1 << 2) + (srcSize << 4))); break;
default: /*note : should not be necessary : flSize is necessarily within {1,2,3} */
case 3: /* 2 - 2 - 20 */ ZSTD_writeLE32(ostart, (U32)((U32)set_rle + (3 << 2) + (srcSize << 4))); break;
}
ostart[flSize] = *(const BYTE *)src;
return flSize + 1;
}
static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; }
static size_t ZSTD_compressLiterals(ZSTD_CCtx *zc, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
size_t const minGain = ZSTD_minGain(srcSize);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE *const ostart = (BYTE *)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
/* small ? don't even attempt compression (speed opt) */
#define LITERAL_NOENTROPY 63
{
size_t const minLitSize = zc->flagStaticHufTable == HUF_repeat_valid ? 6 : LITERAL_NOENTROPY;
if (srcSize <= minLitSize)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (dstCapacity < lhSize + 1)
return ERROR(dstSize_tooSmall); /* not enough space for compression */
{
HUF_repeat repeat = zc->flagStaticHufTable;
int const preferRepeat = zc->params.cParams.strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
if (repeat == HUF_repeat_valid && lhSize == 3)
singleStream = 1;
cLitSize = singleStream ? HUF_compress1X_repeat(ostart + lhSize, dstCapacity - lhSize, src, srcSize, 255, 11, zc->tmpCounters,
sizeof(zc->tmpCounters), zc->hufTable, &repeat, preferRepeat)
: HUF_compress4X_repeat(ostart + lhSize, dstCapacity - lhSize, src, srcSize, 255, 11, zc->tmpCounters,
sizeof(zc->tmpCounters), zc->hufTable, &repeat, preferRepeat);
if (repeat != HUF_repeat_none) {
hType = set_repeat;
} /* reused the existing table */
else {
zc->flagStaticHufTable = HUF_repeat_check;
} /* now have a table to reuse */
}
if ((cLitSize == 0) | (cLitSize >= srcSize - minGain)) {
zc->flagStaticHufTable = HUF_repeat_none;
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (cLitSize == 1) {
zc->flagStaticHufTable = HUF_repeat_none;
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
}
/* Build header */
switch (lhSize) {
case 3: /* 2 - 2 - 10 - 10 */
{
U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize << 4) + ((U32)cLitSize << 14);
ZSTD_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{
U32 const lhc = hType + (2 << 2) + ((U32)srcSize << 4) + ((U32)cLitSize << 18);
ZSTD_writeLE32(ostart, lhc);
break;
}
default: /* should not be necessary, lhSize is only {3,4,5} */
case 5: /* 2 - 2 - 18 - 18 */
{
U32 const lhc = hType + (3 << 2) + ((U32)srcSize << 4) + ((U32)cLitSize << 22);
ZSTD_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
}
return lhSize + cLitSize;
}
static const BYTE LL_Code[64] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18,
19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23,
23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24};
static const BYTE ML_Code[128] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38,
38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42};
void ZSTD_seqToCodes(const seqStore_t *seqStorePtr)
{
BYTE const LL_deltaCode = 19;
BYTE const ML_deltaCode = 36;
const seqDef *const sequences = seqStorePtr->sequencesStart;
BYTE *const llCodeTable = seqStorePtr->llCode;
BYTE *const ofCodeTable = seqStorePtr->ofCode;
BYTE *const mlCodeTable = seqStorePtr->mlCode;
U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
U32 u;
for (u = 0; u < nbSeq; u++) {
U32 const llv = sequences[u].litLength;
U32 const mlv = sequences[u].matchLength;
llCodeTable[u] = (llv > 63) ? (BYTE)ZSTD_highbit32(llv) + LL_deltaCode : LL_Code[llv];
ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
mlCodeTable[u] = (mlv > 127) ? (BYTE)ZSTD_highbit32(mlv) + ML_deltaCode : ML_Code[mlv];
}
if (seqStorePtr->longLengthID == 1)
llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
if (seqStorePtr->longLengthID == 2)
mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
}
ZSTD_STATIC size_t ZSTD_compressSequences_internal(ZSTD_CCtx *zc, void *dst, size_t dstCapacity)
{
const int longOffsets = zc->params.cParams.windowLog > STREAM_ACCUMULATOR_MIN;
const seqStore_t *seqStorePtr = &(zc->seqStore);
FSE_CTable *CTable_LitLength = zc->litlengthCTable;
FSE_CTable *CTable_OffsetBits = zc->offcodeCTable;
FSE_CTable *CTable_MatchLength = zc->matchlengthCTable;
U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
const seqDef *const sequences = seqStorePtr->sequencesStart;
const BYTE *const ofCodeTable = seqStorePtr->ofCode;
const BYTE *const llCodeTable = seqStorePtr->llCode;
const BYTE *const mlCodeTable = seqStorePtr->mlCode;
BYTE *const ostart = (BYTE *)dst;
BYTE *const oend = ostart + dstCapacity;
BYTE *op = ostart;
size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
BYTE *seqHead;
U32 *count;
S16 *norm;
U32 *workspace;
size_t workspaceSize = sizeof(zc->tmpCounters);
{
size_t spaceUsed32 = 0;
count = (U32 *)zc->tmpCounters + spaceUsed32;
spaceUsed32 += MaxSeq + 1;
norm = (S16 *)((U32 *)zc->tmpCounters + spaceUsed32);
spaceUsed32 += ALIGN(sizeof(S16) * (MaxSeq + 1), sizeof(U32)) >> 2;
workspace = (U32 *)zc->tmpCounters + spaceUsed32;
workspaceSize -= (spaceUsed32 << 2);
}
/* Compress literals */
{
const BYTE *const literals = seqStorePtr->litStart;
size_t const litSize = seqStorePtr->lit - literals;
size_t const cSize = ZSTD_compressLiterals(zc, op, dstCapacity, literals, litSize);
if (ZSTD_isError(cSize))
return cSize;
op += cSize;
}
/* Sequences Header */
if ((oend - op) < 3 /*max nbSeq Size*/ + 1 /*seqHead */)
return ERROR(dstSize_tooSmall);
if (nbSeq < 0x7F)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq >> 8) + 0x80), op[1] = (BYTE)nbSeq, op += 2;
else
op[0] = 0xFF, ZSTD_writeLE16(op + 1, (U16)(nbSeq - LONGNBSEQ)), op += 3;
if (nbSeq == 0)
return op - ostart;
/* seqHead : flags for FSE encoding type */
seqHead = op++;
#define MIN_SEQ_FOR_DYNAMIC_FSE 64
#define MAX_SEQ_FOR_STATIC_FSE 1000
/* convert length/distances into codes */
ZSTD_seqToCodes(seqStorePtr);
/* CTable for Literal Lengths */
{
U32 max = MaxLL;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, workspace);
if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
*op++ = llCodeTable[0];
FSE_buildCTable_rle(CTable_LitLength, (BYTE)max);
LLtype = set_rle;
} else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
LLtype = set_repeat;
} else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (LL_defaultNormLog - 1)))) {
FSE_buildCTable_wksp(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog, workspace, workspaceSize);
LLtype = set_basic;
} else {
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max);
if (count[llCodeTable[nbSeq - 1]] > 1) {
count[llCodeTable[nbSeq - 1]]--;
nbSeq_1--;
}
FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
{
size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
if (FSE_isError(NCountSize))
return NCountSize;
op += NCountSize;
}
FSE_buildCTable_wksp(CTable_LitLength, norm, max, tableLog, workspace, workspaceSize);
LLtype = set_compressed;
}
}
/* CTable for Offsets */
{
U32 max = MaxOff;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, workspace);
if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
*op++ = ofCodeTable[0];
FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max);
Offtype = set_rle;
} else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
Offtype = set_repeat;
} else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (OF_defaultNormLog - 1)))) {
FSE_buildCTable_wksp(CTable_OffsetBits, OF_defaultNorm, MaxOff, OF_defaultNormLog, workspace, workspaceSize);
Offtype = set_basic;
} else {
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max);
if (count[ofCodeTable[nbSeq - 1]] > 1) {
count[ofCodeTable[nbSeq - 1]]--;
nbSeq_1--;
}
FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
{
size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
if (FSE_isError(NCountSize))
return NCountSize;
op += NCountSize;
}
FSE_buildCTable_wksp(CTable_OffsetBits, norm, max, tableLog, workspace, workspaceSize);
Offtype = set_compressed;
}
}
/* CTable for MatchLengths */
{
U32 max = MaxML;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, workspace);
if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
*op++ = *mlCodeTable;
FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max);
MLtype = set_rle;
} else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
MLtype = set_repeat;
} else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (ML_defaultNormLog - 1)))) {
FSE_buildCTable_wksp(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog, workspace, workspaceSize);
MLtype = set_basic;
} else {
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max);
if (count[mlCodeTable[nbSeq - 1]] > 1) {
count[mlCodeTable[nbSeq - 1]]--;
nbSeq_1--;
}
FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
{
size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
if (FSE_isError(NCountSize))
return NCountSize;
op += NCountSize;
}
FSE_buildCTable_wksp(CTable_MatchLength, norm, max, tableLog, workspace, workspaceSize);
MLtype = set_compressed;
}
}
*seqHead = (BYTE)((LLtype << 6) + (Offtype << 4) + (MLtype << 2));
zc->flagStaticTables = 0;
/* Encoding Sequences */
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
CHECK_E(BIT_initCStream(&blockStream, op, oend - op), dstSize_tooSmall); /* not enough space remaining */
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq - 1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq - 1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq - 1]);
BIT_addBits(&blockStream, sequences[nbSeq - 1].litLength, LL_bits[llCodeTable[nbSeq - 1]]);
if (ZSTD_32bits())
BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq - 1].matchLength, ML_bits[mlCodeTable[nbSeq - 1]]);
if (ZSTD_32bits())
BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq - 1];
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN - 1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq - 1].offset, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq - 1].offset >> extraBits, ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq - 1].offset, ofCodeTable[nbSeq - 1]);
}
BIT_flushBits(&blockStream);
{
size_t n;
for (n = nbSeq - 2; n < nbSeq; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode; /* 32b*/ /* 64b*/
U32 const mlBits = ML_bits[mlCode];
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (ZSTD_32bits())
BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (ZSTD_32bits() || (ofBits + mlBits + llBits >= 64 - 7 - (LLFSELog + MLFSELog + OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (ZSTD_32bits() && ((llBits + mlBits) > 24))
BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
if (ZSTD_32bits())
BIT_flushBits(&blockStream); /* (7)*/
if (longOffsets) {
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN - 1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offset, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offset >> extraBits, ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
}
}
FSE_flushCState(&blockStream, &stateMatchLength);
FSE_flushCState(&blockStream, &stateOffsetBits);
FSE_flushCState(&blockStream, &stateLitLength);
{
size_t const streamSize = BIT_closeCStream(&blockStream);
if (streamSize == 0)
return ERROR(dstSize_tooSmall); /* not enough space */
op += streamSize;
}
}
return op - ostart;
}
ZSTD_STATIC size_t ZSTD_compressSequences(ZSTD_CCtx *zc, void *dst, size_t dstCapacity, size_t srcSize)
{
size_t const cSize = ZSTD_compressSequences_internal(zc, dst, dstCapacity);
size_t const minGain = ZSTD_minGain(srcSize);
size_t const maxCSize = srcSize - minGain;
/* If the srcSize <= dstCapacity, then there is enough space to write a
* raw uncompressed block. Since we ran out of space, the block must not
* be compressible, so fall back to a raw uncompressed block.
*/
int const uncompressibleError = cSize == ERROR(dstSize_tooSmall) && srcSize <= dstCapacity;
int i;
if (ZSTD_isError(cSize) && !uncompressibleError)
return cSize;
if (cSize >= maxCSize || uncompressibleError) {
zc->flagStaticHufTable = HUF_repeat_none;
return 0;
}
/* confirm repcodes */
for (i = 0; i < ZSTD_REP_NUM; i++)
zc->rep[i] = zc->repToConfirm[i];
return cSize;
}
/*! ZSTD_storeSeq() :
Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
`offsetCode` : distance to match, or 0 == repCode.
