mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 21:53:44 +00:00
e7fa845010
The names for the members of struct btrfs_fs_info related to the extent map shrinker are a bit too long, so rename them to be shorter by replacing the "extent_map_" prefix with the "em_" prefix. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1349 lines
38 KiB
C
1349 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include "messages.h"
|
|
#include "ctree.h"
|
|
#include "extent_map.h"
|
|
#include "compression.h"
|
|
#include "btrfs_inode.h"
|
|
#include "disk-io.h"
|
|
|
|
|
|
static struct kmem_cache *extent_map_cache;
|
|
|
|
int __init extent_map_init(void)
|
|
{
|
|
extent_map_cache = kmem_cache_create("btrfs_extent_map",
|
|
sizeof(struct extent_map), 0, 0, NULL);
|
|
if (!extent_map_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __cold extent_map_exit(void)
|
|
{
|
|
kmem_cache_destroy(extent_map_cache);
|
|
}
|
|
|
|
/*
|
|
* Initialize the extent tree @tree. Should be called for each new inode or
|
|
* other user of the extent_map interface.
|
|
*/
|
|
void extent_map_tree_init(struct extent_map_tree *tree)
|
|
{
|
|
tree->root = RB_ROOT;
|
|
INIT_LIST_HEAD(&tree->modified_extents);
|
|
rwlock_init(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new extent_map structure. The new structure is returned with a
|
|
* reference count of one and needs to be freed using free_extent_map()
|
|
*/
|
|
struct extent_map *alloc_extent_map(void)
|
|
{
|
|
struct extent_map *em;
|
|
em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
|
|
if (!em)
|
|
return NULL;
|
|
RB_CLEAR_NODE(&em->rb_node);
|
|
refcount_set(&em->refs, 1);
|
|
INIT_LIST_HEAD(&em->list);
|
|
return em;
|
|
}
|
|
|
|
/*
|
|
* Drop the reference out on @em by one and free the structure if the reference
|
|
* count hits zero.
|
|
*/
|
|
void free_extent_map(struct extent_map *em)
|
|
{
|
|
if (!em)
|
|
return;
|
|
if (refcount_dec_and_test(&em->refs)) {
|
|
WARN_ON(extent_map_in_tree(em));
|
|
WARN_ON(!list_empty(&em->list));
|
|
kmem_cache_free(extent_map_cache, em);
|
|
}
|
|
}
|
|
|
|
/* Do the math around the end of an extent, handling wrapping. */
|
|
static u64 range_end(u64 start, u64 len)
|
|
{
|
|
if (start + len < start)
|
|
return (u64)-1;
|
|
return start + len;
|
|
}
|
|
|
|
static void remove_em(struct btrfs_inode *inode, struct extent_map *em)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
|
|
rb_erase(&em->rb_node, &inode->extent_tree.root);
|
|
RB_CLEAR_NODE(&em->rb_node);
|
|
|
|
if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
|
|
percpu_counter_dec(&fs_info->evictable_extent_maps);
|
|
}
|
|
|
|
static int tree_insert(struct rb_root *root, struct extent_map *em)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct extent_map *entry = NULL;
|
|
struct rb_node *orig_parent = NULL;
|
|
u64 end = range_end(em->start, em->len);
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct extent_map, rb_node);
|
|
|
|
if (em->start < entry->start)
|
|
p = &(*p)->rb_left;
|
|
else if (em->start >= extent_map_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return -EEXIST;
|
|
}
|
|
|
|
orig_parent = parent;
|
|
while (parent && em->start >= extent_map_end(entry)) {
|
|
parent = rb_next(parent);
|
|
entry = rb_entry(parent, struct extent_map, rb_node);
|
|
}
|
|
if (parent)
|
|
if (end > entry->start && em->start < extent_map_end(entry))
|
|
return -EEXIST;
|
|
|
|
parent = orig_parent;
|
|
entry = rb_entry(parent, struct extent_map, rb_node);
|
|
while (parent && em->start < entry->start) {
|
|
parent = rb_prev(parent);
|
|
entry = rb_entry(parent, struct extent_map, rb_node);
|
|
}
|
|
if (parent)
|
|
if (end > entry->start && em->start < extent_map_end(entry))
|
|
return -EEXIST;
|
|
|
|
rb_link_node(&em->rb_node, orig_parent, p);
|
|
rb_insert_color(&em->rb_node, root);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Search through the tree for an extent_map with a given offset. If it can't
|
|
* be found, try to find some neighboring extents
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
|
|
struct rb_node **prev_or_next_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *orig_prev = NULL;
|
|
struct extent_map *entry;
|
|
struct extent_map *prev_entry = NULL;
|
|
|
|
ASSERT(prev_or_next_ret);
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct extent_map, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (offset < entry->start)
|
|
n = n->rb_left;
|
|
else if (offset >= extent_map_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
|
|
orig_prev = prev;
|
|
while (prev && offset >= extent_map_end(prev_entry)) {
|
|
prev = rb_next(prev);
|
|
prev_entry = rb_entry(prev, struct extent_map, rb_node);
|
|
}
|
|
|
|
/*
|
|
* Previous extent map found, return as in this case the caller does not
|
|
* care about the next one.
