linux-stable/fs/btrfs/ioctl.c
Linus Torvalds c14a8a4c04 for-6.13-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmc0zT4ACgkQxWXV+ddt
 WDtThRAAhzSSiHcJqTfCL5nHh7w85MNEVw28o1ETgXSYJmx0JOWLE7Znlp2FV7jj
 IbYkFfF2gXJzYvRZkcXB/TAHV9KJG5yZIBZfccbM+9db9f8xkImVKMuqQRXPU41R
 ppSCmqZTeujtt8ucsaJkMpm6pzECKJCJaGOsMJ8fiqKpo89dKO3eGAVboSbpPF4C
 r0YmppiBwSP/cCXQCqWxZRbqPGN+lUgZpIGNRi157kehfmRHlVVJTO1pgqK8PCXb
 uIT09Kulppfez8+1A10CPcniDTyinLik/qLTNlzdWoDBL4iNJMg0A0wsA04AJVf0
 PdOS0REusiv3QcEIO6PefuRFRRfXcSLPpPDUceltJT5O0uM2gUqf2C7dEHXUGU3o
 TdgYlbQpsJWpZ7VGWQDZeGGV04lOPQvu0LGLPgEerUQd5H9ABa0dX8Fn0sPhKsa8
 whpAcdfE4rdNxB2OJFnqQeFq0z3cSjP/rvKlluCmAj97QYI+kiu3QyhemcT1YSC9
 U7n5Ya9IzIYCN3ml54q3hEgyD0IVGGG20GuUmqC9XSP9mrQRC8I1g7v26AiOTrrk
 VhgSdtMmphDxXudifsnYMaQ0Z1QqiUrW1SM/prAEOnBYCo75+HDsTgrq9ithgHoI
 4xz4YXJyMRs18qfTJctXC1wmGuz5plTdQrwarHdNsELN5HEyqX4=
 =aAcf
 -----END PGP SIGNATURE-----

Merge tag 'for-6.13-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "Changes outside of btrfs: add io_uring command flag to track a dying
  task (the rest will go via the block git tree).

  User visible changes:

   - wire encoded read (ioctl) to io_uring commands, this can be used on
     itself, in the future this will allow 'send' to be asynchronous. As
     a consequence, the encoded read ioctl can also work in non-blocking
     mode

   - new ioctl to wait for cleaned subvolumes, no need to use the
     generic and root-only SEARCH_TREE ioctl, will be used by "btrfs
     subvol sync"

   - recognize different paths/symlinks for the same devices and don't
     report them during rescanning, this can be observed with LVM or DM

   - seeding device use case change, the sprout device (the one
     capturing new writes) will not clear the read-only status of the
     super block; this prevents accumulating space from deleted
     snapshots

  Performance improvements:

   - reduce lock contention when traversing extent buffers

   - reduce extent tree lock contention when searching for inline
     backref

   - switch from rb-trees to xarray for delayed ref tracking,
     improvements due to better cache locality, branching factors and
     more compact data structures

   - enable extent map shrinker again (prevent memory exhaustion under
     some types of IO load), reworked to run in a single worker thread
     (there used to be problems causing long stalls under memory
     pressure)

  Core changes:

   - raid-stripe-tree feature updates:
       - make device replace and scrub work
       - implement partial deletion of stripe extents
       - new selftests

   - split the config option BTRFS_DEBUG and add EXPERIMENTAL for
     features that are experimental or with known problems so we don't
     misuse debugging config for that

   - subpage mode updates (sector < page):
       - update compression implementations
       - update writepage, writeback

   - continued folio API conversions:
       - buffered writes

   - make buffered write copy one page at a time, preparatory work for
     future integration with large folios, may cause performance drop

   - proper locking of root item regarding starting send

   - error handling improvements

   - code cleanups and refactoring:
       - dead code removal
       - unused parameter reduction
       - lockdep assertions"

* tag 'for-6.13-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (119 commits)
  btrfs: send: check for read-only send root under critical section
  btrfs: send: check for dead send root under critical section
  btrfs: remove check for NULL fs_info at btrfs_folio_end_lock_bitmap()
  btrfs: fix warning on PTR_ERR() against NULL device at btrfs_control_ioctl()
  btrfs: fix a typo in btrfs_use_zone_append
  btrfs: avoid superfluous calls to free_extent_map() in btrfs_encoded_read()
  btrfs: simplify logic to decrement snapshot counter at btrfs_mksnapshot()
  btrfs: remove hole from struct btrfs_delayed_node
  btrfs: update stale comment for struct btrfs_delayed_ref_node::add_list
  btrfs: add new ioctl to wait for cleaned subvolumes
  btrfs: simplify range tracking in cow_file_range()
  btrfs: remove conditional path allocation in btrfs_read_locked_inode()
  btrfs: push cleanup into btrfs_read_locked_inode()
  io_uring/cmd: let cmds to know about dying task
  btrfs: add struct io_btrfs_cmd as type for io_uring_cmd_to_pdu()
  btrfs: add io_uring command for encoded reads (ENCODED_READ ioctl)
  btrfs: move priv off stack in btrfs_encoded_read_regular_fill_pages()
  btrfs: don't sleep in btrfs_encoded_read() if IOCB_NOWAIT is set
  btrfs: change btrfs_encoded_read() so that reading of extent is done by caller
  btrfs: remove pointless iocb::ki_pos addition in btrfs_encoded_read()
  ...
2024-11-18 16:37:41 -08:00