`matchCode` : matchLength - MINMATCH
*/
ZSTD_STATIC void ZSTD_storeSeq(seqStore_t *seqStorePtr, size_t litLength, const void *literals, U32 offsetCode, size_t matchCode)
{
/* copy Literals */
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
seqStorePtr->lit += litLength;
/* literal Length */
if (litLength > 0xFFFF) {
seqStorePtr->longLengthID = 1;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
seqStorePtr->sequences[0].offset = offsetCode + 1;
/* match Length */
if (matchCode > 0xFFFF) {
seqStorePtr->longLengthID = 2;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].matchLength = (U16)matchCode;
seqStorePtr->sequences++;
}
/*-*************************************
* Match length counter
***************************************/
static unsigned ZSTD_NbCommonBytes(register size_t val)
{
if (ZSTD_isLittleEndian()) {
if (ZSTD_64bits()) {
return (__builtin_ctzll((U64)val) >> 3);
} else { /* 32 bits */
return (__builtin_ctz((U32)val) >> 3);
}
} else { /* Big Endian CPU */
if (ZSTD_64bits()) {
return (__builtin_clzll(val) >> 3);
} else { /* 32 bits */
return (__builtin_clz((U32)val) >> 3);
}
}
}
static size_t ZSTD_count(const BYTE *pIn, const BYTE *pMatch, const BYTE *const pInLimit)
{
const BYTE *const pStart = pIn;
const BYTE *const pInLoopLimit = pInLimit - (sizeof(size_t) - 1);
while (pIn < pInLoopLimit) {
size_t const diff = ZSTD_readST(pMatch) ^ ZSTD_readST(pIn);
if (!diff) {
pIn += sizeof(size_t);
pMatch += sizeof(size_t);
continue;
}
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
}
if (ZSTD_64bits())
if ((pIn < (pInLimit - 3)) && (ZSTD_read32(pMatch) == ZSTD_read32(pIn))) {
pIn += 4;
pMatch += 4;
}
if ((pIn < (pInLimit - 1)) && (ZSTD_read16(pMatch) == ZSTD_read16(pIn))) {
pIn += 2;
pMatch += 2;
}
if ((pIn < pInLimit) && (*pMatch == *pIn))
pIn++;
return (size_t)(pIn - pStart);
}
/** ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
static size_t ZSTD_count_2segments(const BYTE *ip, const BYTE *match, const BYTE *iEnd, const BYTE *mEnd, const BYTE *iStart)
{
const BYTE *const vEnd = MIN(ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
if (match + matchLength != mEnd)
return matchLength;
return matchLength + ZSTD_count(ip + matchLength, iStart, iEnd);
}
/*-*************************************
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32 - 24)) * prime3bytes) >> (32 - h); }
ZSTD_STATIC size_t ZSTD_hash3Ptr(const void *ptr, U32 h) { return ZSTD_hash3(ZSTD_readLE32(ptr), h); } /* only in zstd_opt.h */
static const U32 prime4bytes = 2654435761U;
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32 - h); }
static size_t ZSTD_hash4Ptr(const void *ptr, U32 h) { return ZSTD_hash4(ZSTD_read32(ptr), h); }
static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64 - 40)) * prime5bytes) >> (64 - h)); }
static size_t ZSTD_hash5Ptr(const void *p, U32 h) { return ZSTD_hash5(ZSTD_readLE64(p), h); }
static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64 - 48)) * prime6bytes) >> (64 - h)); }
static size_t ZSTD_hash6Ptr(const void *p, U32 h) { return ZSTD_hash6(ZSTD_readLE64(p), h); }
static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64 - 56)) * prime7bytes) >> (64 - h)); }
static size_t ZSTD_hash7Ptr(const void *p, U32 h) { return ZSTD_hash7(ZSTD_readLE64(p), h); }
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u)*prime8bytes) >> (64 - h)); }
static size_t ZSTD_hash8Ptr(const void *p, U32 h) { return ZSTD_hash8(ZSTD_readLE64(p), h); }
static size_t ZSTD_hashPtr(const void *p, U32 hBits, U32 mls)
{
switch (mls) {
// case 3: return ZSTD_hash3Ptr(p, hBits);
default:
case 4: return ZSTD_hash4Ptr(p, hBits);
case 5: return ZSTD_hash5Ptr(p, hBits);
case 6: return ZSTD_hash6Ptr(p, hBits);
case 7: return ZSTD_hash7Ptr(p, hBits);
case 8: return ZSTD_hash8Ptr(p, hBits);
}
}
/*-*************************************
* Fast Scan
***************************************/
static void ZSTD_fillHashTable(ZSTD_CCtx *zc, const void *end, const U32 mls)
{
U32 *const hashTable = zc->hashTable;
U32 const hBits = zc->params.cParams.hashLog;
const BYTE *const base = zc->base;
const BYTE *ip = base + zc->nextToUpdate;
const BYTE *const iend = ((const BYTE *)end) - HASH_READ_SIZE;
const size_t fastHashFillStep = 3;
while (ip <= iend) {
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
ip += fastHashFillStep;
}
}
FORCE_INLINE
void ZSTD_compressBlock_fast_generic(ZSTD_CCtx *cctx, const void *src, size_t srcSize, const U32 mls)
{
U32 *const hashTable = cctx->hashTable;
U32 const hBits = cctx->params.cParams.hashLog;
seqStore_t *seqStorePtr = &(cctx->seqStore);
const BYTE *const base = cctx->base;
const BYTE *const istart = (const BYTE *)src;
const BYTE *ip = istart;
const BYTE *anchor = istart;
const U32 lowestIndex = cctx->dictLimit;
const BYTE *const lowest = base + lowestIndex;
const BYTE *const iend = istart + srcSize;
const BYTE *const ilimit = iend - HASH_READ_SIZE;
U32 offset_1 = cctx->rep[0], offset_2 = cctx->rep[1];
U32 offsetSaved = 0;
/* init */
ip += (ip == lowest);
{
U32 const maxRep = (U32)(ip - lowest);
if (offset_2 > maxRep)
offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep)
offsetSaved = offset_1, offset_1 = 0;
}
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
size_t const h = ZSTD_hashPtr(ip, hBits, mls);
U32 const curr = (U32)(ip - base);
U32 const matchIndex = hashTable[h];
const BYTE *match = base + matchIndex;
hashTable[h] = curr; /* update hash table */
if ((offset_1 > 0) & (ZSTD_read32(ip + 1 - offset_1) == ZSTD_read32(ip + 1))) {
mLength = ZSTD_count(ip + 1 + 4, ip + 1 + 4 - offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
} else {
U32 offset;
if ((matchIndex <= lowestIndex) || (ZSTD_read32(match) != ZSTD_read32(ip))) {
ip += ((ip - anchor) >> g_searchStrength) + 1;
continue;
}
mLength = ZSTD_count(ip + 4, match + 4, iend) + 4;
offset = (U32)(ip - match);
while (((ip > anchor) & (match > lowest)) && (ip[-1] == match[-1])) {
ip--;
match--;
mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
}
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base + curr + 2, hBits, mls)] = curr + 2; /* here because curr+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip - 2, hBits, mls)] = (U32)(ip - 2 - base);
/* check immediate repcode */
while ((ip <= ilimit) && ((offset_2 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_2)))) {
/* store sequence */
size_t const rLength = ZSTD_count(ip + 4, ip + 4 - offset_2, iend) + 4;
{
U32 const tmpOff = offset_2;
offset_2 = offset_1;
offset_1 = tmpOff;
} /* swap offset_2 <=> offset_1 */
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength - MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
}
/* save reps for next block */
cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
/* Last Literals */
{
size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
static void ZSTD_compressBlock_fast(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
const U32 mls = ctx->params.cParams.searchLength;
switch (mls) {
default: /* includes case 3 */
case 4: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4); return;
case 5: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5); return;
case 6: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6); return;
case 7: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7); return;
}
}
static void ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 mls)
{
U32 *hashTable = ctx->hashTable;
const U32 hBits = ctx->params.cParams.hashLog;
seqStore_t *seqStorePtr = &(ctx->seqStore);
const BYTE *const base = ctx->base;
const BYTE *const dictBase = ctx->dictBase;
const BYTE *const istart = (const BYTE *)src;
const BYTE *ip = istart;
const BYTE *anchor = istart;
const U32 lowestIndex = ctx->lowLimit;
const BYTE *const dictStart = dictBase + lowestIndex;
const U32 dictLimit = ctx->dictLimit;
const BYTE *const lowPrefixPtr = base + dictLimit;
const BYTE *const dictEnd = dictBase + dictLimit;
const BYTE *const iend = istart + srcSize;
const BYTE *const ilimit = iend - 8;
U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t h = ZSTD_hashPtr(ip, hBits, mls);
const U32 matchIndex = hashTable[h];
const BYTE *matchBase = matchIndex < dictLimit ? dictBase : base;
const BYTE *match = matchBase + matchIndex;
const U32 curr = (U32)(ip - base);
const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
const BYTE *repBase = repIndex < dictLimit ? dictBase : base;
const BYTE *repMatch = repBase + repIndex;
size_t mLength;
hashTable[h] = curr; /* update hash table */
if ((((U32)((dictLimit - 1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex)) &&
(ZSTD_read32(repMatch) == ZSTD_read32(ip + 1))) {
const BYTE *repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip + 1 + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repMatchEnd, lowPrefixPtr) + EQUAL_READ32;
ip++;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
} else {
if ((matchIndex < lowestIndex) || (ZSTD_read32(match) != ZSTD_read32(ip))) {
ip += ((ip - anchor) >> g_searchStrength) + 1;
continue;
}
{
const BYTE *matchEnd = matchIndex < dictLimit ? dictEnd : iend;
const BYTE *lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
U32 offset;
mLength = ZSTD_count_2segments(ip + EQUAL_READ32, match + EQUAL_READ32, iend, matchEnd, lowPrefixPtr) + EQUAL_READ32;
while (((ip > anchor) & (match > lowMatchPtr)) && (ip[-1] == match[-1])) {
ip--;
match--;
mLength++;
} /* catch up */
offset = curr - matchIndex;
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
}
}
/* found a match : store it */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base + curr + 2, hBits, mls)] = curr + 2;
hashTable[ZSTD_hashPtr(ip - 2, hBits, mls)] = (U32)(ip - 2 - base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const curr2 = (U32)(ip - base);
U32 const repIndex2 = curr2 - offset_2;
const BYTE *repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
if ((((U32)((dictLimit - 1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
&& (ZSTD_read32(repMatch2) == ZSTD_read32(ip))) {
const BYTE *const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
size_t repLength2 =
ZSTD_count_2segments(ip + EQUAL_READ32, repMatch2 + EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
U32 tmpOffset = offset_2;
offset_2 = offset_1;
offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2 - MINMATCH);
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = curr2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
}
/* save reps for next block */
ctx->repToConfirm[0] = offset_1;
ctx->repToConfirm[1] = offset_2;
/* Last Literals */
{
size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
static void ZSTD_compressBlock_fast_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