|
|
*/
|
|
if (prev) {
|
|
*prev_or_next_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
prev = orig_prev;
|
|
prev_entry = rb_entry(prev, struct extent_map, rb_node);
|
|
while (prev && offset < prev_entry->start) {
|
|
prev = rb_prev(prev);
|
|
prev_entry = rb_entry(prev, struct extent_map, rb_node);
|
|
}
|
|
*prev_or_next_ret = prev;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline u64 extent_map_block_len(const struct extent_map *em)
|
|
{
|
|
if (extent_map_is_compressed(em))
|
|
return em->disk_num_bytes;
|
|
return em->len;
|
|
}
|
|
|
|
static inline u64 extent_map_block_end(const struct extent_map *em)
|
|
{
|
|
const u64 block_start = extent_map_block_start(em);
|
|
const u64 block_end = block_start + extent_map_block_len(em);
|
|
|
|
if (block_end < block_start)
|
|
return (u64)-1;
|
|
|
|
return block_end;
|
|
}
|
|
|
|
static bool can_merge_extent_map(const struct extent_map *em)
|
|
{
|
|
if (em->flags & EXTENT_FLAG_PINNED)
|
|
return false;
|
|
|
|
/* Don't merge compressed extents, we need to know their actual size. */
|
|
if (extent_map_is_compressed(em))
|
|
return false;
|
|
|
|
if (em->flags & EXTENT_FLAG_LOGGING)
|
|
return false;
|
|
|
|
/*
|
|
* We don't want to merge stuff that hasn't been written to the log yet
|
|
* since it may not reflect exactly what is on disk, and that would be
|
|
* bad.
|
|
*/
|
|
if (!list_empty(&em->list))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Check to see if two extent_map structs are adjacent and safe to merge. */
|
|
static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
|
|
{
|
|
if (extent_map_end(prev) != next->start)
|
|
return false;
|
|
|
|
/*
|
|
* The merged flag is not an on-disk flag, it just indicates we had the
|
|
* extent maps of 2 (or more) adjacent extents merged, so factor it out.
|
|
*/
|
|
if ((prev->flags & ~EXTENT_FLAG_MERGED) !=
|
|
(next->flags & ~EXTENT_FLAG_MERGED))
|
|
return false;
|
|
|
|
if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
|
|
return extent_map_block_start(next) == extent_map_block_end(prev);
|
|
|
|
/* HOLES and INLINE extents. */
|
|
return next->disk_bytenr == prev->disk_bytenr;
|
|
}
|
|
|
|
/*
|
|
* Handle the on-disk data extents merge for @prev and @next.
|
|
*
|
|
* @prev: left extent to merge
|
|
* @next: right extent to merge
|
|
* @merged: the extent we will not discard after the merge; updated with new values
|
|
*
|
|
* After this, one of the two extents is the new merged extent and the other is
|
|
* removed from the tree and likely freed. Note that @merged is one of @prev/@next
|
|
* so there is const/non-const aliasing occurring here.
|
|
*
|
|
* Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
|
|
* For now only uncompressed regular extent can be merged.
|
|
*/
|
|
static void merge_ondisk_extents(const struct extent_map *prev, const struct extent_map *next,
|
|
struct extent_map *merged)
|
|
{
|
|
u64 new_disk_bytenr;
|
|
u64 new_disk_num_bytes;
|
|
u64 new_offset;
|
|
|
|
/* @prev and @next should not be compressed. */
|
|
ASSERT(!extent_map_is_compressed(prev));
|
|
ASSERT(!extent_map_is_compressed(next));
|
|
|
|
/*
|
|
* There are two different cases where @prev and @next can be merged.
|
|
*
|
|
* 1) They are referring to the same data extent:
|
|
*
|
|
* |<----- data extent A ----->|
|
|
* |<- prev ->|<- next ->|
|
|
*
|
|
* 2) They are referring to different data extents but still adjacent:
|
|
*
|
|
* |<-- data extent A -->|<-- data extent B -->|
|
|
* |<- prev ->|<- next ->|
|
|
*
|
|
* The calculation here always merges the data extents first, then updates
|
|
* @offset using the new data extents.
|
|
*
|
|
* For case 1), the merged data extent would be the same.
|
|
* For case 2), we just merge the two data extents into one.
|
|
*/
|
|
new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
|
|
new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
|
|
next->disk_bytenr + next->disk_num_bytes) -
|
|
new_disk_bytenr;
|
|
new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
|
|
|
|
merged->disk_bytenr = new_disk_bytenr;
|
|
merged->disk_num_bytes = new_disk_num_bytes;
|
|
merged->ram_bytes = new_disk_num_bytes;
|
|
merged->offset = new_offset;
|
|
}
|
|
|
|
static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
|
|
struct extent_map *em)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
|
|
return;
|
|
btrfs_crit(fs_info,
|
|
"%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
|
|
prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
|
|
em->ram_bytes, em->offset, em->flags);
|
|
ASSERT(0);
|
|
}
|
|
|
|
/* Internal sanity checks for btrfs debug builds. */
|
|
static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
|
|
return;
|
|
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
|
|
if (em->disk_num_bytes == 0)
|
|
dump_extent_map(fs_info, "zero disk_num_bytes", em);
|
|
if (em->offset + em->len > em->ram_bytes)
|
|
dump_extent_map(fs_info, "ram_bytes too small", em);
|
|
if (em->offset + em->len > em->disk_num_bytes &&
|
|
!extent_map_is_compressed(em))
|
|
dump_extent_map(fs_info, "disk_num_bytes too small", em);
|
|
if (!extent_map_is_compressed(em) &&
|
|
em->ram_bytes != em->disk_num_bytes)
|
|
dump_extent_map(fs_info,
|
|
"ram_bytes mismatch with disk_num_bytes for non-compressed em",
|
|
em);
|
|
} else if (em->offset) {
|
|
dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
|
|
}
|
|
}
|
|
|
|
static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_map *merge = NULL;
|
|
struct rb_node *rb;
|
|
|
|
/*
|
|
* We can't modify an extent map that is in the tree and that is being
|
|
* used by another task, as it can cause that other task to see it in
|
|
* inconsistent state during the merging. We always have 1 reference for
|
|
* the tree and 1 for this task (which is unpinning the extent map or
|
|
* clearing the logging flag), so anything > 2 means it's being used by
|
|
* other tasks too.