5326 lines
131 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/writeback.h>
#include <linux/compat.h>
#include <linux/security.h>
#include <linux/xattr.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/uuid.h>
#include <linux/btrfs.h>
#include <linux/uaccess.h>
#include <linux/iversion.h>
#include <linux/fileattr.h>
#include <linux/fsverity.h>
#include <linux/sched/xacct.h>
#include <linux/io_uring/cmd.h>
#include "ctree.h"
#include "disk-io.h"
#include "export.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "locking.h"
#include "backref.h"
#include "send.h"
#include "dev-replace.h"
#include "props.h"
#include "sysfs.h"
#include "qgroup.h"
#include "tree-log.h"
#include "compression.h"
#include "space-info.h"
#include "block-group.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "root-tree.h"
#include "defrag.h"
#include "dir-item.h"
#include "uuid-tree.h"
#include "ioctl.h"
#include "file.h"
#include "scrub.h"
#include "super.h"
#ifdef CONFIG_64BIT
/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
* structures are incorrect, as the timespec structure from userspace
* is 4 bytes too small. We define these alternatives here to teach
* the kernel about the 32-bit struct packing.
*/
struct btrfs_ioctl_timespec_32 {
__u64 sec;
__u32 nsec;
} __attribute__ ((__packed__));
struct btrfs_ioctl_received_subvol_args_32 {
char uuid[BTRFS_UUID_SIZE]; /* in */
__u64 stransid; /* in */
__u64 rtransid; /* out */
struct btrfs_ioctl_timespec_32 stime; /* in */
struct btrfs_ioctl_timespec_32 rtime; /* out */
__u64 flags; /* in */
__u64 reserved[16]; /* in */
} __attribute__ ((__packed__));
#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
struct btrfs_ioctl_received_subvol_args_32)
#endif
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_send_args_32 {
__s64 send_fd; /* in */
__u64 clone_sources_count; /* in */
compat_uptr_t clone_sources; /* in */
__u64 parent_root; /* in */
__u64 flags; /* in */
__u32 version; /* in */
__u8 reserved[28]; /* in */
} __attribute__ ((__packed__));
#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
struct btrfs_ioctl_send_args_32)
struct btrfs_ioctl_encoded_io_args_32 {
compat_uptr_t iov;
compat_ulong_t iovcnt;
__s64 offset;
__u64 flags;
__u64 len;
__u64 unencoded_len;
__u64 unencoded_offset;
__u32 compression;
__u32 encryption;
__u8 reserved[64];
};
#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
struct btrfs_ioctl_encoded_io_args_32)
#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
struct btrfs_ioctl_encoded_io_args_32)
#endif
/* Mask out flags that are inappropriate for the given type of inode. */
static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
unsigned int flags)
{
if (S_ISDIR(inode->i_mode))
return flags;
else if (S_ISREG(inode->i_mode))
return flags & ~FS_DIRSYNC_FL;
else
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
}
/*
* Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
* ioctl.
*/
static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
{
unsigned int iflags = 0;
u32 flags = binode->flags;
u32 ro_flags = binode->ro_flags;
if (flags & BTRFS_INODE_SYNC)
iflags |= FS_SYNC_FL;
if (flags & BTRFS_INODE_IMMUTABLE)
iflags |= FS_IMMUTABLE_FL;
if (flags & BTRFS_INODE_APPEND)
iflags |= FS_APPEND_FL;
if (flags & BTRFS_INODE_NODUMP)
iflags |= FS_NODUMP_FL;
if (flags & BTRFS_INODE_NOATIME)
iflags |= FS_NOATIME_FL;
if (flags & BTRFS_INODE_DIRSYNC)
iflags |= FS_DIRSYNC_FL;
if (flags & BTRFS_INODE_NODATACOW)
iflags |= FS_NOCOW_FL;
if (ro_flags & BTRFS_INODE_RO_VERITY)
iflags |= FS_VERITY_FL;
if (flags & BTRFS_INODE_NOCOMPRESS)
iflags |= FS_NOCOMP_FL;
else if (flags & BTRFS_INODE_COMPRESS)
iflags |= FS_COMPR_FL;
return iflags;
}
/*
* Update inode->i_flags based on the btrfs internal flags.
*/
void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
{
struct btrfs_inode *binode = BTRFS_I(inode);
unsigned int new_fl = 0;
if (binode->flags & BTRFS_INODE_SYNC)
new_fl |= S_SYNC;
if (binode->flags & BTRFS_INODE_IMMUTABLE)
new_fl |= S_IMMUTABLE;
if (binode->flags & BTRFS_INODE_APPEND)
new_fl |= S_APPEND;
if (binode->flags & BTRFS_INODE_NOATIME)
new_fl |= S_NOATIME;
if (binode->flags & BTRFS_INODE_DIRSYNC)
new_fl |= S_DIRSYNC;
if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
new_fl |= S_VERITY;
set_mask_bits(&inode->i_flags,
S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
S_VERITY, new_fl);
}
/*
* Check if @flags are a supported and valid set of FS_*_FL flags and that
* the old and new flags are not conflicting
*/
static int check_fsflags(unsigned int old_flags, unsigned int flags)
{
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
FS_NOATIME_FL | FS_NODUMP_FL | \
FS_SYNC_FL | FS_DIRSYNC_FL | \
FS_NOCOMP_FL | FS_COMPR_FL |
FS_NOCOW_FL))
return -EOPNOTSUPP;
/* COMPR and NOCOMP on new/old are valid */
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
return -EINVAL;
if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
return -EINVAL;
/* NOCOW and compression options are mutually exclusive */
if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
return -EINVAL;
if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
return -EINVAL;
return 0;
}
static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
unsigned int flags)
{
if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
return -EPERM;
return 0;
}
int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
{
if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
return -ENAMETOOLONG;
return 0;
}
static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
{
if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
return -ENAMETOOLONG;
return 0;
}
/*
* Set flags/xflags from the internal inode flags. The remaining items of
* fsxattr are zeroed.
*/
int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
return 0;
}
int btrfs_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_inode *binode = BTRFS_I(inode);
struct btrfs_root *root = binode->root;
struct btrfs_trans_handle *trans;
unsigned int fsflags, old_fsflags;
int ret;
const char *comp = NULL;
u32 binode_flags;
if (btrfs_root_readonly(root))
return -EROFS;
if (fileattr_has_fsx(fa))
return -EOPNOTSUPP;
fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
old_fsflags = btrfs_inode_flags_to_fsflags(binode);
ret = check_fsflags(old_fsflags, fsflags);
if (ret)
return ret;
ret = check_fsflags_compatible(fs_info, fsflags);
if (ret)
return ret;
binode_flags = binode->flags;
if (fsflags & FS_SYNC_FL)
binode_flags |= BTRFS_INODE_SYNC;
else
binode_flags &= ~BTRFS_INODE_SYNC;
if (fsflags & FS_IMMUTABLE_FL)
binode_flags |= BTRFS_INODE_IMMUTABLE;
else
binode_flags &= ~BTRFS_INODE_IMMUTABLE;
if (fsflags & FS_APPEND_FL)
binode_flags |= BTRFS_INODE_APPEND;
else
binode_flags &= ~BTRFS_INODE_APPEND;
if (fsflags & FS_NODUMP_FL)
binode_flags |= BTRFS_INODE_NODUMP;
else
binode_flags &= ~BTRFS_INODE_NODUMP;
if (fsflags & FS_NOATIME_FL)
binode_flags |= BTRFS_INODE_NOATIME;
else
binode_flags &= ~BTRFS_INODE_NOATIME;
/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
if (!fa->flags_valid) {
/* 1 item for the inode */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
goto update_flags;
}
if (fsflags & FS_DIRSYNC_FL)
binode_flags |= BTRFS_INODE_DIRSYNC;
else
binode_flags &= ~BTRFS_INODE_DIRSYNC;
if (fsflags & FS_NOCOW_FL) {
if (S_ISREG(inode->i_mode)) {
/*
* It's safe to turn csums off here, no extents exist.
* Otherwise we want the flag to reflect the real COW
* status of the file and will not set it.
*/
if (inode->i_size == 0)
binode_flags |= BTRFS_INODE_NODATACOW |
BTRFS_INODE_NODATASUM;
} else {
binode_flags |= BTRFS_INODE_NODATACOW;
}
} else {
/*
* Revert back under same assumptions as above
*/
if (S_ISREG(inode->i_mode)) {
if (inode->i_size == 0)
binode_flags &= ~(BTRFS_INODE_NODATACOW |
BTRFS_INODE_NODATASUM);
} else {
binode_flags &= ~BTRFS_INODE_NODATACOW;
}
}
/*
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
* flag may be changed automatically if compression code won't make
* things smaller.
*/
if (fsflags & FS_NOCOMP_FL) {
binode_flags &= ~BTRFS_INODE_COMPRESS;
binode_flags |= BTRFS_INODE_NOCOMPRESS;
} else if (fsflags & FS_COMPR_FL) {
if (IS_SWAPFILE(inode))
return -ETXTBSY;
binode_flags |= BTRFS_INODE_COMPRESS;
binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
comp = btrfs_compress_type2str(fs_info->compress_type);
if (!comp || comp[0] == 0)
comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
} else {
binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
}
/*
* 1 for inode item
* 2 for properties
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans))
return PTR_ERR(trans);
if (comp) {
ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
comp, strlen(comp), 0);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_end_trans;
}
} else {
ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
NULL, 0, 0);
if (ret && ret != -ENODATA) {
btrfs_abort_transaction(trans, ret);
goto out_end_trans;
}
}
update_flags:
binode->flags = binode_flags;
btrfs_sync_inode_flags_to_i_flags(inode);
inode_inc_iversion(inode);
inode_set_ctime_current(inode);
ret = btrfs_update_inode(trans, BTRFS_I(inode));
out_end_trans:
btrfs_end_transaction(trans);
return ret;
}
/*
* Start exclusive operation @type, return true on success
*/
bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type)
{
bool ret = false;
spin_lock(&fs_info->super_lock);
if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
fs_info->exclusive_operation = type;
ret = true;
}
spin_unlock(&fs_info->super_lock);
return ret;
}
/*
* Conditionally allow to enter the exclusive operation in case it's compatible
* with the running one. This must be paired with btrfs_exclop_start_unlock and
* btrfs_exclop_finish.
*
* Compatibility:
* - the same type is already running
* - when trying to add a device and balance has been paused
* - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
* must check the condition first that would allow none -> @type
*/
bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type)
{
spin_lock(&fs_info->super_lock);
if (fs_info->exclusive_operation == type ||
(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
type == BTRFS_EXCLOP_DEV_ADD))
return true;
spin_unlock(&fs_info->super_lock);
return false;
}
void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
{
spin_unlock(&fs_info->super_lock);
}
void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
{
spin_lock(&fs_info->super_lock);
WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
spin_unlock(&fs_info->super_lock);
sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
}
void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation op)
{
switch (op) {
case BTRFS_EXCLOP_BALANCE_PAUSED:
spin_lock(&fs_info->super_lock);
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
spin_unlock(&fs_info->super_lock);
break;
case BTRFS_EXCLOP_BALANCE:
spin_lock(&fs_info->super_lock);
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
spin_unlock(&fs_info->super_lock);
break;
default:
btrfs_warn(fs_info,
"invalid exclop balance operation %d requested", op);
}
}
static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
{
return put_user(inode->i_generation, arg);
}
static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_device *device;
struct fstrim_range range;
u64 minlen = ULLONG_MAX;
u64 num_devices = 0;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/*
* btrfs_trim_block_group() depends on space cache, which is not
* available in zoned filesystem. So, disallow fitrim on a zoned
* filesystem for now.
*/
if (btrfs_is_zoned(fs_info))
return -EOPNOTSUPP;
/*
* If the fs is mounted with nologreplay, which requires it to be
* mounted in RO mode as well, we can not allow discard on free space
* inside block groups, because log trees refer to extents that are not
* pinned in a block group's free space cache (pinning the extents is
* precisely the first phase of replaying a log tree).
*/
if (btrfs_test_opt(fs_info, NOLOGREPLAY))
return -EROFS;
rcu_read_lock();
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
dev_list) {
if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
continue;
num_devices++;
minlen = min_t(u64, bdev_discard_granularity(device->bdev),
minlen);
}
rcu_read_unlock();
if (!num_devices)
return -EOPNOTSUPP;
if (copy_from_user(&range, arg, sizeof(range)))
return -EFAULT;
/*
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
* block group is in the logical address space, which can be any
* sectorsize aligned bytenr in the range [0, U64_MAX].
*/
if (range.len < fs_info->sectorsize)
return -EINVAL;
range.minlen = max(range.minlen, minlen);
ret = btrfs_trim_fs(fs_info, &range);
if (copy_to_user(arg, &range, sizeof(range)))
return -EFAULT;
return ret;
}
int __pure btrfs_is_empty_uuid(const u8 *uuid)
{
int i;
for (i = 0; i < BTRFS_UUID_SIZE; i++) {
if (uuid[i])
return 0;
}
return 1;
}
/*
* Calculate the number of transaction items to reserve for creating a subvolume
* or snapshot, not including the inode, directory entries, or parent directory.
*/
static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
{
/*
* 1 to add root block
* 1 to add root item
* 1 to add root ref
* 1 to add root backref
* 1 to add UUID item
* 1 to add qgroup info
* 1 to add qgroup limit
*
* Ideally the last two would only be accounted if qgroups are enabled,
* but that can change between now and the time we would insert them.
*/
unsigned int num_items = 7;
if (inherit) {
/* 2 to add qgroup relations for each inherited qgroup */
num_items += 2 * inherit->num_qgroups;
}
return num_items;
}
static noinline int create_subvol(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *dentry,
struct btrfs_qgroup_inherit *inherit)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_root_item *root_item;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *new_root;
struct btrfs_block_rsv block_rsv;
struct timespec64 cur_time = current_time(dir);
struct btrfs_new_inode_args new_inode_args = {
.dir = dir,
.dentry = dentry,
.subvol = true,
};
unsigned int trans_num_items;
int ret;
dev_t anon_dev;
u64 objectid;
u64 qgroup_reserved = 0;
root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
if (!root_item)
return -ENOMEM;
ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
if (ret)
goto out_root_item;
/*
* Don't create subvolume whose level is not zero. Or qgroup will be
* screwed up since it assumes subvolume qgroup's level to be 0.
*/
if (btrfs_qgroup_level(objectid)) {
ret = -ENOSPC;
goto out_root_item;
}
ret = get_anon_bdev(&anon_dev);
if (ret < 0)
goto out_root_item;
new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
if (!new_inode_args.inode) {
ret = -ENOMEM;
goto out_anon_dev;
}
ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
if (ret)
goto out_inode;
trans_num_items += create_subvol_num_items(inherit);
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
trans_num_items, false);
if (ret)
goto out_new_inode_args;
qgroup_reserved = block_rsv.qgroup_rsv_reserved;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_release_rsv;
}
btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
qgroup_reserved = 0;
trans->block_rsv = &block_rsv;
trans->bytes_reserved = block_rsv.size;
ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
if (ret)
goto out;
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
0, BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
goto out;
}
btrfs_mark_buffer_dirty(trans, leaf);
inode_item = &root_item->inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item,
fs_info->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
btrfs_set_root_flags(root_item, 0);
btrfs_set_root_limit(root_item, 0);
btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
btrfs_set_root_bytenr(root_item, leaf->start);
btrfs_set_root_generation(root_item, trans->transid);
btrfs_set_root_level(root_item, 0);
btrfs_set_root_refs(root_item, 1);
btrfs_set_root_used(root_item, leaf->len);
btrfs_set_root_last_snapshot(root_item, 0);
btrfs_set_root_generation_v2(root_item,
btrfs_root_generation(root_item));
generate_random_guid(root_item->uuid);
btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
root_item->ctime = root_item->otime;
btrfs_set_root_ctransid(root_item, trans->transid);
btrfs_set_root_otransid(root_item, trans->transid);
btrfs_tree_unlock(leaf);
btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
key.objectid = objectid;
key.offset = 0;
key.type = BTRFS_ROOT_ITEM_KEY;
ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
root_item);
if (ret) {
int ret2;
/*
* Since we don't abort the transaction in this case, free the
* tree block so that we don't leak space and leave the
* filesystem in an inconsistent state (an extent item in the
* extent tree with a backreference for a root that does not
* exists).
*/
btrfs_tree_lock(leaf);
btrfs_clear_buffer_dirty(trans, leaf);
btrfs_tree_unlock(leaf);
ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
if (ret2 < 0)
btrfs_abort_transaction(trans, ret2);
free_extent_buffer(leaf);
goto out;
}
free_extent_buffer(leaf);
leaf = NULL;
new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
btrfs_abort_transaction(trans, ret);
goto out;
}
/* anon_dev is owned by new_root now. */
anon_dev = 0;
BTRFS_I(new_inode_args.inode)->root = new_root;
/* ... and new_root is owned by new_inode_args.inode now. */
ret = btrfs_record_root_in_trans(trans, new_root);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_uuid_tree_add(trans, root_item->uuid,
BTRFS_UUID_KEY_SUBVOL, objectid);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_create_new_inode(trans, &new_inode_args);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
btrfs_record_new_subvolume(trans, BTRFS_I(dir));
d_instantiate_new(dentry, new_inode_args.inode);
new_inode_args.inode = NULL;
out:
trans->block_rsv = NULL;
trans->bytes_reserved = 0;
btrfs_end_transaction(trans);
out_release_rsv:
btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
if (qgroup_reserved)
btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
out_new_inode_args:
btrfs_new_inode_args_destroy(&new_inode_args);
out_inode:
iput(new_inode_args.inode);
out_anon_dev:
if (anon_dev)
free_anon_bdev(anon_dev);
out_root_item:
kfree(root_item);
return ret;
}
static int create_snapshot(struct btrfs_root *root, struct inode *dir,
struct dentry *dentry, bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
struct inode *inode;
struct btrfs_pending_snapshot *pending_snapshot;
unsigned int trans_num_items;
struct btrfs_trans_handle *trans;
struct btrfs_block_rsv *block_rsv;
u64 qgroup_reserved = 0;
int ret;
/* We do not support snapshotting right now. */
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_warn(fs_info,
"extent tree v2 doesn't support snapshotting yet");
return -EOPNOTSUPP;
}
if (btrfs_root_refs(&root->root_item) == 0)
return -ENOENT;
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
return -EINVAL;
if (atomic_read(&root->nr_swapfiles)) {
btrfs_warn(fs_info,
"cannot snapshot subvolume with active swapfile");
return -ETXTBSY;
}
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
if (!pending_snapshot)
return -ENOMEM;
ret = get_anon_bdev(&pending_snapshot->anon_dev);
if (ret < 0)
goto free_pending;
pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
GFP_KERNEL);
pending_snapshot->path = btrfs_alloc_path();
if (!pending_snapshot->root_item || !pending_snapshot->path) {
ret = -ENOMEM;
goto free_pending;
}
block_rsv = &pending_snapshot->block_rsv;
btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
/*
* 1 to add dir item
* 1 to add dir index
* 1 to update parent inode item
*/
trans_num_items = create_subvol_num_items(inherit) + 3;
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
trans_num_items, false);
if (ret)
goto free_pending;
qgroup_reserved = block_rsv->qgroup_rsv_reserved;
pending_snapshot->dentry = dentry;
pending_snapshot->root = root;
pending_snapshot->readonly = readonly;
pending_snapshot->dir = BTRFS_I(dir);
pending_snapshot->inherit = inherit;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto fail;
}
ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
if (ret) {
btrfs_end_transaction(trans);
goto fail;
}
btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
qgroup_reserved = 0;
trans->pending_snapshot = pending_snapshot;
ret = btrfs_commit_transaction(trans);
if (ret)
goto fail;
ret = pending_snapshot->error;
if (ret)
goto fail;
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
if (ret)
goto fail;
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto fail;
}
d_instantiate(dentry, inode);
ret = 0;
pending_snapshot->anon_dev = 0;
fail:
/* Prevent double freeing of anon_dev */
if (ret && pending_snapshot->snap)
pending_snapshot->snap->anon_dev = 0;
btrfs_put_root(pending_snapshot->snap);
btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
if (qgroup_reserved)
btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
free_pending:
if (pending_snapshot->anon_dev)
free_anon_bdev(pending_snapshot->anon_dev);
kfree(pending_snapshot->root_item);
btrfs_free_path(pending_snapshot->path);
kfree(pending_snapshot);
return ret;
}
/* copy of may_delete in fs/namei.c()
* Check whether we can remove a link victim from directory dir, check
* whether the type of victim is right.
* 1. We can't do it if dir is read-only (done in permission())
* 2. We should have write and exec permissions on dir
* 3. We can't remove anything from append-only dir
* 4. We can't do anything with immutable dir (done in permission())
* 5. If the sticky bit on dir is set we should either
* a. be owner of dir, or
* b. be owner of victim, or
* c. have CAP_FOWNER capability
* 6. If the victim is append-only or immutable we can't do anything with