U32 const mls = ctx->params.cParams.searchLength;
switch (mls) {
default: /* includes case 3 */
case 4: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4); return;
case 5: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5); return;
case 6: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6); return;
case 7: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7); return;
}
}
/*-*************************************
* Double Fast
***************************************/
static void ZSTD_fillDoubleHashTable(ZSTD_CCtx *cctx, const void *end, const U32 mls)
{
U32 *const hashLarge = cctx->hashTable;
U32 const hBitsL = cctx->params.cParams.hashLog;
U32 *const hashSmall = cctx->chainTable;
U32 const hBitsS = cctx->params.cParams.chainLog;
const BYTE *const base = cctx->base;
const BYTE *ip = base + cctx->nextToUpdate;
const BYTE *const iend = ((const BYTE *)end) - HASH_READ_SIZE;
const size_t fastHashFillStep = 3;
while (ip <= iend) {
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
ip += fastHashFillStep;
}
}
FORCE_INLINE
void ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx *cctx, const void *src, size_t srcSize, const U32 mls)
{
U32 *const hashLong = cctx->hashTable;
const U32 hBitsL = cctx->params.cParams.hashLog;
U32 *const hashSmall = cctx->chainTable;
const U32 hBitsS = cctx->params.cParams.chainLog;
seqStore_t *seqStorePtr = &(cctx->seqStore);
const BYTE *const base = cctx->base;
const BYTE *const istart = (const BYTE *)src;
const BYTE *ip = istart;
const BYTE *anchor = istart;
const U32 lowestIndex = cctx->dictLimit;
const BYTE *const lowest = base + lowestIndex;
const BYTE *const iend = istart + srcSize;
const BYTE *const ilimit = iend - HASH_READ_SIZE;
U32 offset_1 = cctx->rep[0], offset_2 = cctx->rep[1];
U32 offsetSaved = 0;
/* init */
ip += (ip == lowest);
{
U32 const maxRep = (U32)(ip - lowest);
if (offset_2 > maxRep)
offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep)
offsetSaved = offset_1, offset_1 = 0;
}
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
U32 const curr = (U32)(ip - base);
U32 const matchIndexL = hashLong[h2];
U32 const matchIndexS = hashSmall[h];
const BYTE *matchLong = base + matchIndexL;
const BYTE *match = base + matchIndexS;
hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
if ((offset_1 > 0) & (ZSTD_read32(ip + 1 - offset_1) == ZSTD_read32(ip + 1))) { /* note : by construction, offset_1 <= curr */
mLength = ZSTD_count(ip + 1 + 4, ip + 1 + 4 - offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
} else {
U32 offset;
if ((matchIndexL > lowestIndex) && (ZSTD_read64(matchLong) == ZSTD_read64(ip))) {
mLength = ZSTD_count(ip + 8, matchLong + 8, iend) + 8;
offset = (U32)(ip - matchLong);
while (((ip > anchor) & (matchLong > lowest)) && (ip[-1] == matchLong[-1])) {
ip--;
matchLong--;
mLength++;
} /* catch up */
} else if ((matchIndexS > lowestIndex) && (ZSTD_read32(match) == ZSTD_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip + 1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE *match3 = base + matchIndex3;
hashLong[h3] = curr + 1;
if ((matchIndex3 > lowestIndex) && (ZSTD_read64(match3) == ZSTD_read64(ip + 1))) {
mLength = ZSTD_count(ip + 9, match3 + 8, iend) + 8;
ip++;
offset = (U32)(ip - match3);
while (((ip > anchor) & (match3 > lowest)) && (ip[-1] == match3[-1])) {
ip--;
match3--;
mLength++;
} /* catch up */
} else {
mLength = ZSTD_count(ip + 4, match + 4, iend) + 4;
offset = (U32)(ip - match);
while (((ip > anchor) & (match > lowest)) && (ip[-1] == match[-1])) {
ip--;
match--;
mLength++;
} /* catch up */
}
} else {
ip += ((ip - anchor) >> g_searchStrength) + 1;
continue;
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
}
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashLong[ZSTD_hashPtr(base + curr + 2, hBitsL, 8)] = hashSmall[ZSTD_hashPtr(base + curr + 2, hBitsS, mls)] =
curr + 2; /* here because curr+2 could be > iend-8 */
hashLong[ZSTD_hashPtr(ip - 2, hBitsL, 8)] = hashSmall[ZSTD_hashPtr(ip - 2, hBitsS, mls)] = (U32)(ip - 2 - base);
/* check immediate repcode */
while ((ip <= ilimit) && ((offset_2 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_2)))) {
/* store sequence */
size_t const rLength = ZSTD_count(ip + 4, ip + 4 - offset_2, iend) + 4;
{
U32 const tmpOff = offset_2;
offset_2 = offset_1;
offset_1 = tmpOff;
} /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength - MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
}
/* save reps for next block */
cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
/* Last Literals */
{
size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
static void ZSTD_compressBlock_doubleFast(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
const U32 mls = ctx->params.cParams.searchLength;
switch (mls) {
default: /* includes case 3 */
case 4: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4); return;
case 5: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5); return;
case 6: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6); return;
case 7: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7); return;
}
}
static void ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 mls)
{
U32 *const hashLong = ctx->hashTable;
U32 const hBitsL = ctx->params.cParams.hashLog;
U32 *const hashSmall = ctx->chainTable;
U32 const hBitsS = ctx->params.cParams.chainLog;
seqStore_t *seqStorePtr = &(ctx->seqStore);
const BYTE *const base = ctx->base;
const BYTE *const dictBase = ctx->dictBase;
const BYTE *const istart = (const BYTE *)src;
const BYTE *ip = istart;
const BYTE *anchor = istart;
const U32 lowestIndex = ctx->lowLimit;
const BYTE *const dictStart = dictBase + lowestIndex;
const U32 dictLimit = ctx->dictLimit;
const BYTE *const lowPrefixPtr = base + dictLimit;
const BYTE *const dictEnd = dictBase + dictLimit;
const BYTE *const iend = istart + srcSize;
const BYTE *const ilimit = iend - 8;
U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 matchIndex = hashSmall[hSmall];
const BYTE *matchBase = matchIndex < dictLimit ? dictBase : base;
const BYTE *match = matchBase + matchIndex;
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
const U32 matchLongIndex = hashLong[hLong];
const BYTE *matchLongBase = matchLongIndex < dictLimit ? dictBase : base;
const BYTE *matchLong = matchLongBase + matchLongIndex;
const U32 curr = (U32)(ip - base);
const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
const BYTE *repBase = repIndex < dictLimit ? dictBase : base;
const BYTE *repMatch = repBase + repIndex;
size_t mLength;
hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
if ((((U32)((dictLimit - 1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex)) &&
(ZSTD_read32(repMatch) == ZSTD_read32(ip + 1))) {
const BYTE *repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip + 1 + 4, repMatch + 4, iend, repMatchEnd, lowPrefixPtr) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
} else {
if ((matchLongIndex > lowestIndex) && (ZSTD_read64(matchLong) == ZSTD_read64(ip))) {
const BYTE *matchEnd = matchLongIndex < dictLimit ? dictEnd : iend;
const BYTE *lowMatchPtr = matchLongIndex < dictLimit ? dictStart : lowPrefixPtr;
U32 offset;
mLength = ZSTD_count_2segments(ip + 8, matchLong + 8, iend, matchEnd, lowPrefixPtr) + 8;
offset = curr - matchLongIndex;
while (((ip > anchor) & (matchLong > lowMatchPtr)) && (ip[-1] == matchLong[-1])) {
ip--;
matchLong--;
mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
} else if ((matchIndex > lowestIndex) && (ZSTD_read32(match) == ZSTD_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip + 1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE *const match3Base = matchIndex3 < dictLimit ? dictBase : base;
const BYTE *match3 = match3Base + matchIndex3;
U32 offset;
hashLong[h3] = curr + 1;
if ((matchIndex3 > lowestIndex) && (ZSTD_read64(match3) == ZSTD_read64(ip + 1))) {
const BYTE *matchEnd = matchIndex3 < dictLimit ? dictEnd : iend;
const BYTE *lowMatchPtr = matchIndex3 < dictLimit ? dictStart : lowPrefixPtr;
mLength = ZSTD_count_2segments(ip + 9, match3 + 8, iend, matchEnd, lowPrefixPtr) + 8;
ip++;
offset = curr + 1 - matchIndex3;
while (((ip > anchor) & (match3 > lowMatchPtr)) && (ip[-1] == match3[-1])) {
ip--;
match3--;
mLength++;
} /* catch up */
} else {
const BYTE *matchEnd = matchIndex < dictLimit ? dictEnd : iend;
const BYTE *lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
mLength = ZSTD_count_2segments(ip + 4, match + 4, iend, matchEnd, lowPrefixPtr) + 4;
offset = curr - matchIndex;
while (((ip > anchor) & (match > lowMatchPtr)) && (ip[-1] == match[-1])) {
ip--;
match--;
mLength++;
} /* catch up */
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
} else {
ip += ((ip - anchor) >> g_searchStrength) + 1;
continue;
}
}
/* found a match : store it */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashSmall[ZSTD_hashPtr(base + curr + 2, hBitsS, mls)] = curr + 2;
hashLong[ZSTD_hashPtr(base + curr + 2, hBitsL, 8)] = curr + 2;
hashSmall[ZSTD_hashPtr(ip - 2, hBitsS, mls)] = (U32)(ip - 2 - base);
hashLong[ZSTD_hashPtr(ip - 2, hBitsL, 8)] = (U32)(ip - 2 - base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const curr2 = (U32)(ip - base);
U32 const repIndex2 = curr2 - offset_2;
const BYTE *repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
if ((((U32)((dictLimit - 1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
&& (ZSTD_read32(repMatch2) == ZSTD_read32(ip))) {
const BYTE *const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
size_t const repLength2 =
ZSTD_count_2segments(ip + EQUAL_READ32, repMatch2 + EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
U32 tmpOffset = offset_2;
offset_2 = offset_1;
offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2 - MINMATCH);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = curr2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = curr2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
}
/* save reps for next block */
ctx->repToConfirm[0] = offset_1;
ctx->repToConfirm[1] = offset_2;
/* Last Literals */
{
size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
static void ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
U32 const mls = ctx->params.cParams.searchLength;
switch (mls) {
default: /* includes case 3 */
case 4: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4); return;
case 5: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5); return;
case 6: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6); return;
case 7: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7); return;
}
}
/*-*************************************
* Binary Tree search
***************************************/
/** ZSTD_insertBt1() : add one or multiple positions to tree.
* ip : assumed <= iend-8 .