|
|
*/
|
|
if (refcount_read(&em->refs) > 2)
|
|
return;
|
|
|
|
if (!can_merge_extent_map(em))
|
|
return;
|
|
|
|
if (em->start != 0) {
|
|
rb = rb_prev(&em->rb_node);
|
|
if (rb)
|
|
merge = rb_entry(rb, struct extent_map, rb_node);
|
|
if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
|
|
em->start = merge->start;
|
|
em->len += merge->len;
|
|
em->generation = max(em->generation, merge->generation);
|
|
|
|
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
|
|
merge_ondisk_extents(merge, em, em);
|
|
em->flags |= EXTENT_FLAG_MERGED;
|
|
|
|
validate_extent_map(fs_info, em);
|
|
remove_em(inode, merge);
|
|
free_extent_map(merge);
|
|
}
|
|
}
|
|
|
|
rb = rb_next(&em->rb_node);
|
|
if (rb)
|
|
merge = rb_entry(rb, struct extent_map, rb_node);
|
|
if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
|
|
em->len += merge->len;
|
|
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
|
|
merge_ondisk_extents(em, merge, em);
|
|
validate_extent_map(fs_info, em);
|
|
em->generation = max(em->generation, merge->generation);
|
|
em->flags |= EXTENT_FLAG_MERGED;
|
|
remove_em(inode, merge);
|
|
free_extent_map(merge);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unpin an extent from the cache.
|
|
*
|
|
* @inode: the inode from which we are unpinning an extent range
|
|
* @start: logical offset in the file
|
|
* @len: length of the extent
|
|
* @gen: generation that this extent has been modified in
|
|
*
|
|
* Called after an extent has been written to disk properly. Set the generation
|
|
* to the generation that actually added the file item to the inode so we know
|
|
* we need to sync this extent when we call fsync().
|
|
*
|
|
* Returns: 0 on success
|
|
* -ENOENT when the extent is not found in the tree
|
|
* -EUCLEAN if the found extent does not match the expected start
|
|
*/
|
|
int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
int ret = 0;
|
|
struct extent_map *em;
|
|
|
|
write_lock(&tree->lock);
|
|
em = lookup_extent_mapping(tree, start, len);
|
|
|
|
if (WARN_ON(!em)) {
|
|
btrfs_warn(fs_info,
|
|
"no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
|
|
btrfs_ino(inode), btrfs_root_id(inode->root),
|
|
start, start + len, gen);
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
if (WARN_ON(em->start != start)) {
|
|
btrfs_warn(fs_info,
|
|
"found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
|
|
btrfs_ino(inode), btrfs_root_id(inode->root),
|
|
em->start, start, start + len, gen);
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
em->generation = gen;
|
|
em->flags &= ~EXTENT_FLAG_PINNED;
|
|
|
|
try_merge_map(inode, em);
|
|
|
|
out:
|
|
write_unlock(&tree->lock);
|
|
free_extent_map(em);
|
|
return ret;
|
|
|
|
}
|
|
|
|
void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
|
|
{
|
|
lockdep_assert_held_write(&inode->extent_tree.lock);
|
|
|
|
em->flags &= ~EXTENT_FLAG_LOGGING;
|
|
if (extent_map_in_tree(em))
|
|
try_merge_map(inode, em);
|
|
}
|
|
|
|
static inline void setup_extent_mapping(struct btrfs_inode *inode,
|
|
struct extent_map *em,
|
|
int modified)
|
|
{
|
|
refcount_inc(&em->refs);
|
|
|
|
ASSERT(list_empty(&em->list));
|
|
|
|
if (modified)
|
|
list_add(&em->list, &inode->extent_tree.modified_extents);
|
|
else
|
|
try_merge_map(inode, em);
|
|
}
|
|
|
|
/*
|
|
* Add a new extent map to an inode's extent map tree.
|
|
*
|
|
* @inode: the target inode
|
|
* @em: map to insert
|
|
* @modified: indicate whether the given @em should be added to the
|
|
* modified list, which indicates the extent needs to be logged
|
|
*
|
|
* Insert @em into the @inode's extent map tree or perform a simple
|
|
* forward/backward merge with existing mappings. The extent_map struct passed
|
|
* in will be inserted into the tree directly, with an additional reference
|
|
* taken, or a reference dropped if the merge attempt was successful.
|
|
*/
|
|
static int add_extent_mapping(struct btrfs_inode *inode,
|
|
struct extent_map *em, int modified)
|
|
{
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
lockdep_assert_held_write(&tree->lock);
|
|
|
|
validate_extent_map(fs_info, em);
|
|
ret = tree_insert(&tree->root, em);
|
|
if (ret)
|
|
return ret;
|
|
|
|
setup_extent_mapping(inode, em, modified);
|
|
|
|
if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
|
|
percpu_counter_inc(&fs_info->evictable_extent_maps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct extent_map *
|
|
__lookup_extent_mapping(struct extent_map_tree *tree,
|
|
u64 start, u64 len, int strict)
|
|
{
|
|
struct extent_map *em;
|
|
struct rb_node *rb_node;
|
|
struct rb_node *prev_or_next = NULL;
|
|
u64 end = range_end(start, len);
|
|
|
|
rb_node = __tree_search(&tree->root, start, &prev_or_next);
|
|
if (!rb_node) {
|
|
if (prev_or_next)
|
|
rb_node = prev_or_next;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
em = rb_entry(rb_node, struct extent_map, rb_node);
|
|
|
|
if (strict && !(end > em->start && start < extent_map_end(em)))
|
|
return NULL;
|
|
|
|
refcount_inc(&em->refs);
|
|
return em;
|
|
}
|
|
|
|
/*
|
|
* Lookup extent_map that intersects @start + @len range.