* links pointing to it.
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
* 9. We can't remove a root or mountpoint.
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
* nfs_async_unlink().
*/
static int btrfs_may_delete(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *victim, int isdir)
{
int error;
if (d_really_is_negative(victim))
return -ENOENT;
/* The @victim is not inside @dir. */
if (d_inode(victim->d_parent) != dir)
return -EINVAL;
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
if (error)
return error;
if (IS_APPEND(dir))
return -EPERM;
if (check_sticky(idmap, dir, d_inode(victim)) ||
IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
IS_SWAPFILE(d_inode(victim)))
return -EPERM;
if (isdir) {
if (!d_is_dir(victim))
return -ENOTDIR;
if (IS_ROOT(victim))
return -EBUSY;
} else if (d_is_dir(victim))
return -EISDIR;
if (IS_DEADDIR(dir))
return -ENOENT;
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
return -EBUSY;
return 0;
}
/* copy of may_create in fs/namei.c() */
static inline int btrfs_may_create(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *child)
{
if (d_really_is_positive(child))
return -EEXIST;
if (IS_DEADDIR(dir))
return -ENOENT;
if (!fsuidgid_has_mapping(dir->i_sb, idmap))
return -EOVERFLOW;
return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
}
/*
* Create a new subvolume below @parent. This is largely modeled after
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
* inside this filesystem so it's quite a bit simpler.
*/
static noinline int btrfs_mksubvol(const struct path *parent,
struct mnt_idmap *idmap,
const char *name, int namelen,
struct btrfs_root *snap_src,
bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
struct inode *dir = d_inode(parent->dentry);
struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
struct dentry *dentry;
struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
int error;
error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
if (error == -EINTR)
return error;
dentry = lookup_one(idmap, name, parent->dentry, namelen);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto out_unlock;
error = btrfs_may_create(idmap, dir, dentry);
if (error)
goto out_dput;
/*
* even if this name doesn't exist, we may get hash collisions.
* check for them now when we can safely fail
*/
error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
dir->i_ino, &name_str);
if (error)
goto out_dput;
down_read(&fs_info->subvol_sem);
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
goto out_up_read;
if (snap_src)
error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
else
error = create_subvol(idmap, dir, dentry, inherit);
if (!error)
fsnotify_mkdir(dir, dentry);
out_up_read:
up_read(&fs_info->subvol_sem);
out_dput:
dput(dentry);
out_unlock:
btrfs_inode_unlock(BTRFS_I(dir), 0);
return error;
}
static noinline int btrfs_mksnapshot(const struct path *parent,
struct mnt_idmap *idmap,
const char *name, int namelen,
struct btrfs_root *root,
bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
int ret;
/*
* Force new buffered writes to reserve space even when NOCOW is
* possible. This is to avoid later writeback (running dealloc) to
* fallback to COW mode and unexpectedly fail with ENOSPC.
*/
btrfs_drew_read_lock(&root->snapshot_lock);
ret = btrfs_start_delalloc_snapshot(root, false);
if (ret)
goto out;
/*
* All previous writes have started writeback in NOCOW mode, so now
* we force future writes to fallback to COW mode during snapshot
* creation.
*/
atomic_inc(&root->snapshot_force_cow);
btrfs_wait_ordered_extents(root, U64_MAX, NULL);
ret = btrfs_mksubvol(parent, idmap, name, namelen,
root, readonly, inherit);
atomic_dec(&root->snapshot_force_cow);
out:
btrfs_drew_read_unlock(&root->snapshot_lock);
return ret;
}
/*
* Try to start exclusive operation @type or cancel it if it's running.
*
* Return:
* 0 - normal mode, newly claimed op started
* >0 - normal mode, something else is running,
* return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
* ECANCELED - cancel mode, successful cancel
* ENOTCONN - cancel mode, operation not running anymore
*/
static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
enum btrfs_exclusive_operation type, bool cancel)
{
if (!cancel) {
/* Start normal op */
if (!btrfs_exclop_start(fs_info, type))
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
/* Exclusive operation is now claimed */
return 0;
}
/* Cancel running op */
if (btrfs_exclop_start_try_lock(fs_info, type)) {
/*
* This blocks any exclop finish from setting it to NONE, so we
* request cancellation. Either it runs and we will wait for it,
* or it has finished and no waiting will happen.
*/
atomic_inc(&fs_info->reloc_cancel_req);
btrfs_exclop_start_unlock(fs_info);
if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
TASK_INTERRUPTIBLE);
return -ECANCELED;
}
/* Something else is running or none */
return -ENOTCONN;
}
static noinline int btrfs_ioctl_resize(struct file *file,
void __user *arg)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
u64 new_size;
u64 old_size;
u64 devid = 1;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_vol_args *vol_args;
struct btrfs_trans_handle *trans;
struct btrfs_device *device = NULL;
char *sizestr;
char *retptr;
char *devstr = NULL;
int ret = 0;
int mod = 0;
bool cancel;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
/*
* Read the arguments before checking exclusivity to be able to
* distinguish regular resize and cancel
*/
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out_drop;
}
ret = btrfs_check_ioctl_vol_args_path(vol_args);
if (ret < 0)
goto out_free;
sizestr = vol_args->name;
cancel = (strcmp("cancel", sizestr) == 0);
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
if (ret)
goto out_free;
/* Exclusive operation is now claimed */
devstr = strchr(sizestr, ':');
if (devstr) {
sizestr = devstr + 1;
*devstr = '\0';
devstr = vol_args->name;
ret = kstrtoull(devstr, 10, &devid);
if (ret)
goto out_finish;
if (!devid) {
ret = -EINVAL;
goto out_finish;
}
btrfs_info(fs_info, "resizing devid %llu", devid);
}
args.devid = devid;
device = btrfs_find_device(fs_info->fs_devices, &args);
if (!device) {
btrfs_info(fs_info, "resizer unable to find device %llu",
devid);
ret = -ENODEV;
goto out_finish;
}
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
btrfs_info(fs_info,
"resizer unable to apply on readonly device %llu",
devid);
ret = -EPERM;
goto out_finish;
}
if (!strcmp(sizestr, "max"))
new_size = bdev_nr_bytes(device->bdev);
else {
if (sizestr[0] == '-') {
mod = -1;
sizestr++;
} else if (sizestr[0] == '+') {
mod = 1;
sizestr++;
}
new_size = memparse(sizestr, &retptr);
if (*retptr != '\0' || new_size == 0) {
ret = -EINVAL;
goto out_finish;
}
}
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
ret = -EPERM;
goto out_finish;
}
old_size = btrfs_device_get_total_bytes(device);
if (mod < 0) {
if (new_size > old_size) {
ret = -EINVAL;
goto out_finish;
}
new_size = old_size - new_size;
} else if (mod > 0) {
if (new_size > ULLONG_MAX - old_size) {
ret = -ERANGE;
goto out_finish;
}
new_size = old_size + new_size;
}
if (new_size < SZ_256M) {
ret = -EINVAL;
goto out_finish;
}
if (new_size > bdev_nr_bytes(device->bdev)) {
ret = -EFBIG;
goto out_finish;
}
new_size = round_down(new_size, fs_info->sectorsize);
if (new_size > old_size) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_finish;
}
ret = btrfs_grow_device(trans, device, new_size);
btrfs_commit_transaction(trans);
} else if (new_size < old_size) {
ret = btrfs_shrink_device(device, new_size);
} /* equal, nothing need to do */
if (ret == 0 && new_size != old_size)
btrfs_info_in_rcu(fs_info,
"resize device %s (devid %llu) from %llu to %llu",
btrfs_dev_name(device), device->devid,
old_size, new_size);
out_finish:
btrfs_exclop_finish(fs_info);
out_free:
kfree(vol_args);
out_drop:
mnt_drop_write_file(file);
return ret;
}
static noinline int __btrfs_ioctl_snap_create(struct file *file,
struct mnt_idmap *idmap,
const char *name, unsigned long fd, int subvol,
bool readonly,
struct btrfs_qgroup_inherit *inherit)
{
int namelen;
int ret = 0;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
ret = mnt_want_write_file(file);
if (ret)
goto out;
namelen = strlen(name);
if (strchr(name, '/')) {
ret = -EINVAL;
goto out_drop_write;
}
if (name[0] == '.' &&
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
ret = -EEXIST;
goto out_drop_write;
}
if (subvol) {
ret = btrfs_mksubvol(&file->f_path, idmap, name,
namelen, NULL, readonly, inherit);
} else {
CLASS(fd, src)(fd);
struct inode *src_inode;
if (fd_empty(src)) {
ret = -EINVAL;
goto out_drop_write;
}
src_inode = file_inode(fd_file(src));
if (src_inode->i_sb != file_inode(file)->i_sb) {
btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
"Snapshot src from another FS");
ret = -EXDEV;
} else if (!inode_owner_or_capable(idmap, src_inode)) {
/*
* Subvolume creation is not restricted, but snapshots
* are limited to own subvolumes only
*/
ret = -EPERM;
} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
/*
* Snapshots must be made with the src_inode referring
* to the subvolume inode, otherwise the permission
* checking above is useless because we may have
* permission on a lower directory but not the subvol
* itself.
*/
ret = -EINVAL;
} else {
ret = btrfs_mksnapshot(&file->f_path, idmap,
name, namelen,
BTRFS_I(src_inode)->root,
readonly, inherit);
}
}
out_drop_write:
mnt_drop_write_file(file);
out:
return ret;
}
static noinline int btrfs_ioctl_snap_create(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args *vol_args;
int ret;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
ret = btrfs_check_ioctl_vol_args_path(vol_args);
if (ret < 0)
goto out;
ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
vol_args->name, vol_args->fd, subvol,
false, NULL);
out:
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
void __user *arg, int subvol)
{
struct btrfs_ioctl_vol_args_v2 *vol_args;
int ret;
bool readonly = false;
struct btrfs_qgroup_inherit *inherit = NULL;
if (!S_ISDIR(file_inode(file)->i_mode))
return -ENOTDIR;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
if (ret < 0)
goto free_args;
if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto free_args;
}
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
readonly = true;
if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
if (vol_args->size < sizeof(*inherit) ||
vol_args->size > PAGE_SIZE) {
ret = -EINVAL;
goto free_args;
}
inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
if (IS_ERR(inherit)) {
ret = PTR_ERR(inherit);
goto free_args;
}
ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
if (ret < 0)
goto free_inherit;
}
ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
vol_args->name, vol_args->fd, subvol,
readonly, inherit);
if (ret)
goto free_inherit;