* @return : nb of positions added */
static U32 ZSTD_insertBt1(ZSTD_CCtx *zc, const BYTE *const ip, const U32 mls, const BYTE *const iend, U32 nbCompares, U32 extDict)
{
U32 *const hashTable = zc->hashTable;
U32 const hashLog = zc->params.cParams.hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32 *const bt = zc->chainTable;
U32 const btLog = zc->params.cParams.chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t commonLengthSmaller = 0, commonLengthLarger = 0;
const BYTE *const base = zc->base;
const BYTE *const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE *const dictEnd = dictBase + dictLimit;
const BYTE *const prefixStart = base + dictLimit;
const BYTE *match;
const U32 curr = (U32)(ip - base);
const U32 btLow = btMask >= curr ? 0 : curr - btMask;
U32 *smallerPtr = bt + 2 * (curr & btMask);
U32 *largerPtr = smallerPtr + 1;
U32 dummy32; /* to be nullified at the end */
U32 const windowLow = zc->lowLimit;
U32 matchEndIdx = curr + 8;
size_t bestLength = 8;
hashTable[h] = curr; /* Update Hash Table */
while (nbCompares-- && (matchIndex > windowLow)) {
U32 *const nextPtr = bt + 2 * (matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
if ((!extDict) || (matchIndex + matchLength >= dictLimit)) {
match = base + matchIndex;
if (match[matchLength] == ip[matchLength])
matchLength += ZSTD_count(ip + matchLength + 1, match + matchLength + 1, iend) + 1;
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip + matchLength, match + matchLength, iend, dictEnd, prefixStart);
if (matchIndex + matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
bestLength = matchLength;
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
}
if (ip + matchLength == iend) /* equal : no way to know if inf or sup */
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt the tree */
if (match[matchLength] < ip[matchLength]) { /* necessarily within correct buffer */
/* match is smaller than curr */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) {
smallerPtr = &dummy32;
break;
} /* beyond tree size, stop the search */
smallerPtr = nextPtr + 1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
} else {
/* match is larger than curr */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) {
largerPtr = &dummy32;
break;
} /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
}
}
*smallerPtr = *largerPtr = 0;
if (bestLength > 384)
return MIN(192, (U32)(bestLength - 384)); /* speed optimization */
if (matchEndIdx > curr + 8)
return matchEndIdx - curr - 8;
return 1;
}
static size_t ZSTD_insertBtAndFindBestMatch(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iend, size_t *offsetPtr, U32 nbCompares, const U32 mls,
U32 extDict)
{
U32 *const hashTable = zc->hashTable;
U32 const hashLog = zc->params.cParams.hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32 *const bt = zc->chainTable;
U32 const btLog = zc->params.cParams.chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t commonLengthSmaller = 0, commonLengthLarger = 0;
const BYTE *const base = zc->base;
const BYTE *const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE *const dictEnd = dictBase + dictLimit;
const BYTE *const prefixStart = base + dictLimit;
const U32 curr = (U32)(ip - base);
const U32 btLow = btMask >= curr ? 0 : curr - btMask;
const U32 windowLow = zc->lowLimit;
U32 *smallerPtr = bt + 2 * (curr & btMask);
U32 *largerPtr = bt + 2 * (curr & btMask) + 1;
U32 matchEndIdx = curr + 8;
U32 dummy32; /* to be nullified at the end */
size_t bestLength = 0;
hashTable[h] = curr; /* Update Hash Table */
while (nbCompares-- && (matchIndex > windowLow)) {
U32 *const nextPtr = bt + 2 * (matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE *match;
if ((!extDict) || (matchIndex + matchLength >= dictLimit)) {
match = base + matchIndex;
if (match[matchLength] == ip[matchLength])
matchLength += ZSTD_count(ip + matchLength + 1, match + matchLength + 1, iend) + 1;
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip + matchLength, match + matchLength, iend, dictEnd, prefixStart);
if (matchIndex + matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
if ((4 * (int)(matchLength - bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)offsetPtr[0] + 1)))
bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
if (ip + matchLength == iend) /* equal : no way to know if inf or sup */
break; /* drop, to guarantee consistency (miss a little bit of compression) */
}
if (match[matchLength] < ip[matchLength]) {
/* match is smaller than curr */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) {
smallerPtr = &dummy32;
break;
} /* beyond tree size, stop the search */
smallerPtr = nextPtr + 1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
} else {
/* match is larger than curr */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) {
largerPtr = &dummy32;
break;
} /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
}
}
*smallerPtr = *largerPtr = 0;
zc->nextToUpdate = (matchEndIdx > curr + 8) ? matchEndIdx - 8 : curr + 1;
return bestLength;
}
static void ZSTD_updateTree(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iend, const U32 nbCompares, const U32 mls)
{
const BYTE *const base = zc->base;
const U32 target = (U32)(ip - base);
U32 idx = zc->nextToUpdate;
while (idx < target)
idx += ZSTD_insertBt1(zc, base + idx, mls, iend, nbCompares, 0);
}
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
static size_t ZSTD_BtFindBestMatch(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts, const U32 mls)
{
if (ip < zc->base + zc->nextToUpdate)
return 0; /* skipped area */
ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 0);
}
static size_t ZSTD_BtFindBestMatch_selectMLS(ZSTD_CCtx *zc, /* Index table will be updated */
const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts, const U32 matchLengthSearch)
{
switch (matchLengthSearch) {
default: /* includes case 3 */
case 4: return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
case 5: return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
case 7:
case 6: return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
}
}
static void ZSTD_updateTree_extDict(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iend, const U32 nbCompares, const U32 mls)
{
const BYTE *const base = zc->base;
const U32 target = (U32)(ip - base);
U32 idx = zc->nextToUpdate;
while (idx < target)
idx += ZSTD_insertBt1(zc, base + idx, mls, iend, nbCompares, 1);
}
/** Tree updater, providing best match */
static size_t ZSTD_BtFindBestMatch_extDict(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
const U32 mls)
{
if (ip < zc->base + zc->nextToUpdate)
return 0; /* skipped area */
ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 1);
}
static size_t ZSTD_BtFindBestMatch_selectMLS_extDict(ZSTD_CCtx *zc, /* Index table will be updated */
const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
const U32 matchLengthSearch)
{
switch (matchLengthSearch) {
default: /* includes case 3 */
case 4: return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
case 5: return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
case 7:
case 6: return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
}
}
/* *********************************
* Hash Chain
***********************************/
#define NEXT_IN_CHAIN(d, mask) chainTable[(d)&mask]
/* Update chains up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
FORCE_INLINE
U32 ZSTD_insertAndFindFirstIndex(ZSTD_CCtx *zc, const BYTE *ip, U32 mls)
{
U32 *const hashTable = zc->hashTable;
const U32 hashLog = zc->params.cParams.hashLog;
U32 *const chainTable = zc->chainTable;
const U32 chainMask = (1 << zc->params.cParams.chainLog) - 1;
const BYTE *const base = zc->base;
const U32 target = (U32)(ip - base);
U32 idx = zc->nextToUpdate;
while (idx < target) { /* catch up */
size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls);
NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
hashTable[h] = idx;
idx++;
}
zc->nextToUpdate = target;
return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
}
/* inlining is important to hardwire a hot branch (template emulation) */
FORCE_INLINE
size_t ZSTD_HcFindBestMatch_generic(ZSTD_CCtx *zc, /* Index table will be updated */
const BYTE *const ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts, const U32 mls,
const U32 extDict)
{
U32 *const chainTable = zc->chainTable;
const U32 chainSize = (1 << zc->params.cParams.chainLog);
const U32 chainMask = chainSize - 1;
const BYTE *const base = zc->base;
const BYTE *const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE *const prefixStart = base + dictLimit;
const BYTE *const dictEnd = dictBase + dictLimit;
const U32 lowLimit = zc->lowLimit;
const U32 curr = (U32)(ip - base);
const U32 minChain = curr > chainSize ? curr - chainSize : 0;
int nbAttempts = maxNbAttempts;
size_t ml = EQUAL_READ32 - 1;
/* HC4 match finder */
U32 matchIndex = ZSTD_insertAndFindFirstIndex(zc, ip, mls);
for (; (matchIndex > lowLimit) & (nbAttempts > 0); nbAttempts--) {
const BYTE *match;
size_t currMl = 0;
if ((!extDict) || matchIndex >= dictLimit) {
match = base + matchIndex;
if (match[ml] == ip[ml]) /* potentially better */
currMl = ZSTD_count(ip, match, iLimit);
} else {
match = dictBase + matchIndex;
if (ZSTD_read32(match) == ZSTD_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
currMl = ZSTD_count_2segments(ip + EQUAL_READ32, match + EQUAL_READ32, iLimit, dictEnd, prefixStart) + EQUAL_READ32;
}
/* save best solution */
if (currMl > ml) {
ml = currMl;
*offsetPtr = curr - matchIndex + ZSTD_REP_MOVE;
if (ip + currMl == iLimit)
break; /* best possible, and avoid read overflow*/
}
if (matchIndex <= minChain)
break;
matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
}
return ml;
}
FORCE_INLINE size_t ZSTD_HcFindBestMatch_selectMLS(ZSTD_CCtx *zc, const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
const U32 matchLengthSearch)
{
switch (matchLengthSearch) {
default: /* includes case 3 */
case 4: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 0);
case 5: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 0);
case 7:
case 6: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 0);
}
}
FORCE_INLINE size_t ZSTD_HcFindBestMatch_extDict_selectMLS(ZSTD_CCtx *zc, const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
const U32 matchLengthSearch)
{
switch (matchLengthSearch) {
default: /* includes case 3 */
case 4: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 1);
case 5: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 1);
case 7:
case 6: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 1);
}
}
/* *******************************
* Common parser - lazy strategy
*********************************/
FORCE_INLINE
void ZSTD_compressBlock_lazy_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 searchMethod, const U32 depth)
{
seqStore_t *seqStorePtr = &(ctx->seqStore);
const BYTE *const istart = (const BYTE *)src;
const BYTE *ip = istart;
const BYTE *anchor = istart;
const BYTE *const iend = istart + srcSize;
const BYTE *const ilimit = iend - 8;
const BYTE *const base = ctx->base + ctx->dictLimit;
U32 const maxSearches = 1 << ctx->params.cParams.searchLog;
U32 const mls = ctx->params.cParams.searchLength;
typedef size_t (*searchMax_f)(ZSTD_CCtx * zc, const BYTE *ip, const BYTE *iLimit, size_t *offsetPtr, U32 maxNbAttempts, U32 matchLengthSearch);
searchMax_f const searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS;
U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1], savedOffset = 0;
/* init */
ip += (ip == base);
ctx->nextToUpdate3 = ctx->nextToUpdate;
{
U32 const maxRep = (U32)(ip - base);
if (offset_2 > maxRep)
savedOffset = offset_2, offset_2 = 0;
if (offset_1 > maxRep)
savedOffset = offset_1, offset_1 = 0;
}
/* Match Loop */
while (ip < ilimit) {
size_t matchLength = 0;
size_t offset = 0;
const BYTE *start = ip + 1;
/* check repCode */
if ((offset_1 > 0) & (ZSTD_read32(ip + 1) == ZSTD_read32(ip + 1 - offset_1))) {
/* repcode : we take it */
matchLength = ZSTD_count(ip + 1 + EQUAL_READ32, ip + 1 + EQUAL_READ32 - offset_1, iend) + EQUAL_READ32;
if (depth == 0)
goto _storeSequence;
}
/* first search (depth 0) */
{
size_t offsetFound = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
if (ml2 > matchLength)
matchLength = ml2, start = ip, offset = offsetFound;
}
if (matchLength < EQUAL_READ32) {
ip += ((ip - anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
continue;
}
/* let's try to find a better solution */
if (depth >= 1)
while (ip < ilimit) {
ip++;
if ((offset) && ((offset_1 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_1)))) {
size_t const mlRep = ZSTD_count(ip + EQUAL_READ32, ip + EQUAL_READ32 - offset_1, iend) + EQUAL_READ32;
int const gain2 = (int)(mlRep * 3);
int const gain1 = (int)(matchLength * 3 - ZSTD_highbit32((U32)offset + 1) + 1);
if ((mlRep >= EQUAL_READ32) && (gain2 > gain1))
matchLength = mlRep, offset = 0, start = ip;
}
{
size_t offset2 = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 4);
if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
matchLength = ml2, offset = offset2, start = ip;
continue; /* search a better one */
}
}
/* let's find an even better one */
if ((depth == 2) && (ip < ilimit)) {
ip++;
if ((offset) && ((offset_1 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_1)))) {
size_t const ml2 = ZSTD_count(ip + EQUAL_READ32, ip + EQUAL_READ32 - offset_1, iend) + EQUAL_READ32;
int const gain2 = (int)(ml2 * 4);
int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 1);
if ((ml2 >= EQUAL_READ32) && (gain2 > gain1))
matchLength = ml2, offset = 0, start = ip;
}
{
size_t offset2 = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 7);
if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
matchLength = ml2, offset = offset2, start = ip;
continue;
}
}
}
break; /* nothing found : store previous solution */
}
/* NOTE:
* start[-offset+ZSTD_REP_MOVE-1] is undefined behavior.
* (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which
* overflows the pointer, which is undefined behavior.