|
|
*
|
|
* @tree: tree to lookup in
|
|
* @start: byte offset to start the search
|
|
* @len: length of the lookup range
|
|
*
|
|
* Find and return the first extent_map struct in @tree that intersects the
|
|
* [start, len] range. There may be additional objects in the tree that
|
|
* intersect, so check the object returned carefully to make sure that no
|
|
* additional lookups are needed.
|
|
*/
|
|
struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
|
|
u64 start, u64 len)
|
|
{
|
|
return __lookup_extent_mapping(tree, start, len, 1);
|
|
}
|
|
|
|
/*
|
|
* Find a nearby extent map intersecting @start + @len (not an exact search).
|
|
*
|
|
* @tree: tree to lookup in
|
|
* @start: byte offset to start the search
|
|
* @len: length of the lookup range
|
|
*
|
|
* Find and return the first extent_map struct in @tree that intersects the
|
|
* [start, len] range.
|
|
*
|
|
* If one can't be found, any nearby extent may be returned
|
|
*/
|
|
struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
|
|
u64 start, u64 len)
|
|
{
|
|
return __lookup_extent_mapping(tree, start, len, 0);
|
|
}
|
|
|
|
/*
|
|
* Remove an extent_map from its inode's extent tree.
|
|
*
|
|
* @inode: the inode the extent map belongs to
|
|
* @em: extent map being removed
|
|
*
|
|
* Remove @em from the extent tree of @inode. No reference counts are dropped,
|
|
* and no checks are done to see if the range is in use.
|
|
*/
|
|
void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
|
|
{
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
|
|
lockdep_assert_held_write(&tree->lock);
|
|
|
|
WARN_ON(em->flags & EXTENT_FLAG_PINNED);
|
|
if (!(em->flags & EXTENT_FLAG_LOGGING))
|
|
list_del_init(&em->list);
|
|
|
|
remove_em(inode, em);
|
|
}
|
|
|
|
static void replace_extent_mapping(struct btrfs_inode *inode,
|
|
struct extent_map *cur,
|
|
struct extent_map *new,
|
|
int modified)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
|
|
lockdep_assert_held_write(&tree->lock);
|
|
|
|
validate_extent_map(fs_info, new);
|
|
|
|
WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
|
|
ASSERT(extent_map_in_tree(cur));
|
|
if (!(cur->flags & EXTENT_FLAG_LOGGING))
|
|
list_del_init(&cur->list);
|
|
rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
|
|
RB_CLEAR_NODE(&cur->rb_node);
|
|
|
|
setup_extent_mapping(inode, new, modified);
|
|
}
|
|
|
|
static struct extent_map *next_extent_map(const struct extent_map *em)
|
|
{
|
|
struct rb_node *next;
|
|
|
|
next = rb_next(&em->rb_node);
|
|
if (!next)
|
|
return NULL;
|
|
return container_of(next, struct extent_map, rb_node);
|
|
}
|
|
|
|
static struct extent_map *prev_extent_map(struct extent_map *em)
|
|
{
|
|
struct rb_node *prev;
|
|
|
|
prev = rb_prev(&em->rb_node);
|
|
if (!prev)
|
|
return NULL;
|
|
return container_of(prev, struct extent_map, rb_node);
|
|
}
|
|
|
|
/*
|
|
* Helper for btrfs_get_extent. Given an existing extent in the tree,
|
|
* the existing extent is the nearest extent to map_start,
|
|
* and an extent that you want to insert, deal with overlap and insert
|
|
* the best fitted new extent into the tree.
|
|
*/
|
|
static noinline int merge_extent_mapping(struct btrfs_inode *inode,
|
|
struct extent_map *existing,
|
|
struct extent_map *em,
|
|
u64 map_start)
|
|
{
|
|
struct extent_map *prev;
|
|
struct extent_map *next;
|
|
u64 start;
|
|
u64 end;
|
|
u64 start_diff;
|
|
|
|
if (map_start < em->start || map_start >= extent_map_end(em))
|
|
return -EINVAL;
|
|
|
|
if (existing->start > map_start) {
|
|
next = existing;
|
|
prev = prev_extent_map(next);
|
|
} else {
|
|
prev = existing;
|
|
next = next_extent_map(prev);
|
|
}
|
|
|
|
start = prev ? extent_map_end(prev) : em->start;
|
|
start = max_t(u64, start, em->start);
|
|
end = next ? next->start : extent_map_end(em);
|
|
end = min_t(u64, end, extent_map_end(em));
|
|
start_diff = start - em->start;
|
|
em->start = start;
|
|
em->len = end - start;
|
|
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
|
|
em->offset += start_diff;
|
|
return add_extent_mapping(inode, em, 0);
|
|
}
|
|
|
|
/*
|
|
* Add extent mapping into an inode's extent map tree.
|
|
*
|
|
* @inode: target inode
|
|
* @em_in: extent we are inserting
|
|
* @start: start of the logical range btrfs_get_extent() is requesting
|
|
* @len: length of the logical range btrfs_get_extent() is requesting
|
|
*
|
|
* Note that @em_in's range may be different from [start, start+len),
|
|
* but they must be overlapped.
|
|
*
|
|
* Insert @em_in into the inode's extent map tree. In case there is an
|
|
* overlapping range, handle the -EEXIST by either:
|
|
* a) Returning the existing extent in @em_in if @start is within the
|
|
* existing em.