free_inherit:
kfree(inherit);
free_args:
kfree(vol_args);
return ret;
}
static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
void __user *arg)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
u64 flags = 0;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
return -EINVAL;
down_read(&fs_info->subvol_sem);
if (btrfs_root_readonly(root))
flags |= BTRFS_SUBVOL_RDONLY;
up_read(&fs_info->subvol_sem);
if (copy_to_user(arg, &flags, sizeof(flags)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
u64 root_flags;
u64 flags;
int ret = 0;
if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
goto out;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out_drop_write;
}
if (copy_from_user(&flags, arg, sizeof(flags))) {
ret = -EFAULT;
goto out_drop_write;
}
if (flags & ~BTRFS_SUBVOL_RDONLY) {
ret = -EOPNOTSUPP;
goto out_drop_write;
}
down_write(&fs_info->subvol_sem);
/* nothing to do */
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
goto out_drop_sem;
root_flags = btrfs_root_flags(&root->root_item);
if (flags & BTRFS_SUBVOL_RDONLY) {
btrfs_set_root_flags(&root->root_item,
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
} else {
/*
* Block RO -> RW transition if this subvolume is involved in
* send
*/
spin_lock(&root->root_item_lock);
if (root->send_in_progress == 0) {
btrfs_set_root_flags(&root->root_item,
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
spin_unlock(&root->root_item_lock);
} else {
spin_unlock(&root->root_item_lock);
btrfs_warn(fs_info,
"Attempt to set subvolume %llu read-write during send",
btrfs_root_id(root));
ret = -EPERM;
goto out_drop_sem;
}
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_reset;
}
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
if (ret < 0) {
btrfs_end_transaction(trans);
goto out_reset;
}
ret = btrfs_commit_transaction(trans);
out_reset:
if (ret)
btrfs_set_root_flags(&root->root_item, root_flags);
out_drop_sem:
up_write(&fs_info->subvol_sem);
out_drop_write:
mnt_drop_write_file(file);
out:
return ret;
}
static noinline int key_in_sk(struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk)
{
struct btrfs_key test;
int ret;
test.objectid = sk->min_objectid;
test.type = sk->min_type;
test.offset = sk->min_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret < 0)
return 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
ret = btrfs_comp_cpu_keys(key, &test);
if (ret > 0)
return 0;
return 1;
}
static noinline int copy_to_sk(struct btrfs_path *path,
struct btrfs_key *key,
struct btrfs_ioctl_search_key *sk,
u64 *buf_size,
char __user *ubuf,
unsigned long *sk_offset,
int *num_found)
{
u64 found_transid;
struct extent_buffer *leaf;
struct btrfs_ioctl_search_header sh;
struct btrfs_key test;
unsigned long item_off;
unsigned long item_len;
int nritems;
int i;
int slot;
int ret = 0;
leaf = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(leaf);
if (btrfs_header_generation(leaf) > sk->max_transid) {
i = nritems;
goto advance_key;
}
found_transid = btrfs_header_generation(leaf);
for (i = slot; i < nritems; i++) {
item_off = btrfs_item_ptr_offset(leaf, i);
item_len = btrfs_item_size(leaf, i);
btrfs_item_key_to_cpu(leaf, key, i);
if (!key_in_sk(key, sk))
continue;
if (sizeof(sh) + item_len > *buf_size) {
if (*num_found) {
ret = 1;
goto out;
}
/*
* return one empty item back for v1, which does not
* handle -EOVERFLOW
*/
*buf_size = sizeof(sh) + item_len;
item_len = 0;
ret = -EOVERFLOW;
}
if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
ret = 1;
goto out;
}
sh.objectid = key->objectid;
sh.offset = key->offset;
sh.type = key->type;
sh.len = item_len;
sh.transid = found_transid;
/*
* Copy search result header. If we fault then loop again so we
* can fault in the pages and -EFAULT there if there's a
* problem. Otherwise we'll fault and then copy the buffer in
* properly this next time through
*/
if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
ret = 0;
goto out;
}
*sk_offset += sizeof(sh);
if (item_len) {
char __user *up = ubuf + *sk_offset;
/*
* Copy the item, same behavior as above, but reset the
* * sk_offset so we copy the full thing again.
*/
if (read_extent_buffer_to_user_nofault(leaf, up,
item_off, item_len)) {
ret = 0;
*sk_offset -= sizeof(sh);
goto out;
}
*sk_offset += item_len;
}
(*num_found)++;
if (ret) /* -EOVERFLOW from above */
goto out;
if (*num_found >= sk->nr_items) {
ret = 1;
goto out;
}
}
advance_key:
ret = 0;
test.objectid = sk->max_objectid;
test.type = sk->max_type;
test.offset = sk->max_offset;
if (btrfs_comp_cpu_keys(key, &test) >= 0)
ret = 1;
else if (key->offset < (u64)-1)
key->offset++;
else if (key->type < (u8)-1) {
key->offset = 0;
key->type++;
} else if (key->objectid < (u64)-1) {
key->offset = 0;
key->type = 0;
key->objectid++;
} else
ret = 1;
out:
/*
* 0: all items from this leaf copied, continue with next
* 1: * more items can be copied, but unused buffer is too small
* * all items were found
* Either way, it will stops the loop which iterates to the next
* leaf
* -EOVERFLOW: item was to large for buffer
* -EFAULT: could not copy extent buffer back to userspace
*/
return ret;
}
static noinline int search_ioctl(struct inode *inode,
struct btrfs_ioctl_search_key *sk,
u64 *buf_size,
char __user *ubuf)
{
struct btrfs_fs_info *info = inode_to_fs_info(inode);
struct btrfs_root *root;
struct btrfs_key key;
struct btrfs_path *path;
int ret;
int num_found = 0;
unsigned long sk_offset = 0;
if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
*buf_size = sizeof(struct btrfs_ioctl_search_header);
return -EOVERFLOW;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (sk->tree_id == 0) {
/* search the root of the inode that was passed */
root = btrfs_grab_root(BTRFS_I(inode)->root);
} else {
root = btrfs_get_fs_root(info, sk->tree_id, true);
if (IS_ERR(root)) {
btrfs_free_path(path);
return PTR_ERR(root);
}
}
key.objectid = sk->min_objectid;
key.type = sk->min_type;
key.offset = sk->min_offset;
while (1) {
ret = -EFAULT;
/*
* Ensure that the whole user buffer is faulted in at sub-page
* granularity, otherwise the loop may live-lock.
*/
if (fault_in_subpage_writeable(ubuf + sk_offset,
*buf_size - sk_offset))
break;
ret = btrfs_search_forward(root, &key, path, sk->min_transid);
if (ret != 0) {
if (ret > 0)
ret = 0;
goto err;
}
ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
&sk_offset, &num_found);
btrfs_release_path(path);
if (ret)
break;
}
if (ret > 0)
ret = 0;
err:
sk->nr_items = num_found;
btrfs_put_root(root);
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_tree_search(struct inode *inode,
void __user *argp)
{
struct btrfs_ioctl_search_args __user *uargs = argp;
struct btrfs_ioctl_search_key sk;
int ret;
u64 buf_size;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
return -EFAULT;
buf_size = sizeof(uargs->buf);
ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
/*
* In the origin implementation an overflow is handled by returning a
* search header with a len of zero, so reset ret.
*/
if (ret == -EOVERFLOW)
ret = 0;
if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
ret = -EFAULT;
return ret;
}
static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
void __user *argp)
{
struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
struct btrfs_ioctl_search_args_v2 args;
int ret;
u64 buf_size;
const u64 buf_limit = SZ_16M;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/* copy search header and buffer size */
if (copy_from_user(&args, uarg, sizeof(args)))
return -EFAULT;
buf_size = args.buf_size;
/* limit result size to 16MB */
if (buf_size > buf_limit)
buf_size = buf_limit;
ret = search_ioctl(inode, &args.key, &buf_size,
(char __user *)(&uarg->buf[0]));
if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
ret = -EFAULT;
else if (ret == -EOVERFLOW &&
copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
ret = -EFAULT;
return ret;
}
/*
* Search INODE_REFs to identify path name of 'dirid' directory
* in a 'tree_id' tree. and sets path name to 'name'.
*/
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
u64 tree_id, u64 dirid, char *name)
{
struct btrfs_root *root;
struct btrfs_key key;
char *ptr;
int ret = -1;
int slot;
int len;
int total_len = 0;
struct btrfs_inode_ref *iref;
struct extent_buffer *l;
struct btrfs_path *path;
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
name[0]='\0';
return 0;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
root = btrfs_get_fs_root(info, tree_id, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
root = NULL;
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_backwards(root, &key, path);
if (ret < 0)
goto out;
else if (ret > 0) {
ret = -ENOENT;
goto out;
}
l = path->nodes[0];
slot = path->slots[0];
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(l, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < name) {
ret = -ENAMETOOLONG;
goto out;
}
*(ptr + len) = '/';
read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
break;
btrfs_release_path(path);
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
memmove(name, ptr, total_len);
name[total_len] = '\0';
ret = 0;
out:
btrfs_put_root(root);
btrfs_free_path(path);
return ret;
}
static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
struct inode *inode,
struct btrfs_ioctl_ino_lookup_user_args *args)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
u64 upper_limit = btrfs_ino(BTRFS_I(inode));
u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
u64 dirid = args->dirid;
unsigned long item_off;
unsigned long item_len;
struct btrfs_inode_ref *iref;
struct btrfs_root_ref *rref;
struct btrfs_root *root = NULL;
struct btrfs_path *path;
struct btrfs_key key, key2;
struct extent_buffer *leaf;
struct inode *temp_inode;
char *ptr;
int slot;
int len;
int total_len = 0;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* If the bottom subvolume does not exist directly under upper_limit,
* construct the path in from the bottom up.
*/
if (dirid != upper_limit) {
ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
root = btrfs_get_fs_root(fs_info, treeid, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out;
}
key.objectid = dirid;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_backwards(root, &key, path);
if (ret < 0)
goto out_put;
else if (ret > 0) {
ret = -ENOENT;
goto out_put;
}
leaf = path->nodes[0];
slot = path->slots[0];
iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
len = btrfs_inode_ref_name_len(leaf, iref);
ptr -= len + 1;
total_len += len + 1;
if (ptr < args->path) {
ret = -ENAMETOOLONG;
goto out_put;
}
*(ptr + len) = '/';
read_extent_buffer(leaf, ptr,
(unsigned long)(iref + 1), len);
/* Check the read+exec permission of this directory */
ret = btrfs_previous_item(root, path, dirid,
BTRFS_INODE_ITEM_KEY);
if (ret < 0) {
goto out_put;
} else if (ret > 0) {
ret = -ENOENT;