*/
/* catch up */
if (offset) {
while ((start > anchor) && (start > base + offset - ZSTD_REP_MOVE) &&
(start[-1] == (start-offset+ZSTD_REP_MOVE)[-1])) /* only search for offset within prefix */
{
start--;
matchLength++;
}
offset_2 = offset_1;
offset_1 = (U32)(offset - ZSTD_REP_MOVE);
}
/* store sequence */
_storeSequence:
{
size_t const litLength = start - anchor;
ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength - MINMATCH);
anchor = ip = start + matchLength;
}
/* check immediate repcode */
while ((ip <= ilimit) && ((offset_2 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_2)))) {
/* store sequence */
matchLength = ZSTD_count(ip + EQUAL_READ32, ip + EQUAL_READ32 - offset_2, iend) + EQUAL_READ32;
offset = offset_2;
offset_2 = offset_1;
offset_1 = (U32)offset; /* swap repcodes */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength - MINMATCH);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
/* Save reps for next block */
ctx->repToConfirm[0] = offset_1 ? offset_1 : savedOffset;
ctx->repToConfirm[1] = offset_2 ? offset_2 : savedOffset;
/* Last Literals */
{
size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
static void ZSTD_compressBlock_btlazy2(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 1, 2); }
static void ZSTD_compressBlock_lazy2(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 2); }
static void ZSTD_compressBlock_lazy(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 1); }
static void ZSTD_compressBlock_greedy(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 0); }
FORCE_INLINE
void ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 searchMethod, const U32 depth)
{
seqStore_t *seqStorePtr = &(ctx->seqStore);
const BYTE *const istart = (const BYTE *)src;
const BYTE *ip = istart;
const BYTE *anchor = istart;
const BYTE *const iend = istart + srcSize;
const BYTE *const ilimit = iend - 8;
const BYTE *const base = ctx->base;
const U32 dictLimit = ctx->dictLimit;
const U32 lowestIndex = ctx->lowLimit;
const BYTE *const prefixStart = base + dictLimit;
const BYTE *const dictBase = ctx->dictBase;
const BYTE *const dictEnd = dictBase + dictLimit;
const BYTE *const dictStart = dictBase + ctx->lowLimit;
const U32 maxSearches = 1 << ctx->params.cParams.searchLog;
const U32 mls = ctx->params.cParams.searchLength;
typedef size_t (*searchMax_f)(ZSTD_CCtx * zc, const BYTE *ip, const BYTE *iLimit, size_t *offsetPtr, U32 maxNbAttempts, U32 matchLengthSearch);
searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS_extDict : ZSTD_HcFindBestMatch_extDict_selectMLS;
U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
/* init */
ctx->nextToUpdate3 = ctx->nextToUpdate;
ip += (ip == prefixStart);
/* Match Loop */
while (ip < ilimit) {
size_t matchLength = 0;
size_t offset = 0;
const BYTE *start = ip + 1;
U32 curr = (U32)(ip - base);
/* check repCode */
{
const U32 repIndex = (U32)(curr + 1 - offset_1);
const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE *const repMatch = repBase + repIndex;
if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
if (ZSTD_read32(ip + 1) == ZSTD_read32(repMatch)) {
/* repcode detected we should take it */
const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
matchLength =
ZSTD_count_2segments(ip + 1 + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
if (depth == 0)
goto _storeSequence;
}
}
/* first search (depth 0) */
{
size_t offsetFound = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
if (ml2 > matchLength)
matchLength = ml2, start = ip, offset = offsetFound;
}
if (matchLength < EQUAL_READ32) {
ip += ((ip - anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
continue;
}
/* let's try to find a better solution */
if (depth >= 1)
while (ip < ilimit) {
ip++;
curr++;
/* check repCode */
if (offset) {
const U32 repIndex = (U32)(curr - offset_1);
const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE *const repMatch = repBase + repIndex;
if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
if (ZSTD_read32(ip) == ZSTD_read32(repMatch)) {
/* repcode detected */
const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
size_t const repLength =
ZSTD_count_2segments(ip + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repEnd, prefixStart) +
EQUAL_READ32;
int const gain2 = (int)(repLength * 3);
int const gain1 = (int)(matchLength * 3 - ZSTD_highbit32((U32)offset + 1) + 1);
if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
matchLength = repLength, offset = 0, start = ip;
}
}
/* search match, depth 1 */
{
size_t offset2 = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 4);
if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
matchLength = ml2, offset = offset2, start = ip;
continue; /* search a better one */
}
}
/* let's find an even better one */
if ((depth == 2) && (ip < ilimit)) {
ip++;
curr++;
/* check repCode */
if (offset) {
const U32 repIndex = (U32)(curr - offset_1);
const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE *const repMatch = repBase + repIndex;
if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
if (ZSTD_read32(ip) == ZSTD_read32(repMatch)) {
/* repcode detected */
const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
size_t repLength = ZSTD_count_2segments(ip + EQUAL_READ32, repMatch + EQUAL_READ32, iend,
repEnd, prefixStart) +
EQUAL_READ32;
int gain2 = (int)(repLength * 4);
int gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 1);
if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
matchLength = repLength, offset = 0, start = ip;
}
}
/* search match, depth 2 */
{
size_t offset2 = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 7);
if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
matchLength = ml2, offset = offset2, start = ip;
continue;
}
}
}
break; /* nothing found : store previous solution */
}
/* catch up */
if (offset) {
U32 const matchIndex = (U32)((start - base) - (offset - ZSTD_REP_MOVE));
const BYTE *match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
const BYTE *const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
while ((start > anchor) && (match > mStart) && (start[-1] == match[-1])) {
start--;
match--;
matchLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = (U32)(offset - ZSTD_REP_MOVE);
}
/* store sequence */
_storeSequence : {
size_t const litLength = start - anchor;
ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength - MINMATCH);
anchor = ip = start + matchLength;
}
/* check immediate repcode */
while (ip <= ilimit) {
const U32 repIndex = (U32)((ip - base) - offset_2);
const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE *const repMatch = repBase + repIndex;
if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
if (ZSTD_read32(ip) == ZSTD_read32(repMatch)) {
/* repcode detected we should take it */
const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
matchLength =
ZSTD_count_2segments(ip + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
offset = offset_2;
offset_2 = offset_1;
offset_1 = (U32)offset; /* swap offset history */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength - MINMATCH);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
break;
}
}
/* Save reps for next block */
ctx->repToConfirm[0] = offset_1;
ctx->repToConfirm[1] = offset_2;
/* Last Literals */
{
size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
void ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 0); }
static void ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 1);
}
static void ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 2);
}
static void ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 1, 2);
}
/* The optimal parser */
#include "zstd_opt.h"
static void ZSTD_compressBlock_btopt(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
#ifdef ZSTD_OPT_H_91842398743
ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0);
#else
(void)ctx;
(void)src;
(void)srcSize;
return;
#endif
}
static void ZSTD_compressBlock_btopt2(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
#ifdef ZSTD_OPT_H_91842398743
ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 1);
#else
(void)ctx;
(void)src;
(void)srcSize;
return;
#endif
}
static void ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
#ifdef ZSTD_OPT_H_91842398743
ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 0);
#else
(void)ctx;
(void)src;
(void)srcSize;
return;
#endif
}
static void ZSTD_compressBlock_btopt2_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
{
#ifdef ZSTD_OPT_H_91842398743
ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 1);
#else
(void)ctx;
(void)src;
(void)srcSize;
return;
#endif
}
typedef void (*ZSTD_blockCompressor)(ZSTD_CCtx *ctx, const void *src, size_t srcSize);
static ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict)
{
static const ZSTD_blockCompressor blockCompressor[2][8] = {
{ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2,
ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btopt2},
{ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict,
ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btopt2_extDict}};
return blockCompressor[extDict][(U32)strat];
}
static size_t ZSTD_compressBlock_internal(ZSTD_CCtx *zc, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->params.cParams.strategy, zc->lowLimit < zc->dictLimit);
const BYTE *const base = zc->base;
const BYTE *const istart = (const BYTE *)src;
const U32 curr = (U32)(istart - base);
if (srcSize < MIN_CBLOCK_SIZE + ZSTD_blockHeaderSize + 1)
return 0; /* don't even attempt compression below a certain srcSize */
ZSTD_resetSeqStore(&(zc->seqStore));
if (curr > zc->nextToUpdate + 384)
zc->nextToUpdate = curr - MIN(192, (U32)(curr - zc->nextToUpdate - 384)); /* update tree not updated after finding very long rep matches */
blockCompressor(zc, src, srcSize);
return ZSTD_compressSequences(zc, dst, dstCapacity, srcSize);
}
/*! ZSTD_compress_generic() :
* Compress a chunk of data into one or multiple blocks.
* All blocks will be terminated, all input will be consumed.
* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
* Frame is supposed already started (header already produced)
* @return : compressed size, or an error code
*/
static size_t ZSTD_compress_generic(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, U32 lastFrameChunk)
{
size_t blockSize = cctx->blockSize;
size_t remaining = srcSize;
const BYTE *ip = (const BYTE *)src;
BYTE *const ostart = (BYTE *)dst;
BYTE *op = ostart;
U32 const maxDist = 1 << cctx->params.cParams.windowLog;
if (cctx->params.fParams.checksumFlag && srcSize)
xxh64_update(&cctx->xxhState, src, srcSize);
while (remaining) {
U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
size_t cSize;
if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE)
return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */
if (remaining < blockSize)
blockSize = remaining;
/* preemptive overflow correction */
if (cctx->lowLimit > (3U << 29)) {
U32 const cycleMask = (1 << ZSTD_cycleLog(cctx->params.cParams.hashLog, cctx->params.cParams.strategy)) - 1;
U32 const curr = (U32)(ip - cctx->base);
U32 const newCurr = (curr & cycleMask) + (1 << cctx->params.cParams.windowLog);
U32 const correction = curr - newCurr;
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_64 <= 30);
ZSTD_reduceIndex(cctx, correction);
cctx->base += correction;
cctx->dictBase += correction;
cctx->lowLimit -= correction;
cctx->dictLimit -= correction;
if (cctx->nextToUpdate < correction)
cctx->nextToUpdate = 0;
else
cctx->nextToUpdate -= correction;
}
if ((U32)(ip + blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) {
/* enforce maxDist */
U32 const newLowLimit = (U32)(ip + blockSize - cctx->base) - maxDist;
if (cctx->lowLimit < newLowLimit)
cctx->lowLimit = newLowLimit;
if (cctx->dictLimit < cctx->lowLimit)
cctx->dictLimit = cctx->lowLimit;
}
cSize = ZSTD_compressBlock_internal(cctx, op + ZSTD_blockHeaderSize, dstCapacity - ZSTD_blockHeaderSize, ip, blockSize);
if (ZSTD_isError(cSize))
return cSize;
if (cSize == 0) { /* block is not compressible */
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw) << 1) + (U32)(blockSize << 3);
if (blockSize + ZSTD_blockHeaderSize > dstCapacity)
return ERROR(dstSize_tooSmall);
ZSTD_writeLE32(op, cBlockHeader24); /* no pb, 4th byte will be overwritten */
memcpy(op + ZSTD_blockHeaderSize, ip, blockSize);
cSize = ZSTD_blockHeaderSize + blockSize;
} else {
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed) << 1) + (U32)(cSize << 3);
ZSTD_writeLE24(op, cBlockHeader24);
cSize += ZSTD_blockHeaderSize;
}
remaining -= blockSize;
dstCapacity -= cSize;
ip += blockSize;
op += cSize;
}
if (lastFrameChunk && (op > ostart))
cctx->stage = ZSTDcs_ending;
return op - ostart;
}
static size_t ZSTD_writeFrameHeader(void *dst, size_t dstCapacity, ZSTD_parameters params, U64 pledgedSrcSize, U32 dictID)
{
BYTE *const op = (BYTE *)dst;
U32 const dictIDSizeCode = (dictID > 0) + (dictID >= 256) + (dictID >= 65536); /* 0-3 */
U32 const checksumFlag = params.fParams.checksumFlag > 0;
U32 const windowSize = 1U << params.cParams.windowLog;
U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
U32 const fcsCode =
params.fParams.contentSizeFlag ? (pledgedSrcSize >= 256) + (pledgedSrcSize >= 65536 + 256) + (pledgedSrcSize >= 0xFFFFFFFFU) : 0; /* 0-3 */
BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag << 2) + (singleSegment << 5) + (fcsCode << 6));
size_t pos;
if (dstCapacity < ZSTD_frameHeaderSize_max)
return ERROR(dstSize_tooSmall);
ZSTD_writeLE32(dst, ZSTD_MAGICNUMBER);
op[4] = frameHeaderDecriptionByte;
pos = 5;
if (!singleSegment)
op[pos++] = windowLogByte;
switch (dictIDSizeCode) {
default: /* impossible */
case 0: break;
case 1:
op[pos] = (BYTE)(dictID);
pos++;
break;
case 2:
ZSTD_writeLE16(op + pos, (U16)dictID);
pos += 2;
break;
case 3:
ZSTD_writeLE32(op + pos, dictID);
pos += 4;
break;
}
switch (fcsCode) {
default: /* impossible */
case 0:
if (singleSegment)
op[pos++] = (BYTE)(pledgedSrcSize);
break;
case 1:
ZSTD_writeLE16(op + pos, (U16)(pledgedSrcSize - 256));
pos += 2;
break;
case 2:
ZSTD_writeLE32(op + pos, (U32)(pledgedSrcSize));
pos += 4;
break;
case 3:
ZSTD_writeLE64(op + pos, (U64)(pledgedSrcSize));
pos += 8;
break;
}
return pos;
}
static size_t ZSTD_compressContinue_internal(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, U32 frame, U32 lastFrameChunk)
{
const BYTE *const ip = (const BYTE *)src;
size_t fhSize = 0;
if (cctx->stage == ZSTDcs_created)
return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */
if (frame && (cctx->stage == ZSTDcs_init)) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, cctx->frameContentSize, cctx->dictID);
if (ZSTD_isError(fhSize))
return fhSize;
dstCapacity -= fhSize;
dst = (char *)dst + fhSize;
cctx->stage = ZSTDcs_ongoing;
}
/* Check if blocks follow each other */
if (src != cctx->nextSrc) {
/* not contiguous */
ptrdiff_t const delta = cctx->nextSrc - ip;
cctx->lowLimit = cctx->dictLimit;
cctx->dictLimit = (U32)(cctx->nextSrc - cctx->base);
cctx->dictBase = cctx->base;
cctx->base -= delta;
cctx->nextToUpdate = cctx->dictLimit;
if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE)
cctx->lowLimit = cctx->dictLimit; /* too small extDict */
}
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ((ip + srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx;
cctx->lowLimit = lowLimitMax;
}
cctx->nextSrc = ip + srcSize;
if (srcSize) {
size_t const cSize = frame ? ZSTD_compress_generic(cctx, dst, dstCapacity, src, srcSize, lastFrameChunk)
: ZSTD_compressBlock_internal(cctx, dst, dstCapacity, src, srcSize);
if (ZSTD_isError(cSize))
return cSize;
return cSize + fhSize;
} else
return fhSize;
}
size_t ZSTD_compressContinue(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 0);
}
size_t ZSTD_getBlockSizeMax(ZSTD_CCtx *cctx) { return MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << cctx->params.cParams.windowLog); }
size_t ZSTD_compressBlock(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
size_t const blockSizeMax = ZSTD_getBlockSizeMax(cctx);
if (srcSize > blockSizeMax)
return ERROR(srcSize_wrong);
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0, 0);
}
/*! ZSTD_loadDictionaryContent() :
* @return : 0, or an error code
*/
static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx *zc, const void *src, size_t srcSize)
{
const BYTE *const ip = (const BYTE *)src;
const BYTE *const iend = ip + srcSize;
/* input becomes curr prefix */
zc->lowLimit = zc->dictLimit;
zc->dictLimit = (U32)(zc->nextSrc - zc->base);
zc->dictBase = zc->base;
zc->base += ip - zc->nextSrc;
zc->nextToUpdate = zc->dictLimit;
zc->loadedDictEnd = zc->forceWindow ? 0 : (U32)(iend - zc->base);
zc->nextSrc = iend;
if (srcSize <= HASH_READ_SIZE)
return 0;
switch (zc->params.cParams.strategy) {
case ZSTD_fast: ZSTD_fillHashTable(zc, iend, zc->params.cParams.searchLength); break;
case ZSTD_dfast: ZSTD_fillDoubleHashTable(zc, iend, zc->params.cParams.searchLength); break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
if (srcSize >= HASH_READ_SIZE)
ZSTD_insertAndFindFirstIndex(zc, iend - HASH_READ_SIZE, zc->params.cParams.searchLength);
break;
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btopt2:
if (srcSize >= HASH_READ_SIZE)
ZSTD_updateTree(zc, iend - HASH_READ_SIZE, iend, 1 << zc->params.cParams.searchLog, zc->params.cParams.searchLength);
break;
default:
return ERROR(GENERIC); /* strategy doesn't exist; impossible */
}
zc->nextToUpdate = (U32)(iend - zc->base);
return 0;
}
/* Dictionaries that assign zero probability to symbols that show up causes problems
when FSE encoding. Refuse dictionaries that assign zero probability to symbols
that we may encounter during compression.