|
|
* b) Merge the existing extent with @em_in passed in.
|
|
*
|
|
* Return 0 on success, otherwise -EEXIST.
|
|
*
|
|
*/
|
|
int btrfs_add_extent_mapping(struct btrfs_inode *inode,
|
|
struct extent_map **em_in, u64 start, u64 len)
|
|
{
|
|
int ret;
|
|
struct extent_map *em = *em_in;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
|
|
/*
|
|
* Tree-checker should have rejected any inline extent with non-zero
|
|
* file offset. Here just do a sanity check.
|
|
*/
|
|
if (em->disk_bytenr == EXTENT_MAP_INLINE)
|
|
ASSERT(em->start == 0);
|
|
|
|
ret = add_extent_mapping(inode, em, 0);
|
|
/* it is possible that someone inserted the extent into the tree
|
|
* while we had the lock dropped. It is also possible that
|
|
* an overlapping map exists in the tree
|
|
*/
|
|
if (ret == -EEXIST) {
|
|
struct extent_map *existing;
|
|
|
|
existing = search_extent_mapping(&inode->extent_tree, start, len);
|
|
|
|
trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
|
|
|
|
/*
|
|
* existing will always be non-NULL, since there must be
|
|
* extent causing the -EEXIST.
|
|
*/
|
|
if (start >= existing->start &&
|
|
start < extent_map_end(existing)) {
|
|
free_extent_map(em);
|
|
*em_in = existing;
|
|
ret = 0;
|
|
} else {
|
|
u64 orig_start = em->start;
|
|
u64 orig_len = em->len;
|
|
|
|
/*
|
|
* The existing extent map is the one nearest to
|
|
* the [start, start + len) range which overlaps
|
|
*/
|
|
ret = merge_extent_mapping(inode, existing, em, start);
|
|
if (WARN_ON(ret)) {
|
|
free_extent_map(em);
|
|
*em_in = NULL;
|
|
btrfs_warn(fs_info,
|
|
"extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
|
|
existing->start, extent_map_end(existing),
|
|
orig_start, orig_start + orig_len, start);
|
|
}
|
|
free_extent_map(existing);
|
|
}
|
|
}
|
|
|
|
ASSERT(ret == 0 || ret == -EEXIST);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Drop all extent maps from a tree in the fastest possible way, rescheduling
|
|
* if needed. This avoids searching the tree, from the root down to the first
|
|
* extent map, before each deletion.
|
|
*/
|
|
static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
|
|
{
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
struct rb_node *node;
|
|
|
|
write_lock(&tree->lock);
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
struct extent_map *em;
|
|
struct rb_node *next = rb_next(node);
|
|
|
|
em = rb_entry(node, struct extent_map, rb_node);
|
|
em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
|
|
remove_extent_mapping(inode, em);
|
|
free_extent_map(em);
|
|
|
|
if (cond_resched_rwlock_write(&tree->lock))
|
|
node = rb_first(&tree->root);
|
|
else
|
|
node = next;
|
|
}
|
|
write_unlock(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* Drop all extent maps in a given range.
|
|
*
|
|
* @inode: The target inode.
|
|
* @start: Start offset of the range.
|
|
* @end: End offset of the range (inclusive value).
|
|
* @skip_pinned: Indicate if pinned extent maps should be ignored or not.
|
|
*
|
|
* This drops all the extent maps that intersect the given range [@start, @end].
|
|
* Extent maps that partially overlap the range and extend behind or beyond it,
|
|
* are split.
|
|
* The caller should have locked an appropriate file range in the inode's io
|
|
* tree before calling this function.
|
|
*/
|
|
void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
|
|
bool skip_pinned)
|
|
{
|
|
struct extent_map *split;
|
|
struct extent_map *split2;
|
|
struct extent_map *em;
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
u64 len = end - start + 1;
|
|
|
|
WARN_ON(end < start);
|
|
if (end == (u64)-1) {
|
|
if (start == 0 && !skip_pinned) {
|
|
drop_all_extent_maps_fast(inode);
|
|
return;
|
|
}
|
|
len = (u64)-1;
|
|
} else {
|
|
/* Make end offset exclusive for use in the loop below. */
|
|
end++;
|
|
}
|
|
|
|
/*
|
|
* It's ok if we fail to allocate the extent maps, see the comment near
|
|
* the bottom of the loop below. We only need two spare extent maps in
|
|
* the worst case, where the first extent map that intersects our range
|
|
* starts before the range and the last extent map that intersects our
|
|
* range ends after our range (and they might be the same extent map),
|
|
* because we need to split those two extent maps at the boundaries.
|
|
*/
|
|
split = alloc_extent_map();
|
|
split2 = alloc_extent_map();
|
|
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
|
|
while (em) {
|
|
/* extent_map_end() returns exclusive value (last byte + 1). */
|
|
const u64 em_end = extent_map_end(em);
|
|
struct extent_map *next_em = NULL;
|
|
u64 gen;
|
|
unsigned long flags;
|
|
bool modified;
|
|
|
|
if (em_end < end) {
|
|
next_em = next_extent_map(em);
|
|
if (next_em) {
|
|
if (next_em->start < end)
|
|
refcount_inc(&next_em->refs);
|
|
else
|
|
next_em = NULL;
|
|
}
|
|
}
|
|
|
|
if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
|
|
start = em_end;
|
|
goto next;
|
|
}
|
|
|
|
flags = em->flags;
|
|
/*
|
|
* In case we split the extent map, we want to preserve the
|
|
* EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
|
|
* it on the new extent maps.
|
|
*/
|
|
em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
|
|
modified = !list_empty(&em->list);
|
|
|
|
/*
|
|
* The extent map does not cross our target range, so no need to
|
|
* split it, we can remove it directly.