goto out_put;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key2, slot);
if (key2.objectid != dirid) {
ret = -ENOENT;
goto out_put;
}
/*
* We don't need the path anymore, so release it and
* avoid deadlocks and lockdep warnings in case
* btrfs_iget() needs to lookup the inode from its root
* btree and lock the same leaf.
*/
btrfs_release_path(path);
temp_inode = btrfs_iget(key2.objectid, root);
if (IS_ERR(temp_inode)) {
ret = PTR_ERR(temp_inode);
goto out_put;
}
ret = inode_permission(idmap, temp_inode,
MAY_READ | MAY_EXEC);
iput(temp_inode);
if (ret) {
ret = -EACCES;
goto out_put;
}
if (key.offset == upper_limit)
break;
if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
ret = -EACCES;
goto out_put;
}
key.objectid = key.offset;
key.offset = (u64)-1;
dirid = key.objectid;
}
memmove(args->path, ptr, total_len);
args->path[total_len] = '\0';
btrfs_put_root(root);
root = NULL;
btrfs_release_path(path);
}
/* Get the bottom subvolume's name from ROOT_REF */
key.objectid = treeid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = args->treeid;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
item_off = btrfs_item_ptr_offset(leaf, slot);
item_len = btrfs_item_size(leaf, slot);
/* Check if dirid in ROOT_REF corresponds to passed dirid */
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
ret = -EINVAL;
goto out;
}
/* Copy subvolume's name */
item_off += sizeof(struct btrfs_root_ref);
item_len -= sizeof(struct btrfs_root_ref);
read_extent_buffer(leaf, args->name, item_off, item_len);
args->name[item_len] = 0;
out_put:
btrfs_put_root(root);
out:
btrfs_free_path(path);
return ret;
}
static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
void __user *argp)
{
struct btrfs_ioctl_ino_lookup_args *args;
int ret = 0;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
/*
* Unprivileged query to obtain the containing subvolume root id. The
* path is reset so it's consistent with btrfs_search_path_in_tree.
*/
if (args->treeid == 0)
args->treeid = btrfs_root_id(root);
if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
args->name[0] = 0;
goto out;
}
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_search_path_in_tree(root->fs_info,
args->treeid, args->objectid,
args->name);
out:
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/*
* Version of ino_lookup ioctl (unprivileged)
*
* The main differences from ino_lookup ioctl are:
*
* 1. Read + Exec permission will be checked using inode_permission() during
* path construction. -EACCES will be returned in case of failure.
* 2. Path construction will be stopped at the inode number which corresponds
* to the fd with which this ioctl is called. If constructed path does not
* exist under fd's inode, -EACCES will be returned.
* 3. The name of bottom subvolume is also searched and filled.
*/
static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
{
struct btrfs_ioctl_ino_lookup_user_args *args;
struct inode *inode;
int ret;
args = memdup_user(argp, sizeof(*args));
if (IS_ERR(args))
return PTR_ERR(args);
inode = file_inode(file);
if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
/*
* The subvolume does not exist under fd with which this is
* called
*/
kfree(args);
return -EACCES;
}
ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
ret = -EFAULT;
kfree(args);
return ret;
}
/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
{
struct btrfs_ioctl_get_subvol_info_args *subvol_info;
struct btrfs_fs_info *fs_info;
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_root_item *root_item;
struct btrfs_root_ref *rref;
struct extent_buffer *leaf;
unsigned long item_off;
unsigned long item_len;
int slot;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
if (!subvol_info) {
btrfs_free_path(path);
return -ENOMEM;
}
fs_info = BTRFS_I(inode)->root->fs_info;
/* Get root_item of inode's subvolume */
key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
root = btrfs_get_fs_root(fs_info, key.objectid, true);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out_free;
}
root_item = &root->root_item;
subvol_info->treeid = key.objectid;
subvol_info->generation = btrfs_root_generation(root_item);
subvol_info->flags = btrfs_root_flags(root_item);
memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
BTRFS_UUID_SIZE);
memcpy(subvol_info->received_uuid, root_item->received_uuid,
BTRFS_UUID_SIZE);
subvol_info->ctransid = btrfs_root_ctransid(root_item);
subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
subvol_info->otransid = btrfs_root_otransid(root_item);
subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
subvol_info->stransid = btrfs_root_stransid(root_item);
subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
subvol_info->rtransid = btrfs_root_rtransid(root_item);
subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
/* Search root tree for ROOT_BACKREF of this subvolume */
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(fs_info->tree_root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid == subvol_info->treeid &&
key.type == BTRFS_ROOT_BACKREF_KEY) {
subvol_info->parent_id = key.offset;
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
item_off = btrfs_item_ptr_offset(leaf, slot)
+ sizeof(struct btrfs_root_ref);
item_len = btrfs_item_size(leaf, slot)
- sizeof(struct btrfs_root_ref);
read_extent_buffer(leaf, subvol_info->name,
item_off, item_len);
} else {
ret = -ENOENT;
goto out;
}
}
btrfs_free_path(path);
path = NULL;
if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
ret = -EFAULT;
out:
btrfs_put_root(root);
out_free:
btrfs_free_path(path);
kfree(subvol_info);
return ret;
}
/*
* Return ROOT_REF information of the subvolume containing this inode
* except the subvolume name.
*/
static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
void __user *argp)
{
struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
struct btrfs_root_ref *rref;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *leaf;
u64 objectid;
int slot;
int ret;
u8 found;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
rootrefs = memdup_user(argp, sizeof(*rootrefs));
if (IS_ERR(rootrefs)) {
btrfs_free_path(path);
return PTR_ERR(rootrefs);
}
objectid = btrfs_root_id(root);
key.objectid = objectid;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = rootrefs->min_treeid;
found = 0;
root = root->fs_info->tree_root;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
goto out;
} else if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
while (1) {
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
ret = 0;
goto out;
}
if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
ret = -EOVERFLOW;
goto out;
}
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
rootrefs->rootref[found].treeid = key.offset;
rootrefs->rootref[found].dirid =
btrfs_root_ref_dirid(leaf, rref);
found++;
ret = btrfs_next_item(root, path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
out:
btrfs_free_path(path);
if (!ret || ret == -EOVERFLOW) {
rootrefs->num_items = found;
/* update min_treeid for next search */
if (found)
rootrefs->min_treeid =
rootrefs->rootref[found - 1].treeid + 1;
if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
ret = -EFAULT;
}
kfree(rootrefs);
return ret;
}
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
void __user *arg,
bool destroy_v2)
{
struct dentry *parent = file->f_path.dentry;
struct dentry *dentry;
struct inode *dir = d_inode(parent);
struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
struct inode *inode;
struct btrfs_root *root = BTRFS_I(dir)->root;
struct btrfs_root *dest = NULL;
struct btrfs_ioctl_vol_args *vol_args = NULL;
struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
struct mnt_idmap *idmap = file_mnt_idmap(file);
char *subvol_name, *subvol_name_ptr = NULL;
int subvol_namelen;
int ret = 0;
bool destroy_parent = false;
/* We don't support snapshots with extent tree v2 yet. */
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info,
"extent tree v2 doesn't support snapshot deletion yet");
return -EOPNOTSUPP;
}
if (destroy_v2) {
vol_args2 = memdup_user(arg, sizeof(*vol_args2));
if (IS_ERR(vol_args2))
return PTR_ERR(vol_args2);
if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto out;
}
/*
* If SPEC_BY_ID is not set, we are looking for the subvolume by
* name, same as v1 currently does.
*/
if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
if (ret < 0)
goto out;
subvol_name = vol_args2->name;
ret = mnt_want_write_file(file);
if (ret)
goto out;
} else {
struct inode *old_dir;
if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out;
}
ret = mnt_want_write_file(file);
if (ret)
goto out;
dentry = btrfs_get_dentry(fs_info->sb,
BTRFS_FIRST_FREE_OBJECTID,
vol_args2->subvolid, 0);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out_drop_write;
}
/*
* Change the default parent since the subvolume being
* deleted can be outside of the current mount point.
*/
parent = btrfs_get_parent(dentry);
/*
* At this point dentry->d_name can point to '/' if the
* subvolume we want to destroy is outsite of the
* current mount point, so we need to release the
* current dentry and execute the lookup to return a new
* one with ->d_name pointing to the
* <mount point>/subvol_name.
*/
dput(dentry);
if (IS_ERR(parent)) {
ret = PTR_ERR(parent);
goto out_drop_write;
}
old_dir = dir;
dir = d_inode(parent);
/*
* If v2 was used with SPEC_BY_ID, a new parent was
* allocated since the subvolume can be outside of the
* current mount point. Later on we need to release this
* new parent dentry.
*/
destroy_parent = true;
/*
* On idmapped mounts, deletion via subvolid is
* restricted to subvolumes that are immediate
* ancestors of the inode referenced by the file
* descriptor in the ioctl. Otherwise the idmapping
* could potentially be abused to delete subvolumes
* anywhere in the filesystem the user wouldn't be able
* to delete without an idmapped mount.
*/
if (old_dir != dir && idmap != &nop_mnt_idmap) {
ret = -EOPNOTSUPP;
goto free_parent;
}
subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
fs_info, vol_args2->subvolid);
if (IS_ERR(subvol_name_ptr)) {
ret = PTR_ERR(subvol_name_ptr);
goto free_parent;
}
/* subvol_name_ptr is already nul terminated */
subvol_name = (char *)kbasename(subvol_name_ptr);
}
} else {
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
ret = btrfs_check_ioctl_vol_args_path(vol_args);
if (ret < 0)
goto out;
subvol_name = vol_args->name;
ret = mnt_want_write_file(file);
if (ret)
goto out;
}
subvol_namelen = strlen(subvol_name);
if (strchr(subvol_name, '/') ||
strncmp(subvol_name, "..", subvol_namelen) == 0) {
ret = -EINVAL;
goto free_subvol_name;
}
if (!S_ISDIR(dir->i_mode)) {
ret = -ENOTDIR;
goto free_subvol_name;
}
ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
if (ret == -EINTR)
goto free_subvol_name;
dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out_unlock_dir;