NOTE: This behavior is not standard and could be improved in the future. */
static size_t ZSTD_checkDictNCount(short *normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue)
{
U32 s;
if (dictMaxSymbolValue < maxSymbolValue)
return ERROR(dictionary_corrupted);
for (s = 0; s <= maxSymbolValue; ++s) {
if (normalizedCounter[s] == 0)
return ERROR(dictionary_corrupted);
}
return 0;
}
/* Dictionary format :
* See :
* https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
*/
/*! ZSTD_loadZstdDictionary() :
* @return : 0, or an error code
* assumptions : magic number supposed already checked
* dictSize supposed > 8
*/
static size_t ZSTD_loadZstdDictionary(ZSTD_CCtx *cctx, const void *dict, size_t dictSize)
{
const BYTE *dictPtr = (const BYTE *)dict;
const BYTE *const dictEnd = dictPtr + dictSize;
short offcodeNCount[MaxOff + 1];
unsigned offcodeMaxValue = MaxOff;
dictPtr += 4; /* skip magic number */
cctx->dictID = cctx->params.fParams.noDictIDFlag ? 0 : ZSTD_readLE32(dictPtr);
dictPtr += 4;
{
size_t const hufHeaderSize = HUF_readCTable_wksp(cctx->hufTable, 255, dictPtr, dictEnd - dictPtr, cctx->tmpCounters, sizeof(cctx->tmpCounters));
if (HUF_isError(hufHeaderSize))
return ERROR(dictionary_corrupted);
dictPtr += hufHeaderSize;
}
{
unsigned offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd - dictPtr);
if (FSE_isError(offcodeHeaderSize))
return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog)
return ERROR(dictionary_corrupted);
/* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
CHECK_E(FSE_buildCTable_wksp(cctx->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, cctx->tmpCounters, sizeof(cctx->tmpCounters)),
dictionary_corrupted);
dictPtr += offcodeHeaderSize;
}
{
short matchlengthNCount[MaxML + 1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd - dictPtr);
if (FSE_isError(matchlengthHeaderSize))
return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog)
return ERROR(dictionary_corrupted);
/* Every match length code must have non-zero probability */
CHECK_F(ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
CHECK_E(
FSE_buildCTable_wksp(cctx->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, cctx->tmpCounters, sizeof(cctx->tmpCounters)),
dictionary_corrupted);
dictPtr += matchlengthHeaderSize;
}
{
short litlengthNCount[MaxLL + 1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd - dictPtr);
if (FSE_isError(litlengthHeaderSize))
return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog)
return ERROR(dictionary_corrupted);
/* Every literal length code must have non-zero probability */
CHECK_F(ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
CHECK_E(FSE_buildCTable_wksp(cctx->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, cctx->tmpCounters, sizeof(cctx->tmpCounters)),
dictionary_corrupted);
dictPtr += litlengthHeaderSize;
}
if (dictPtr + 12 > dictEnd)
return ERROR(dictionary_corrupted);
cctx->rep[0] = ZSTD_readLE32(dictPtr + 0);
cctx->rep[1] = ZSTD_readLE32(dictPtr + 4);
cctx->rep[2] = ZSTD_readLE32(dictPtr + 8);
dictPtr += 12;
{
size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
U32 offcodeMax = MaxOff;
if (dictContentSize <= ((U32)-1) - 128 KB) {
U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
}
/* All offset values <= dictContentSize + 128 KB must be representable */
CHECK_F(ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
/* All repCodes must be <= dictContentSize and != 0*/
{
U32 u;
for (u = 0; u < 3; u++) {
if (cctx->rep[u] == 0)
return ERROR(dictionary_corrupted);
if (cctx->rep[u] > dictContentSize)
return ERROR(dictionary_corrupted);
}
}
cctx->flagStaticTables = 1;
cctx->flagStaticHufTable = HUF_repeat_valid;
return ZSTD_loadDictionaryContent(cctx, dictPtr, dictContentSize);
}
}
/** ZSTD_compress_insertDictionary() :
* @return : 0, or an error code */
static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx *cctx, const void *dict, size_t dictSize)
{
if ((dict == NULL) || (dictSize <= 8))
return 0;
/* dict as pure content */
if ((ZSTD_readLE32(dict) != ZSTD_DICT_MAGIC) || (cctx->forceRawDict))
return ZSTD_loadDictionaryContent(cctx, dict, dictSize);
/* dict as zstd dictionary */
return ZSTD_loadZstdDictionary(cctx, dict, dictSize);
}
/*! ZSTD_compressBegin_internal() :
* @return : 0, or an error code */
static size_t ZSTD_compressBegin_internal(ZSTD_CCtx *cctx, const void *dict, size_t dictSize, ZSTD_parameters params, U64 pledgedSrcSize)
{
ZSTD_compResetPolicy_e const crp = dictSize ? ZSTDcrp_fullReset : ZSTDcrp_continue;
CHECK_F(ZSTD_resetCCtx_advanced(cctx, params, pledgedSrcSize, crp));
return ZSTD_compress_insertDictionary(cctx, dict, dictSize);
}
/*! ZSTD_compressBegin_advanced() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_advanced(ZSTD_CCtx *cctx, const void *dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
/* compression parameters verification and optimization */
CHECK_F(ZSTD_checkCParams(params.cParams));
return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, pledgedSrcSize);
}
size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx *cctx, const void *dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, 0);
}
size_t ZSTD_compressBegin(ZSTD_CCtx *cctx, int compressionLevel) { return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); }
/*! ZSTD_writeEpilogue() :
* Ends a frame.
* @return : nb of bytes written into dst (or an error code) */
static size_t ZSTD_writeEpilogue(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity)
{
BYTE *const ostart = (BYTE *)dst;
BYTE *op = ostart;
size_t fhSize = 0;
if (cctx->stage == ZSTDcs_created)
return ERROR(stage_wrong); /* init missing */
/* special case : empty frame */
if (cctx->stage == ZSTDcs_init) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, 0, 0);
if (ZSTD_isError(fhSize))
return fhSize;
dstCapacity -= fhSize;
op += fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (cctx->stage != ZSTDcs_ending) {
/* write one last empty block, make it the "last" block */
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw) << 1) + 0;
if (dstCapacity < 4)
return ERROR(dstSize_tooSmall);
ZSTD_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
}
if (cctx->params.fParams.checksumFlag) {
U32 const checksum = (U32)xxh64_digest(&cctx->xxhState);
if (dstCapacity < 4)
return ERROR(dstSize_tooSmall);
ZSTD_writeLE32(op, checksum);
op += 4;
}
cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
return op - ostart;
}
size_t ZSTD_compressEnd(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
size_t endResult;
size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 1);
if (ZSTD_isError(cSize))
return cSize;
endResult = ZSTD_writeEpilogue(cctx, (char *)dst + cSize, dstCapacity - cSize);
if (ZSTD_isError(endResult))
return endResult;
return cSize + endResult;
}
static size_t ZSTD_compress_internal(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const void *dict, size_t dictSize,
ZSTD_parameters params)
{
CHECK_F(ZSTD_compressBegin_internal(cctx, dict, dictSize, params, srcSize));
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTD_compress_usingDict(ZSTD_CCtx *ctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const void *dict, size_t dictSize,
ZSTD_parameters params)
{
return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
}
size_t ZSTD_compressCCtx(ZSTD_CCtx *ctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, ZSTD_parameters params)
{
return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, NULL, 0, params);
}
/* ===== Dictionary API ===== */
struct ZSTD_CDict_s {
void *dictBuffer;
const void *dictContent;
size_t dictContentSize;
ZSTD_CCtx *refContext;
}; /* typedef'd tp ZSTD_CDict within "zstd.h" */
size_t ZSTD_CDictWorkspaceBound(ZSTD_compressionParameters cParams) { return ZSTD_CCtxWorkspaceBound(cParams) + ZSTD_ALIGN(sizeof(ZSTD_CDict)); }
static ZSTD_CDict *ZSTD_createCDict_advanced(const void *dictBuffer, size_t dictSize, unsigned byReference, ZSTD_parameters params, ZSTD_customMem customMem)
{
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
{
ZSTD_CDict *const cdict = (ZSTD_CDict *)ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
ZSTD_CCtx *const cctx = ZSTD_createCCtx_advanced(customMem);
if (!cdict || !cctx) {
ZSTD_free(cdict, customMem);
ZSTD_freeCCtx(cctx);
return NULL;
}
if ((byReference) || (!dictBuffer) || (!dictSize)) {
cdict->dictBuffer = NULL;
cdict->dictContent = dictBuffer;
} else {
void *const internalBuffer = ZSTD_malloc(dictSize, customMem);
if (!internalBuffer) {
ZSTD_free(cctx, customMem);
ZSTD_free(cdict, customMem);
return NULL;
}
memcpy(internalBuffer, dictBuffer, dictSize);
cdict->dictBuffer = internalBuffer;
cdict->dictContent = internalBuffer;
}
{
size_t const errorCode = ZSTD_compressBegin_advanced(cctx, cdict->dictContent, dictSize, params, 0);
if (ZSTD_isError(errorCode)) {
ZSTD_free(cdict->dictBuffer, customMem);
ZSTD_free(cdict, customMem);
ZSTD_freeCCtx(cctx);
return NULL;
}
}
cdict->refContext = cctx;
cdict->dictContentSize = dictSize;
return cdict;
}
}
ZSTD_CDict *ZSTD_initCDict(const void *dict, size_t dictSize, ZSTD_parameters params, void *workspace, size_t workspaceSize)
{
ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
return ZSTD_createCDict_advanced(dict, dictSize, 1, params, stackMem);
}
size_t ZSTD_freeCDict(ZSTD_CDict *cdict)
{
if (cdict == NULL)
return 0; /* support free on NULL */
{
ZSTD_customMem const cMem = cdict->refContext->customMem;
ZSTD_freeCCtx(cdict->refContext);
ZSTD_free(cdict->dictBuffer, cMem);
ZSTD_free(cdict, cMem);
return 0;
}
}
static ZSTD_parameters ZSTD_getParamsFromCDict(const ZSTD_CDict *cdict) { return ZSTD_getParamsFromCCtx(cdict->refContext); }
size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx *cctx, const ZSTD_CDict *cdict, unsigned long long pledgedSrcSize)
{
if (cdict->dictContentSize)
CHECK_F(ZSTD_copyCCtx(cctx, cdict->refContext, pledgedSrcSize))
else {
ZSTD_parameters params = cdict->refContext->params;
params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
CHECK_F(ZSTD_compressBegin_advanced(cctx, NULL, 0, params, pledgedSrcSize));
}
return 0;
}
/*! ZSTD_compress_usingCDict() :
* Compression using a digested Dictionary.
* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
* Note that compression level is decided during dictionary creation */
size_t ZSTD_compress_usingCDict(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const ZSTD_CDict *cdict)
{
CHECK_F(ZSTD_compressBegin_usingCDict(cctx, cdict, srcSize));
if (cdict->refContext->params.fParams.contentSizeFlag == 1) {
cctx->params.fParams.contentSizeFlag = 1;
cctx->frameContentSize = srcSize;
} else {
cctx->params.fParams.contentSizeFlag = 0;
}
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
/* ******************************************************************
* Streaming
********************************************************************/
typedef enum { zcss_init, zcss_load, zcss_flush, zcss_final } ZSTD_cStreamStage;
struct ZSTD_CStream_s {
ZSTD_CCtx *cctx;
ZSTD_CDict *cdictLocal;
const ZSTD_CDict *cdict;
char *inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
size_t blockSize;
char *outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZSTD_cStreamStage stage;
U32 checksum;
U32 frameEnded;
U64 pledgedSrcSize;
U64 inputProcessed;
ZSTD_parameters params;
ZSTD_customMem customMem;
}; /* typedef'd to ZSTD_CStream within "zstd.h" */
size_t ZSTD_CStreamWorkspaceBound(ZSTD_compressionParameters cParams)
{
size_t const inBuffSize = (size_t)1 << cParams.windowLog;
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, inBuffSize);
size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1;
return ZSTD_CCtxWorkspaceBound(cParams) + ZSTD_ALIGN(sizeof(ZSTD_CStream)) + ZSTD_ALIGN(inBuffSize) + ZSTD_ALIGN(outBuffSize);
}
ZSTD_CStream *ZSTD_createCStream_advanced(ZSTD_customMem customMem)
{
ZSTD_CStream *zcs;
if (!customMem.customAlloc || !customMem.customFree)
return NULL;
zcs = (ZSTD_CStream *)ZSTD_malloc(sizeof(ZSTD_CStream), customMem);
if (zcs == NULL)
return NULL;
memset(zcs, 0, sizeof(ZSTD_CStream));
memcpy(&zcs->customMem, &customMem, sizeof(ZSTD_customMem));
zcs->cctx = ZSTD_createCCtx_advanced(customMem);
if (zcs->cctx == NULL) {
ZSTD_freeCStream(zcs);
return NULL;
}
return zcs;
}
size_t ZSTD_freeCStream(ZSTD_CStream *zcs)
{
if (zcs == NULL)
return 0; /* support free on NULL */
{
ZSTD_customMem const cMem = zcs->customMem;
ZSTD_freeCCtx(zcs->cctx);
zcs->cctx = NULL;
ZSTD_freeCDict(zcs->cdictLocal);
zcs->cdictLocal = NULL;
ZSTD_free(zcs->inBuff, cMem);
zcs->inBuff = NULL;
ZSTD_free(zcs->outBuff, cMem);
zcs->outBuff = NULL;
ZSTD_free(zcs, cMem);
return 0;
}
}
/*====== Initialization ======*/
size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_ABSOLUTEMAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */; }
static size_t ZSTD_resetCStream_internal(ZSTD_CStream *zcs, unsigned long long pledgedSrcSize)
{
if (zcs->inBuffSize == 0)
return ERROR(stage_wrong); /* zcs has not been init at least once => can't reset */
if (zcs->cdict)
CHECK_F(ZSTD_compressBegin_usingCDict(zcs->cctx, zcs->cdict, pledgedSrcSize))
else
CHECK_F(ZSTD_compressBegin_advanced(zcs->cctx, NULL, 0, zcs->params, pledgedSrcSize));
zcs->inToCompress = 0;
zcs->inBuffPos = 0;
zcs->inBuffTarget = zcs->blockSize;
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
zcs->stage = zcss_load;
zcs->frameEnded = 0;
zcs->pledgedSrcSize = pledgedSrcSize;
zcs->inputProcessed = 0;
return 0; /* ready to go */
}
size_t ZSTD_resetCStream(ZSTD_CStream *zcs, unsigned long long pledgedSrcSize)
{
zcs->params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
return ZSTD_resetCStream_internal(zcs, pledgedSrcSize);
}
static size_t ZSTD_initCStream_advanced(ZSTD_CStream *zcs, const void *dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
/* allocate buffers */
{
size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
if (zcs->inBuffSize < neededInBuffSize) {
zcs->inBuffSize = neededInBuffSize;
ZSTD_free(zcs->inBuff, zcs->customMem);
zcs->inBuff = (char *)ZSTD_malloc(neededInBuffSize, zcs->customMem);
if (zcs->inBuff == NULL)
return ERROR(memory_allocation);
}
zcs->blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, neededInBuffSize);
}
if (zcs->outBuffSize < ZSTD_compressBound(zcs->blockSize) + 1) {
zcs->outBuffSize = ZSTD_compressBound(zcs->blockSize) + 1;
ZSTD_free(zcs->outBuff, zcs->customMem);
zcs->outBuff = (char *)ZSTD_malloc(zcs->outBuffSize, zcs->customMem);
if (zcs->outBuff == NULL)
return ERROR(memory_allocation);
}
if (dict && dictSize >= 8) {
ZSTD_freeCDict(zcs->cdictLocal);
zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 0, params, zcs->customMem);
if (zcs->cdictLocal == NULL)
return ERROR(memory_allocation);
zcs->cdict = zcs->cdictLocal;
} else
zcs->cdict = NULL;
zcs->checksum = params.fParams.checksumFlag > 0;
zcs->params = params;
return ZSTD_resetCStream_internal(zcs, pledgedSrcSize);
}
ZSTD_CStream *ZSTD_initCStream(ZSTD_parameters params, unsigned long long pledgedSrcSize, void *workspace, size_t workspaceSize)
{
ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
ZSTD_CStream *const zcs = ZSTD_createCStream_advanced(stackMem);
if (zcs) {
size_t const code = ZSTD_initCStream_advanced(zcs, NULL, 0, params, pledgedSrcSize);
if (ZSTD_isError(code)) {
return NULL;
}
}
return zcs;
}
ZSTD_CStream *ZSTD_initCStream_usingCDict(const ZSTD_CDict *cdict, unsigned long long pledgedSrcSize, void *workspace, size_t workspaceSize)
{
ZSTD_parameters const params = ZSTD_getParamsFromCDict(cdict);
ZSTD_CStream *const zcs = ZSTD_initCStream(params, pledgedSrcSize, workspace, workspaceSize);
if (zcs) {
zcs->cdict = cdict;
if (ZSTD_isError(ZSTD_resetCStream_internal(zcs, pledgedSrcSize))) {
return NULL;
}
}
return zcs;
}
/*====== Compression ======*/
typedef enum { zsf_gather, zsf_flush, zsf_end } ZSTD_flush_e;
ZSTD_STATIC size_t ZSTD_limitCopy(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
memcpy(dst, src, length);
return length;
}
static size_t ZSTD_compressStream_generic(ZSTD_CStream *zcs, void *dst, size_t *dstCapacityPtr, const void *src, size_t *srcSizePtr, ZSTD_flush_e const flush)
{
U32 someMoreWork = 1;
const char *const istart = (const char *)src;
const char *const iend = istart + *srcSizePtr;
const char *ip = istart;
char *const ostart = (char *)dst;
char *const oend = ostart + *dstCapacityPtr;
char *op = ostart;
while (someMoreWork) {
switch (zcs->stage) {
case zcss_init:
return ERROR(init_missing); /* call ZBUFF_compressInit() first ! */
case zcss_load:
/* complete inBuffer */
{
size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
size_t const loaded = ZSTD_limitCopy(zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend - ip);
zcs->inBuffPos += loaded;
ip += loaded;
if ((zcs->inBuffPos == zcs->inToCompress) || (!flush && (toLoad != loaded))) {
someMoreWork = 0;
break; /* not enough input to get a full block : stop there, wait for more */
}
}
/* compress curr block (note : this stage cannot be stopped in the middle) */
{
void *cDst;
size_t cSize;
size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
size_t oSize = oend - op;
if (oSize >= ZSTD_compressBound(iSize))
cDst = op; /* compress directly into output buffer (avoid flush stage) */
else
cDst = zcs->outBuff, oSize = zcs->outBuffSize;
cSize = (flush == zsf_end) ? ZSTD_compressEnd(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize)
: ZSTD_compressContinue(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize);
if (ZSTD_isError(cSize))
return cSize;
if (flush == zsf_end)
zcs->frameEnded = 1;
/* prepare next block */
zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
if (zcs->inBuffTarget > zcs->inBuffSize)
zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; /* note : inBuffSize >= blockSize */
zcs->inToCompress = zcs->inBuffPos;
if (cDst == op) {
op += cSize;
break;
} /* no need to flush */
zcs->outBuffContentSize = cSize;
zcs->outBuffFlushedSize = 0;
zcs->stage = zcss_flush; /* pass-through to flush stage */
}
/* fall through */
case zcss_flush: {
size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
size_t const flushed = ZSTD_limitCopy(op, oend - op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
op += flushed;
zcs->outBuffFlushedSize += flushed;
if (toFlush != flushed) {
someMoreWork = 0;
break;
} /* dst too small to store flushed data : stop there */
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
zcs->stage = zcss_load;
break;
}
case zcss_final:
someMoreWork = 0; /* do nothing */
break;
default:
return ERROR(GENERIC); /* impossible */
}
}
*srcSizePtr = ip - istart;
*dstCapacityPtr = op - ostart;
zcs->inputProcessed += *srcSizePtr;
if (zcs->frameEnded)
return 0;
{
size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos;
if (hintInSize == 0)
hintInSize = zcs->blockSize;
return hintInSize;
}
}
size_t ZSTD_compressStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output, ZSTD_inBuffer *input)
{
size_t sizeRead = input->size - input->pos;
size_t sizeWritten = output->size - output->pos;
size_t const result =
ZSTD_compressStream_generic(zcs, (char *)(output->dst) + output->pos, &sizeWritten, (const char *)(input->src) + input->pos, &sizeRead, zsf_gather);
input->pos += sizeRead;
output->pos += sizeWritten;
return result;
}
/*====== Finalize ======*/
/*! ZSTD_flushStream() :
* @return : amount of data remaining to flush */
size_t ZSTD_flushStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output)
{
size_t srcSize = 0;
size_t sizeWritten = output->size - output->pos;
size_t const result = ZSTD_compressStream_generic(zcs, (char *)(output->dst) + output->pos, &sizeWritten, &srcSize,