|
|
*/
|
|
if (em->start >= start && em_end <= end)
|
|
goto remove_em;
|
|
|
|
gen = em->generation;
|
|
|
|
if (em->start < start) {
|
|
if (!split) {
|
|
split = split2;
|
|
split2 = NULL;
|
|
if (!split)
|
|
goto remove_em;
|
|
}
|
|
split->start = em->start;
|
|
split->len = start - em->start;
|
|
|
|
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
|
|
split->disk_bytenr = em->disk_bytenr;
|
|
split->disk_num_bytes = em->disk_num_bytes;
|
|
split->offset = em->offset;
|
|
split->ram_bytes = em->ram_bytes;
|
|
} else {
|
|
split->disk_bytenr = em->disk_bytenr;
|
|
split->disk_num_bytes = 0;
|
|
split->offset = 0;
|
|
split->ram_bytes = split->len;
|
|
}
|
|
|
|
split->generation = gen;
|
|
split->flags = flags;
|
|
replace_extent_mapping(inode, em, split, modified);
|
|
free_extent_map(split);
|
|
split = split2;
|
|
split2 = NULL;
|
|
}
|
|
if (em_end > end) {
|
|
if (!split) {
|
|
split = split2;
|
|
split2 = NULL;
|
|
if (!split)
|
|
goto remove_em;
|
|
}
|
|
split->start = end;
|
|
split->len = em_end - end;
|
|
split->disk_bytenr = em->disk_bytenr;
|
|
split->flags = flags;
|
|
split->generation = gen;
|
|
|
|
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
|
|
split->disk_num_bytes = em->disk_num_bytes;
|
|
split->offset = em->offset + end - em->start;
|
|
split->ram_bytes = em->ram_bytes;
|
|
} else {
|
|
split->disk_num_bytes = 0;
|
|
split->offset = 0;
|
|
split->ram_bytes = split->len;
|
|
}
|
|
|
|
if (extent_map_in_tree(em)) {
|
|
replace_extent_mapping(inode, em, split, modified);
|
|
} else {
|
|
int ret;
|
|
|
|
ret = add_extent_mapping(inode, split, modified);
|
|
/* Logic error, shouldn't happen. */
|
|
ASSERT(ret == 0);
|
|
if (WARN_ON(ret != 0) && modified)
|
|
btrfs_set_inode_full_sync(inode);
|
|
}
|
|
free_extent_map(split);
|
|
split = NULL;
|
|
}
|
|
remove_em:
|
|
if (extent_map_in_tree(em)) {
|
|
/*
|
|
* If the extent map is still in the tree it means that
|
|
* either of the following is true:
|
|
*
|
|
* 1) It fits entirely in our range (doesn't end beyond
|
|
* it or starts before it);
|
|
*
|
|
* 2) It starts before our range and/or ends after our
|
|
* range, and we were not able to allocate the extent
|
|
* maps for split operations, @split and @split2.
|
|
*
|
|
* If we are at case 2) then we just remove the entire
|
|
* extent map - this is fine since if anyone needs it to
|
|
* access the subranges outside our range, will just
|
|
* load it again from the subvolume tree's file extent
|
|
* item. However if the extent map was in the list of
|
|
* modified extents, then we must mark the inode for a
|
|
* full fsync, otherwise a fast fsync will miss this
|
|
* extent if it's new and needs to be logged.
|
|
*/
|
|
if ((em->start < start || em_end > end) && modified) {
|
|
ASSERT(!split);
|
|
btrfs_set_inode_full_sync(inode);
|
|
}
|
|
remove_extent_mapping(inode, em);
|
|
}
|
|
|
|
/*
|
|
* Once for the tree reference (we replaced or removed the
|
|
* extent map from the tree).
|
|
*/
|
|
free_extent_map(em);
|
|
next:
|
|
/* Once for us (for our lookup reference). */
|
|
free_extent_map(em);
|
|
|
|
em = next_em;
|
|
}
|
|
|
|
write_unlock(&em_tree->lock);
|
|
|
|
free_extent_map(split);
|
|
free_extent_map(split2);
|
|
}
|
|
|
|
/*
|
|
* Replace a range in the inode's extent map tree with a new extent map.
|
|
*
|
|
* @inode: The target inode.
|
|
* @new_em: The new extent map to add to the inode's extent map tree.
|
|
* @modified: Indicate if the new extent map should be added to the list of
|
|
* modified extents (for fast fsync tracking).
|
|
*
|
|
* Drops all the extent maps in the inode's extent map tree that intersect the
|
|
* range of the new extent map and adds the new extent map to the tree.
|
|
* The caller should have locked an appropriate file range in the inode's io
|
|
* tree before calling this function.
|
|
*/
|
|
int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
|
|
struct extent_map *new_em,
|
|
bool modified)
|
|
{
|
|
const u64 end = new_em->start + new_em->len - 1;
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
int ret;
|
|
|
|
ASSERT(!extent_map_in_tree(new_em));
|
|
|
|
/*
|
|
* The caller has locked an appropriate file range in the inode's io
|
|
* tree, but getting -EEXIST when adding the new extent map can still
|
|
* happen in case there are extents that partially cover the range, and
|
|
* this is due to two tasks operating on different parts of the extent.
|
|
* See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
|
|
* btrfs_get_extent") for an example and details.
|
|
*/
|
|
do {
|
|
btrfs_drop_extent_map_range(inode, new_em->start, end, false);
|
|
write_lock(&tree->lock);
|
|
ret = add_extent_mapping(inode, new_em, modified);
|
|
write_unlock(&tree->lock);
|
|
} while (ret == -EEXIST);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Split off the first pre bytes from the extent_map at [start, start + len],
|
|
* and set the block_start for it to new_logical.