}
if (d_really_is_negative(dentry)) {
ret = -ENOENT;
goto out_dput;
}
inode = d_inode(dentry);
dest = BTRFS_I(inode)->root;
if (!capable(CAP_SYS_ADMIN)) {
/*
* Regular user. Only allow this with a special mount
* option, when the user has write+exec access to the
* subvol root, and when rmdir(2) would have been
* allowed.
*
* Note that this is _not_ check that the subvol is
* empty or doesn't contain data that we wouldn't
* otherwise be able to delete.
*
* Users who want to delete empty subvols should try
* rmdir(2).
*/
ret = -EPERM;
if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
goto out_dput;
/*
* Do not allow deletion if the parent dir is the same
* as the dir to be deleted. That means the ioctl
* must be called on the dentry referencing the root
* of the subvol, not a random directory contained
* within it.
*/
ret = -EINVAL;
if (root == dest)
goto out_dput;
ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
if (ret)
goto out_dput;
}
/* check if subvolume may be deleted by a user */
ret = btrfs_may_delete(idmap, dir, dentry, 1);
if (ret)
goto out_dput;
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out_dput;
}
btrfs_inode_lock(BTRFS_I(inode), 0);
ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
btrfs_inode_unlock(BTRFS_I(inode), 0);
if (!ret)
d_delete_notify(dir, dentry);
out_dput:
dput(dentry);
out_unlock_dir:
btrfs_inode_unlock(BTRFS_I(dir), 0);
free_subvol_name:
kfree(subvol_name_ptr);
free_parent:
if (destroy_parent)
dput(parent);
out_drop_write:
mnt_drop_write_file(file);
out:
kfree(vol_args2);
kfree(vol_args);
return ret;
}
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_defrag_range_args range = {0};
int ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (btrfs_root_readonly(root)) {
ret = -EROFS;
goto out;
}
switch (inode->i_mode & S_IFMT) {
case S_IFDIR:
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
ret = btrfs_defrag_root(root);
break;
case S_IFREG:
/*
* Note that this does not check the file descriptor for write
* access. This prevents defragmenting executables that are
* running and allows defrag on files open in read-only mode.
*/
if (!capable(CAP_SYS_ADMIN) &&
inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
ret = -EPERM;
goto out;
}
if (argp) {
if (copy_from_user(&range, argp, sizeof(range))) {
ret = -EFAULT;
goto out;
}
if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
ret = -EOPNOTSUPP;
goto out;
}
/* compression requires us to start the IO */
if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
range.extent_thresh = (u32)-1;
}
} else {
/* the rest are all set to zero by kzalloc */
range.len = (u64)-1;
}
ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
&range, BTRFS_OLDEST_GENERATION, 0);
if (ret > 0)
ret = 0;
break;
default:
ret = -EINVAL;
}
out:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
{
struct btrfs_ioctl_vol_args *vol_args;
bool restore_op = false;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
return -EINVAL;
}
if (fs_info->fs_devices->temp_fsid) {
btrfs_err(fs_info,
"device add not supported on cloned temp-fsid mount");
return -EINVAL;
}
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
/*
* We can do the device add because we have a paused balanced,
* change the exclusive op type and remember we should bring
* back the paused balance
*/
fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
btrfs_exclop_start_unlock(fs_info);
restore_op = true;
}
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args)) {
ret = PTR_ERR(vol_args);
goto out;
}
ret = btrfs_check_ioctl_vol_args_path(vol_args);
if (ret < 0)
goto out_free;
ret = btrfs_init_new_device(fs_info, vol_args->name);
if (!ret)
btrfs_info(fs_info, "disk added %s", vol_args->name);
out_free:
kfree(vol_args);
out:
if (restore_op)
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
else
btrfs_exclop_finish(fs_info);
return ret;
}
static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_ioctl_vol_args_v2 *vol_args;
struct file *bdev_file = NULL;
int ret;
bool cancel = false;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
ret = -EOPNOTSUPP;
goto out;
}
ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
if (ret < 0)
goto out;
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
args.devid = vol_args->devid;
} else if (!strcmp("cancel", vol_args->name)) {
cancel = true;
} else {
ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
if (ret)
goto out;
}
ret = mnt_want_write_file(file);
if (ret)
goto out;
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
cancel);
if (ret)
goto err_drop;
/* Exclusive operation is now claimed */
ret = btrfs_rm_device(fs_info, &args, &bdev_file);
btrfs_exclop_finish(fs_info);
if (!ret) {
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
btrfs_info(fs_info, "device deleted: id %llu",
vol_args->devid);
else
btrfs_info(fs_info, "device deleted: %s",
vol_args->name);
}
err_drop:
mnt_drop_write_file(file);
if (bdev_file)
fput(bdev_file);
out:
btrfs_put_dev_args_from_path(&args);
kfree(vol_args);
return ret;
}
static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_ioctl_vol_args *vol_args;
struct file *bdev_file = NULL;
int ret;
bool cancel = false;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
vol_args = memdup_user(arg, sizeof(*vol_args));
if (IS_ERR(vol_args))
return PTR_ERR(vol_args);
ret = btrfs_check_ioctl_vol_args_path(vol_args);
if (ret < 0)
goto out_free;
if (!strcmp("cancel", vol_args->name)) {
cancel = true;
} else {
ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
if (ret)
goto out;
}
ret = mnt_want_write_file(file);
if (ret)
goto out;
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
cancel);
if (ret == 0) {
ret = btrfs_rm_device(fs_info, &args, &bdev_file);
if (!ret)
btrfs_info(fs_info, "disk deleted %s", vol_args->name);
btrfs_exclop_finish(fs_info);
}
mnt_drop_write_file(file);
if (bdev_file)
fput(bdev_file);
out:
btrfs_put_dev_args_from_path(&args);
out_free:
kfree(vol_args);
return ret;
}
static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_fs_info_args *fi_args;
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
u64 flags_in;
int ret = 0;
fi_args = memdup_user(arg, sizeof(*fi_args));
if (IS_ERR(fi_args))
return PTR_ERR(fi_args);
flags_in = fi_args->flags;
memset(fi_args, 0, sizeof(*fi_args));
rcu_read_lock();
fi_args->num_devices = fs_devices->num_devices;
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
if (device->devid > fi_args->max_id)
fi_args->max_id = device->devid;
}
rcu_read_unlock();
memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
fi_args->nodesize = fs_info->nodesize;
fi_args->sectorsize = fs_info->sectorsize;
fi_args->clone_alignment = fs_info->sectorsize;
if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
}
if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
fi_args->generation = btrfs_get_fs_generation(fs_info);
fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
}
if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
sizeof(fi_args->metadata_uuid));
fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
}
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
ret = -EFAULT;
kfree(fi_args);
return ret;
}
static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_ioctl_dev_info_args *di_args;
struct btrfs_device *dev;
int ret = 0;
di_args = memdup_user(arg, sizeof(*di_args));
if (IS_ERR(di_args))
return PTR_ERR(di_args);
args.devid = di_args->devid;
if (!btrfs_is_empty_uuid(di_args->uuid))
args.uuid = di_args->uuid;
rcu_read_lock();
dev = btrfs_find_device(fs_info->fs_devices, &args);
if (!dev) {
ret = -ENODEV;
goto out;
}
di_args->devid = dev->devid;
di_args->bytes_used = btrfs_device_get_bytes_used(dev);
di_args->total_bytes = btrfs_device_get_total_bytes(dev);
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
if (dev->name)
strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
else
di_args->path[0] = '\0';
out:
rcu_read_unlock();
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
ret = -EFAULT;
kfree(di_args);
return ret;
}
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root *new_root;
struct btrfs_dir_item *di;
struct btrfs_trans_handle *trans;
struct btrfs_path *path = NULL;
struct btrfs_disk_key disk_key;
struct fscrypt_str name = FSTR_INIT("default", 7);
u64 objectid = 0;
u64 dir_id;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
if (copy_from_user(&objectid, argp, sizeof(objectid))) {
ret = -EFAULT;
goto out;
}
if (!objectid)
objectid = BTRFS_FS_TREE_OBJECTID;
new_root = btrfs_get_fs_root(fs_info, objectid, true);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
goto out;
}
if (!is_fstree(btrfs_root_id(new_root))) {
ret = -ENOENT;
goto out_free;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out_free;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_free;
}
dir_id = btrfs_super_root_dir(fs_info->super_copy);
di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
dir_id, &name, 1);
if (IS_ERR_OR_NULL(di)) {
btrfs_release_path(path);
btrfs_end_transaction(trans);
btrfs_err(fs_info,
"Umm, you don't have the default diritem, this isn't going to work");
ret = -ENOENT;
goto out_free;
}
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
btrfs_mark_buffer_dirty(trans, path->nodes[0]);
btrfs_release_path(path);
btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
btrfs_end_transaction(trans);
out_free:
btrfs_put_root(new_root);
btrfs_free_path(path);
out:
mnt_drop_write_file(file);
return ret;
}
static void get_block_group_info(struct list_head *groups_list,
struct btrfs_ioctl_space_info *space)
{
struct btrfs_block_group *block_group;
space->total_bytes = 0;
space->used_bytes = 0;
space->flags = 0;
list_for_each_entry(block_group, groups_list, list) {
space->flags = block_group->flags;
space->total_bytes += block_group->length;
space->used_bytes += block_group->used;
}
}
static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_space_args space_args = { 0 };
struct btrfs_ioctl_space_info space;
struct btrfs_ioctl_space_info *dest;
struct btrfs_ioctl_space_info *dest_orig;
struct btrfs_ioctl_space_info __user *user_dest;
struct btrfs_space_info *info;
static const u64 types[] = {
BTRFS_BLOCK_GROUP_DATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
};
int num_types = 4;
int alloc_size;
int ret = 0;
u64 slot_count = 0;
int i, c;
if (copy_from_user(&space_args,
(struct btrfs_ioctl_space_args __user *)arg,
sizeof(space_args)))
return -EFAULT;
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
info = NULL;
list_for_each_entry(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c]))
slot_count++;
}
up_read(&info->groups_sem);
}
/*
* Global block reserve, exported as a space_info
*/
slot_count++;
/* space_slots == 0 means they are asking for a count */
if (space_args.space_slots == 0) {
space_args.total_spaces = slot_count;