&srcSize, /* use a valid src address instead of NULL */
zsf_flush);
output->pos += sizeWritten;
if (ZSTD_isError(result))
return result;
return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_endStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output)
{
BYTE *const ostart = (BYTE *)(output->dst) + output->pos;
BYTE *const oend = (BYTE *)(output->dst) + output->size;
BYTE *op = ostart;
if ((zcs->pledgedSrcSize) && (zcs->inputProcessed != zcs->pledgedSrcSize))
return ERROR(srcSize_wrong); /* pledgedSrcSize not respected */
if (zcs->stage != zcss_final) {
/* flush whatever remains */
size_t srcSize = 0;
size_t sizeWritten = output->size - output->pos;
size_t const notEnded =
ZSTD_compressStream_generic(zcs, ostart, &sizeWritten, &srcSize, &srcSize, zsf_end); /* use a valid src address instead of NULL */
size_t const remainingToFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
op += sizeWritten;
if (remainingToFlush) {
output->pos += sizeWritten;
return remainingToFlush + ZSTD_BLOCKHEADERSIZE /* final empty block */ + (zcs->checksum * 4);
}
/* create epilogue */
zcs->stage = zcss_final;
zcs->outBuffContentSize = !notEnded ? 0 : ZSTD_compressEnd(zcs->cctx, zcs->outBuff, zcs->outBuffSize, NULL,
0); /* write epilogue, including final empty block, into outBuff */
}
/* flush epilogue */
{
size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
size_t const flushed = ZSTD_limitCopy(op, oend - op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
op += flushed;
zcs->outBuffFlushedSize += flushed;
output->pos += op - ostart;
if (toFlush == flushed)
zcs->stage = zcss_init; /* end reached */
return toFlush - flushed;
}
}
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_DEFAULT_CLEVEL 1
#define ZSTD_MAX_CLEVEL 22
int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL + 1] = {
{
/* "default" */
/* W, C, H, S, L, TL, strat */
{18, 12, 12, 1, 7, 16, ZSTD_fast}, /* level 0 - never used */
{19, 13, 14, 1, 7, 16, ZSTD_fast}, /* level 1 */
{19, 15, 16, 1, 6, 16, ZSTD_fast}, /* level 2 */
{20, 16, 17, 1, 5, 16, ZSTD_dfast}, /* level 3.*/
{20, 18, 18, 1, 5, 16, ZSTD_dfast}, /* level 4.*/
{20, 15, 18, 3, 5, 16, ZSTD_greedy}, /* level 5 */
{21, 16, 19, 2, 5, 16, ZSTD_lazy}, /* level 6 */
{21, 17, 20, 3, 5, 16, ZSTD_lazy}, /* level 7 */
{21, 18, 20, 3, 5, 16, ZSTD_lazy2}, /* level 8 */
{21, 20, 20, 3, 5, 16, ZSTD_lazy2}, /* level 9 */
{21, 19, 21, 4, 5, 16, ZSTD_lazy2}, /* level 10 */
{22, 20, 22, 4, 5, 16, ZSTD_lazy2}, /* level 11 */
{22, 20, 22, 5, 5, 16, ZSTD_lazy2}, /* level 12 */
{22, 21, 22, 5, 5, 16, ZSTD_lazy2}, /* level 13 */
{22, 21, 22, 6, 5, 16, ZSTD_lazy2}, /* level 14 */
{22, 21, 21, 5, 5, 16, ZSTD_btlazy2}, /* level 15 */
{23, 22, 22, 5, 5, 16, ZSTD_btlazy2}, /* level 16 */
{23, 21, 22, 4, 5, 24, ZSTD_btopt}, /* level 17 */
{23, 23, 22, 6, 5, 32, ZSTD_btopt}, /* level 18 */
{23, 23, 22, 6, 3, 48, ZSTD_btopt}, /* level 19 */
{25, 25, 23, 7, 3, 64, ZSTD_btopt2}, /* level 20 */
{26, 26, 23, 7, 3, 256, ZSTD_btopt2}, /* level 21 */
{27, 27, 25, 9, 3, 512, ZSTD_btopt2}, /* level 22 */
},
{
/* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{0, 0, 0, 0, 0, 0, ZSTD_fast}, /* level 0 - not used */
{18, 13, 14, 1, 6, 8, ZSTD_fast}, /* level 1 */
{18, 14, 13, 1, 5, 8, ZSTD_dfast}, /* level 2 */
{18, 16, 15, 1, 5, 8, ZSTD_dfast}, /* level 3 */
{18, 15, 17, 1, 5, 8, ZSTD_greedy}, /* level 4.*/
{18, 16, 17, 4, 5, 8, ZSTD_greedy}, /* level 5.*/
{18, 16, 17, 3, 5, 8, ZSTD_lazy}, /* level 6.*/
{18, 17, 17, 4, 4, 8, ZSTD_lazy}, /* level 7 */
{18, 17, 17, 4, 4, 8, ZSTD_lazy2}, /* level 8 */
{18, 17, 17, 5, 4, 8, ZSTD_lazy2}, /* level 9 */
{18, 17, 17, 6, 4, 8, ZSTD_lazy2}, /* level 10 */
{18, 18, 17, 6, 4, 8, ZSTD_lazy2}, /* level 11.*/
{18, 18, 17, 7, 4, 8, ZSTD_lazy2}, /* level 12.*/
{18, 19, 17, 6, 4, 8, ZSTD_btlazy2}, /* level 13 */
{18, 18, 18, 4, 4, 16, ZSTD_btopt}, /* level 14.*/
{18, 18, 18, 4, 3, 16, ZSTD_btopt}, /* level 15.*/
{18, 19, 18, 6, 3, 32, ZSTD_btopt}, /* level 16.*/
{18, 19, 18, 8, 3, 64, ZSTD_btopt}, /* level 17.*/
{18, 19, 18, 9, 3, 128, ZSTD_btopt}, /* level 18.*/
{18, 19, 18, 10, 3, 256, ZSTD_btopt}, /* level 19.*/
{18, 19, 18, 11, 3, 512, ZSTD_btopt2}, /* level 20.*/
{18, 19, 18, 12, 3, 512, ZSTD_btopt2}, /* level 21.*/
{18, 19, 18, 13, 3, 512, ZSTD_btopt2}, /* level 22.*/
},
{
/* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{17, 12, 12, 1, 7, 8, ZSTD_fast}, /* level 0 - not used */
{17, 12, 13, 1, 6, 8, ZSTD_fast}, /* level 1 */
{17, 13, 16, 1, 5, 8, ZSTD_fast}, /* level 2 */
{17, 16, 16, 2, 5, 8, ZSTD_dfast}, /* level 3 */
{17, 13, 15, 3, 4, 8, ZSTD_greedy}, /* level 4 */
{17, 15, 17, 4, 4, 8, ZSTD_greedy}, /* level 5 */
{17, 16, 17, 3, 4, 8, ZSTD_lazy}, /* level 6 */
{17, 15, 17, 4, 4, 8, ZSTD_lazy2}, /* level 7 */
{17, 17, 17, 4, 4, 8, ZSTD_lazy2}, /* level 8 */
{17, 17, 17, 5, 4, 8, ZSTD_lazy2}, /* level 9 */
{17, 17, 17, 6, 4, 8, ZSTD_lazy2}, /* level 10 */
{17, 17, 17, 7, 4, 8, ZSTD_lazy2}, /* level 11 */
{17, 17, 17, 8, 4, 8, ZSTD_lazy2}, /* level 12 */
{17, 18, 17, 6, 4, 8, ZSTD_btlazy2}, /* level 13.*/
{17, 17, 17, 7, 3, 8, ZSTD_btopt}, /* level 14.*/
{17, 17, 17, 7, 3, 16, ZSTD_btopt}, /* level 15.*/
{17, 18, 17, 7, 3, 32, ZSTD_btopt}, /* level 16.*/
{17, 18, 17, 7, 3, 64, ZSTD_btopt}, /* level 17.*/
{17, 18, 17, 7, 3, 256, ZSTD_btopt}, /* level 18.*/
{17, 18, 17, 8, 3, 256, ZSTD_btopt}, /* level 19.*/
{17, 18, 17, 9, 3, 256, ZSTD_btopt2}, /* level 20.*/
{17, 18, 17, 10, 3, 256, ZSTD_btopt2}, /* level 21.*/
{17, 18, 17, 11, 3, 512, ZSTD_btopt2}, /* level 22.*/
},
{
/* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{14, 12, 12, 1, 7, 6, ZSTD_fast}, /* level 0 - not used */
{14, 14, 14, 1, 6, 6, ZSTD_fast}, /* level 1 */
{14, 14, 14, 1, 4, 6, ZSTD_fast}, /* level 2 */
{14, 14, 14, 1, 4, 6, ZSTD_dfast}, /* level 3.*/
{14, 14, 14, 4, 4, 6, ZSTD_greedy}, /* level 4.*/
{14, 14, 14, 3, 4, 6, ZSTD_lazy}, /* level 5.*/
{14, 14, 14, 4, 4, 6, ZSTD_lazy2}, /* level 6 */
{14, 14, 14, 5, 4, 6, ZSTD_lazy2}, /* level 7 */
{14, 14, 14, 6, 4, 6, ZSTD_lazy2}, /* level 8.*/
{14, 15, 14, 6, 4, 6, ZSTD_btlazy2}, /* level 9.*/
{14, 15, 14, 3, 3, 6, ZSTD_btopt}, /* level 10.*/
{14, 15, 14, 6, 3, 8, ZSTD_btopt}, /* level 11.*/
{14, 15, 14, 6, 3, 16, ZSTD_btopt}, /* level 12.*/
{14, 15, 14, 6, 3, 24, ZSTD_btopt}, /* level 13.*/
{14, 15, 15, 6, 3, 48, ZSTD_btopt}, /* level 14.*/
{14, 15, 15, 6, 3, 64, ZSTD_btopt}, /* level 15.*/
{14, 15, 15, 6, 3, 96, ZSTD_btopt}, /* level 16.*/
{14, 15, 15, 6, 3, 128, ZSTD_btopt}, /* level 17.*/
{14, 15, 15, 6, 3, 256, ZSTD_btopt}, /* level 18.*/
{14, 15, 15, 7, 3, 256, ZSTD_btopt}, /* level 19.*/
{14, 15, 15, 8, 3, 256, ZSTD_btopt2}, /* level 20.*/
{14, 15, 15, 9, 3, 256, ZSTD_btopt2}, /* level 21.*/
{14, 15, 15, 10, 3, 256, ZSTD_btopt2}, /* level 22.*/
},
};
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level, `srcSize` and `dictSize`.
* Size values are optional, provide 0 if not known or unused */
ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSize, size_t dictSize)
{
ZSTD_compressionParameters cp;
size_t const addedSize = srcSize ? 0 : 500;
U64 const rSize = srcSize + dictSize ? srcSize + dictSize + addedSize : (U64)-1;
U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); /* intentional underflow for srcSizeHint == 0 */
if (compressionLevel <= 0)
compressionLevel = ZSTD_DEFAULT_CLEVEL; /* 0 == default; no negative compressionLevel yet */
if (compressionLevel > ZSTD_MAX_CLEVEL)
compressionLevel = ZSTD_MAX_CLEVEL;
cp = ZSTD_defaultCParameters[tableID][compressionLevel];
if (ZSTD_32bits()) { /* auto-correction, for 32-bits mode */
if (cp.windowLog > ZSTD_WINDOWLOG_MAX)
cp.windowLog = ZSTD_WINDOWLOG_MAX;
if (cp.chainLog > ZSTD_CHAINLOG_MAX)
cp.chainLog = ZSTD_CHAINLOG_MAX;
if (cp.hashLog > ZSTD_HASHLOG_MAX)
cp.hashLog = ZSTD_HASHLOG_MAX;
}
cp = ZSTD_adjustCParams(cp, srcSize, dictSize);
return cp;
}
/*! ZSTD_getParams() :
* same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`).
* All fields of `ZSTD_frameParameters` are set to default (0) */
ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSize, size_t dictSize)
{
ZSTD_parameters params;
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSize, dictSize);
memset(&params, 0, sizeof(params));
params.cParams = cParams;
return params;
}
EXPORT_SYMBOL(ZSTD_maxCLevel);
EXPORT_SYMBOL(ZSTD_compressBound);
EXPORT_SYMBOL(ZSTD_CCtxWorkspaceBound);
EXPORT_SYMBOL(ZSTD_initCCtx);
EXPORT_SYMBOL(ZSTD_compressCCtx);
EXPORT_SYMBOL(ZSTD_compress_usingDict);
EXPORT_SYMBOL(ZSTD_CDictWorkspaceBound);
EXPORT_SYMBOL(ZSTD_initCDict);
EXPORT_SYMBOL(ZSTD_compress_usingCDict);
EXPORT_SYMBOL(ZSTD_CStreamWorkspaceBound);
EXPORT_SYMBOL(ZSTD_initCStream);
EXPORT_SYMBOL(ZSTD_initCStream_usingCDict);
EXPORT_SYMBOL(ZSTD_resetCStream);
EXPORT_SYMBOL(ZSTD_compressStream);
EXPORT_SYMBOL(ZSTD_flushStream);
EXPORT_SYMBOL(ZSTD_endStream);
EXPORT_SYMBOL(ZSTD_CStreamInSize);
EXPORT_SYMBOL(ZSTD_CStreamOutSize);
EXPORT_SYMBOL(ZSTD_getCParams);
EXPORT_SYMBOL(ZSTD_getParams);
EXPORT_SYMBOL(ZSTD_checkCParams);
EXPORT_SYMBOL(ZSTD_adjustCParams);
EXPORT_SYMBOL(ZSTD_compressBegin);
EXPORT_SYMBOL(ZSTD_compressBegin_usingDict);
EXPORT_SYMBOL(ZSTD_compressBegin_advanced);
EXPORT_SYMBOL(ZSTD_copyCCtx);
EXPORT_SYMBOL(ZSTD_compressBegin_usingCDict);
EXPORT_SYMBOL(ZSTD_compressContinue);
EXPORT_SYMBOL(ZSTD_compressEnd);
EXPORT_SYMBOL(ZSTD_getBlockSizeMax);
EXPORT_SYMBOL(ZSTD_compressBlock);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Zstd Compressor");