|
|
*
|
|
* This function is used when an ordered_extent needs to be split.
|
|
*/
|
|
int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
|
|
u64 new_logical)
|
|
{
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
struct extent_map *split_pre = NULL;
|
|
struct extent_map *split_mid = NULL;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
ASSERT(pre != 0);
|
|
ASSERT(pre < len);
|
|
|
|
split_pre = alloc_extent_map();
|
|
if (!split_pre)
|
|
return -ENOMEM;
|
|
split_mid = alloc_extent_map();
|
|
if (!split_mid) {
|
|
ret = -ENOMEM;
|
|
goto out_free_pre;
|
|
}
|
|
|
|
lock_extent(&inode->io_tree, start, start + len - 1, NULL);
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em) {
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ASSERT(em->len == len);
|
|
ASSERT(!extent_map_is_compressed(em));
|
|
ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
|
|
ASSERT(em->flags & EXTENT_FLAG_PINNED);
|
|
ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
|
|
ASSERT(!list_empty(&em->list));
|
|
|
|
flags = em->flags;
|
|
em->flags &= ~EXTENT_FLAG_PINNED;
|
|
|
|
/* First, replace the em with a new extent_map starting from * em->start */
|
|
split_pre->start = em->start;
|
|
split_pre->len = pre;
|
|
split_pre->disk_bytenr = new_logical;
|
|
split_pre->disk_num_bytes = split_pre->len;
|
|
split_pre->offset = 0;
|
|
split_pre->ram_bytes = split_pre->len;
|
|
split_pre->flags = flags;
|
|
split_pre->generation = em->generation;
|
|
|
|
replace_extent_mapping(inode, em, split_pre, 1);
|
|
|
|
/*
|
|
* Now we only have an extent_map at:
|
|
* [em->start, em->start + pre]
|
|
*/
|
|
|
|
/* Insert the middle extent_map. */
|
|
split_mid->start = em->start + pre;
|
|
split_mid->len = em->len - pre;
|
|
split_mid->disk_bytenr = extent_map_block_start(em) + pre;
|
|
split_mid->disk_num_bytes = split_mid->len;
|
|
split_mid->offset = 0;
|
|
split_mid->ram_bytes = split_mid->len;
|
|
split_mid->flags = flags;
|
|
split_mid->generation = em->generation;
|
|
add_extent_mapping(inode, split_mid, 1);
|
|
|
|
/* Once for us */
|
|
free_extent_map(em);
|
|
/* Once for the tree */
|
|
free_extent_map(em);
|
|
|
|
out_unlock:
|
|
write_unlock(&em_tree->lock);
|
|
unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
|
|
free_extent_map(split_mid);
|
|
out_free_pre:
|
|
free_extent_map(split_pre);
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_em_shrink_ctx {
|
|
long nr_to_scan;
|
|
long scanned;
|
|
};
|
|
|
|
static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
const u64 cur_fs_gen = btrfs_get_fs_generation(fs_info);
|
|
struct extent_map_tree *tree = &inode->extent_tree;
|
|
long nr_dropped = 0;
|
|
struct rb_node *node;
|
|
|
|
/*
|
|
* Take the mmap lock so that we serialize with the inode logging phase
|
|
* of fsync because we may need to set the full sync flag on the inode,
|
|
* in case we have to remove extent maps in the tree's list of modified
|
|
* extents. If we set the full sync flag in the inode while an fsync is
|
|
* in progress, we may risk missing new extents because before the flag
|
|
* is set, fsync decides to only wait for writeback to complete and then
|
|
* during inode logging it sees the flag set and uses the subvolume tree
|
|
* to find new extents, which may not be there yet because ordered
|
|
* extents haven't completed yet.
|
|
*
|
|
* We also do a try lock because otherwise we could deadlock. This is
|
|
* because the shrinker for this filesystem may be invoked while we are
|
|
* in a path that is holding the mmap lock in write mode. For example in
|
|
* a reflink operation while COWing an extent buffer, when allocating
|
|
* pages for a new extent buffer and under memory pressure, the shrinker
|
|
* may be invoked, and therefore we would deadlock by attempting to read
|
|
* lock the mmap lock while we are holding already a write lock on it.
|
|
*/
|
|
if (!down_read_trylock(&inode->i_mmap_lock))
|
|
return 0;
|
|
|
|
/*
|
|
* We want to be fast so if the lock is busy we don't want to spend time
|
|
* waiting for it - either some task is about to do IO for the inode or
|
|
* we may have another task shrinking extent maps, here in this code, so
|
|
* skip this inode.
|
|
*/
|
|
if (!write_trylock(&tree->lock)) {
|
|
up_read(&inode->i_mmap_lock);
|
|
return 0;
|
|
}
|
|
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
struct rb_node *next = rb_next(node);
|
|
struct extent_map *em;
|
|
|
|
em = rb_entry(node, struct extent_map, rb_node);
|
|
ctx->scanned++;
|
|
|
|
if (em->flags & EXTENT_FLAG_PINNED)
|
|
goto next;
|
|
|
|
/*
|
|
* If the inode is in the list of modified extents (new) and its
|
|
* generation is the same (or is greater than) the current fs
|
|
* generation, it means it was not yet persisted so we have to
|
|
* set the full sync flag so that the next fsync will not miss
|
|
* it.
|
|
*/
|
|
if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
|
|
btrfs_set_inode_full_sync(inode);
|
|
|
|
remove_extent_mapping(inode, em);
|
|
trace_btrfs_extent_map_shrinker_remove_em(inode, em);
|
|
/* Drop the reference for the tree. */
|
|
free_extent_map(em);
|
|
nr_dropped++;
|
|
next:
|
|
if (ctx->scanned >= ctx->nr_to_scan)
|
|
break;
|
|
|
|
/*
|
|
* Stop if we need to reschedule or there's contention on the
|
|
* lock. This is to avoid slowing other tasks trying to take the
|
|
* lock.
|
|
*/
|
|
if (need_resched() || rwlock_needbreak(&tree->lock) ||
|
|
btrfs_fs_closing(fs_info))
|
|
break;
|
|
node = next;
|
|
}
|
|
write_unlock(&tree->lock);
|
|
up_read(&inode->i_mmap_lock);
|
|
|
|
return nr_dropped;
|
|
}
|
|
|
|
static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_inode *inode;
|
|
long nr_dropped = 0;
|
|
u64 min_ino = fs_info->em_shrinker_last_ino + 1;
|
|
|
|
inode = btrfs_find_first_inode(root, min_ino);
|
|
while (inode) {
|
|
nr_dropped += btrfs_scan_inode(inode, ctx);
|
|
|
|
min_ino = btrfs_ino(inode) + 1;
|
|
fs_info->em_shrinker_last_ino = btrfs_ino(inode);
|
|
btrfs_add_delayed_iput(inode);
|
|
|
|
if (ctx->scanned >= ctx->nr_to_scan ||
|
|
btrfs_fs_closing(inode->root->fs_info))
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
inode = btrfs_find_first_inode(root, min_ino);
|
|
}
|
|
|
|
if (inode) {
|
|
/*
|
|
* There are still inodes in this root or we happened to process
|
|
* the last one and reached the scan limit. In either case set
|
|
* the current root to this one, so we'll resume from the next
|
|
* inode if there is one or we will find out this was the last
|
|
* one and move to the next root.
|
|
*/
|
|
fs_info->em_shrinker_last_root = btrfs_root_id(root);
|
|
} else {
|
|
/*
|
|
* No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
|
|
* that when processing the next root we start from its first inode.
|
|
*/
|
|
fs_info->em_shrinker_last_ino = 0;
|
|
fs_info->em_shrinker_last_root = btrfs_root_id(root) + 1;
|
|
}
|
|
|
|
return nr_dropped;
|
|
}
|
|
|
|
static void btrfs_extent_map_shrinker_worker(struct work_struct *work)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_em_shrink_ctx ctx;
|
|
u64 start_root_id;
|
|
u64 next_root_id;
|
|
bool cycled = false;
|
|
long nr_dropped = 0;
|
|
|
|
fs_info = container_of(work, struct btrfs_fs_info, em_shrinker_work);
|
|
|
|
ctx.scanned = 0;
|
|
ctx.nr_to_scan = atomic64_read(&fs_info->em_shrinker_nr_to_scan);
|
|
|
|
start_root_id = fs_info->em_shrinker_last_root;
|
|
next_root_id = fs_info->em_shrinker_last_root;
|
|
|
|
if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
|
|
s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
|
|
|
|
trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr);
|
|
}
|
|
|
|
while (ctx.scanned < ctx.nr_to_scan && !btrfs_fs_closing(fs_info)) {
|
|
struct btrfs_root *root;
|
|
unsigned long count;
|
|
|
|
cond_resched();
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)&root,
|
|
(unsigned long)next_root_id, 1);
|
|
if (count == 0) {
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
if (start_root_id > 0 && !cycled) {
|
|
next_root_id = 0;
|
|
fs_info->em_shrinker_last_root = 0;
|
|
fs_info->em_shrinker_last_ino = 0;
|
|
cycled = true;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
next_root_id = btrfs_root_id(root) + 1;
|
|
root = btrfs_grab_root(root);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (!root)
|
|
continue;
|
|
|
|
if (is_fstree(btrfs_root_id(root)))
|
|
nr_dropped += btrfs_scan_root(root, &ctx);
|
|
|
|
btrfs_put_root(root);
|
|
}
|
|
|
|
if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
|
|
s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
|
|
|
|
trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, nr);
|
|
}
|
|
|
|
atomic64_set(&fs_info->em_shrinker_nr_to_scan, 0);
|
|
}
|
|
|
|
void btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
|
|
{
|
|
/*
|
|
* Do nothing if the shrinker is already running. In case of high memory
|
|
* pressure we can have a lot of tasks calling us and all passing the
|
|
* same nr_to_scan value, but in reality we may need only to free
|
|
* nr_to_scan extent maps (or less). In case we need to free more than
|
|
* that, we will be called again by the fs shrinker, so no worries about
|
|
* not doing enough work to reclaim memory from extent maps.
|
|
* We can also be repeatedly called with the same nr_to_scan value
|
|
* simply because the shrinker runs asynchronously and multiple calls
|
|
* to this function are made before the shrinker does enough progress.
|
|
*
|
|
* That's why we set the atomic counter to nr_to_scan only if its
|
|
* current value is zero, instead of incrementing the counter by
|
|
* nr_to_scan.
|
|
*/
|
|
if (atomic64_cmpxchg(&fs_info->em_shrinker_nr_to_scan, 0, nr_to_scan) != 0)
|
|
return;
|
|
|
|
queue_work(system_unbound_wq, &fs_info->em_shrinker_work);
|
|
}
|
|
|
|
void btrfs_init_extent_map_shrinker_work(struct btrfs_fs_info *fs_info)
|
|
{
|
|
atomic64_set(&fs_info->em_shrinker_nr_to_scan, 0);
|
|
INIT_WORK(&fs_info->em_shrinker_work, btrfs_extent_map_shrinker_worker);
|
|
}
|