goto out;
}
slot_count = min_t(u64, space_args.space_slots, slot_count);
alloc_size = sizeof(*dest) * slot_count;
/* we generally have at most 6 or so space infos, one for each raid
* level. So, a whole page should be more than enough for everyone
*/
if (alloc_size > PAGE_SIZE)
return -ENOMEM;
space_args.total_spaces = 0;
dest = kmalloc(alloc_size, GFP_KERNEL);
if (!dest)
return -ENOMEM;
dest_orig = dest;
/* now we have a buffer to copy into */
for (i = 0; i < num_types; i++) {
struct btrfs_space_info *tmp;
if (!slot_count)
break;
info = NULL;
list_for_each_entry(tmp, &fs_info->space_info, list) {
if (tmp->flags == types[i]) {
info = tmp;
break;
}
}
if (!info)
continue;
down_read(&info->groups_sem);
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
if (!list_empty(&info->block_groups[c])) {
get_block_group_info(&info->block_groups[c],
&space);
memcpy(dest, &space, sizeof(space));
dest++;
space_args.total_spaces++;
slot_count--;
}
if (!slot_count)
break;
}
up_read(&info->groups_sem);
}
/*
* Add global block reserve
*/
if (slot_count) {
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
spin_lock(&block_rsv->lock);
space.total_bytes = block_rsv->size;
space.used_bytes = block_rsv->size - block_rsv->reserved;
spin_unlock(&block_rsv->lock);
space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
memcpy(dest, &space, sizeof(space));
space_args.total_spaces++;
}
user_dest = (struct btrfs_ioctl_space_info __user *)
(arg + sizeof(struct btrfs_ioctl_space_args));
if (copy_to_user(user_dest, dest_orig, alloc_size))
ret = -EFAULT;
kfree(dest_orig);
out:
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
ret = -EFAULT;
return ret;
}
static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
void __user *argp)
{
struct btrfs_trans_handle *trans;
u64 transid;
/*
* Start orphan cleanup here for the given root in case it hasn't been
* started already by other means. Errors are handled in the other
* functions during transaction commit.
*/
btrfs_orphan_cleanup(root);
trans = btrfs_attach_transaction_barrier(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
return PTR_ERR(trans);
/* No running transaction, don't bother */
transid = btrfs_get_last_trans_committed(root->fs_info);
goto out;
}
transid = trans->transid;
btrfs_commit_transaction_async(trans);
out:
if (argp)
if (copy_to_user(argp, &transid, sizeof(transid)))
return -EFAULT;
return 0;
}
static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
void __user *argp)
{
/* By default wait for the current transaction. */
u64 transid = 0;
if (argp)
if (copy_from_user(&transid, argp, sizeof(transid)))
return -EFAULT;
return btrfs_wait_for_commit(fs_info, transid);
}
static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
return -EINVAL;
}
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
ret = -EOPNOTSUPP;
goto out;
}
if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
ret = mnt_want_write_file(file);
if (ret)
goto out;
}
ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
0);
/*
* Copy scrub args to user space even if btrfs_scrub_dev() returned an
* error. This is important as it allows user space to know how much
* progress scrub has done. For example, if scrub is canceled we get
* -ECANCELED from btrfs_scrub_dev() and return that error back to user
* space. Later user space can inspect the progress from the structure
* btrfs_ioctl_scrub_args and resume scrub from where it left off
* previously (btrfs-progs does this).
* If we fail to copy the btrfs_ioctl_scrub_args structure to user space
* then return -EFAULT to signal the structure was not copied or it may
* be corrupt and unreliable due to a partial copy.
*/
if (copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
if (!(sa->flags & BTRFS_SCRUB_READONLY))
mnt_drop_write_file(file);
out:
kfree(sa);
return ret;
}
static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_scrub_cancel(fs_info);
}
static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_scrub_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_get_dev_stats *sa;
int ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
kfree(sa);
return -EPERM;
}
ret = btrfs_get_dev_stats(fs_info, sa);
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
ret = -EFAULT;
kfree(sa);
return ret;
}
static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_dev_replace_args *p;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
return -EINVAL;
}
p = memdup_user(arg, sizeof(*p));
if (IS_ERR(p))
return PTR_ERR(p);
switch (p->cmd) {
case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
if (sb_rdonly(fs_info->sb)) {
ret = -EROFS;
goto out;
}
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
} else {
ret = btrfs_dev_replace_by_ioctl(fs_info, p);
btrfs_exclop_finish(fs_info);
}
break;
case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
btrfs_dev_replace_status(fs_info, p);
ret = 0;
break;
case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
p->result = btrfs_dev_replace_cancel(fs_info);
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
ret = -EFAULT;
out:
kfree(p);
return ret;
}
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
{
int ret = 0;
int i;
u64 rel_ptr;
int size;
struct btrfs_ioctl_ino_path_args *ipa = NULL;
struct inode_fs_paths *ipath = NULL;
struct btrfs_path *path;
if (!capable(CAP_DAC_READ_SEARCH))
return -EPERM;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ipa = memdup_user(arg, sizeof(*ipa));
if (IS_ERR(ipa)) {
ret = PTR_ERR(ipa);
ipa = NULL;
goto out;
}
size = min_t(u32, ipa->size, 4096);
ipath = init_ipath(size, root, path);
if (IS_ERR(ipath)) {
ret = PTR_ERR(ipath);
ipath = NULL;
goto out;
}
ret = paths_from_inode(ipa->inum, ipath);
if (ret < 0)
goto out;
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
rel_ptr = ipath->fspath->val[i] -
(u64)(unsigned long)ipath->fspath->val;
ipath->fspath->val[i] = rel_ptr;
}
btrfs_free_path(path);
path = NULL;
ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
ipath->fspath, size);
if (ret) {
ret = -EFAULT;
goto out;
}
out:
btrfs_free_path(path);
free_ipath(ipath);
kfree(ipa);
return ret;
}
static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
void __user *arg, int version)
{
int ret = 0;
int size;
struct btrfs_ioctl_logical_ino_args *loi;
struct btrfs_data_container *inodes = NULL;
struct btrfs_path *path = NULL;
bool ignore_offset;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
loi = memdup_user(arg, sizeof(*loi));
if (IS_ERR(loi))
return PTR_ERR(loi);
if (version == 1) {
ignore_offset = false;
size = min_t(u32, loi->size, SZ_64K);
} else {
/* All reserved bits must be 0 for now */
if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
ret = -EINVAL;
goto out_loi;
}
/* Only accept flags we have defined so far */
if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
ret = -EINVAL;
goto out_loi;
}
ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
size = min_t(u32, loi->size, SZ_16M);
}
inodes = init_data_container(size);
if (IS_ERR(inodes)) {
ret = PTR_ERR(inodes);
goto out_loi;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
inodes, ignore_offset);
btrfs_free_path(path);
if (ret == -EINVAL)
ret = -ENOENT;
if (ret < 0)
goto out;
ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
size);
if (ret)
ret = -EFAULT;
out:
kvfree(inodes);
out_loi:
kfree(loi);
return ret;
}
void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_balance_args *bargs)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
bargs->flags = bctl->flags;
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
if (atomic_read(&fs_info->balance_pause_req))
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
if (atomic_read(&fs_info->balance_cancel_req))
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
spin_lock(&fs_info->balance_lock);
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
spin_unlock(&fs_info->balance_lock);
}
/*
* Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
* required.
*
* @fs_info: the filesystem
* @excl_acquired: ptr to boolean value which is set to false in case balance
* is being resumed
*
* Return 0 on success in which case both fs_info::balance is acquired as well
* as exclusive ops are blocked. In case of failure return an error code.
*/
static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
{
int ret;
/*
* Exclusive operation is locked. Three possibilities:
* (1) some other op is running
* (2) balance is running
* (3) balance is paused -- special case (think resume)
*/
while (1) {
if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
*excl_acquired = true;
mutex_lock(&fs_info->balance_mutex);
return 0;
}
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl) {
/* This is either (2) or (3) */
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
/* This is (2) */
ret = -EINPROGRESS;
goto out_failure;
} else {
mutex_unlock(&fs_info->balance_mutex);
/*
* Lock released to allow other waiters to
* continue, we'll reexamine the status again.
*/
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl &&
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
/* This is (3) */
*excl_acquired = false;
return 0;
}
}
} else {
/* This is (1) */
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
goto out_failure;
}
mutex_unlock(&fs_info->balance_mutex);
}
out_failure:
mutex_unlock(&fs_info->balance_mutex);
*excl_acquired = false;
return ret;
}
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
{
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_ioctl_balance_args *bargs;
struct btrfs_balance_control *bctl;
bool need_unlock = true;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
bargs = memdup_user(arg, sizeof(*bargs));
if (IS_ERR(bargs)) {
ret = PTR_ERR(bargs);
bargs = NULL;
goto out;
}
ret = btrfs_try_lock_balance(fs_info, &need_unlock);
if (ret)
goto out;
lockdep_assert_held(&fs_info->balance_mutex);
if (bargs->flags & BTRFS_BALANCE_RESUME) {
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out_unlock;
}
bctl = fs_info->balance_ctl;
spin_lock(&fs_info->balance_lock);
bctl->flags |= BTRFS_BALANCE_RESUME;
spin_unlock(&fs_info->balance_lock);
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
goto do_balance;
}
if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
ret = -EINVAL;
goto out_unlock;
}
if (fs_info->balance_ctl) {
ret = -EINPROGRESS;
goto out_unlock;
}
bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
if (!bctl) {
ret = -ENOMEM;
goto out_unlock;
}
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
bctl->flags = bargs->flags;
do_balance:
/*
* Ownership of bctl and exclusive operation goes to btrfs_balance.
* bctl is freed in reset_balance_state, or, if restriper was paused
* all the way until unmount, in free_fs_info. The flag should be
* cleared after reset_balance_state.
*/
need_unlock = false;
ret = btrfs_balance(fs_info, bctl, bargs);
bctl = NULL;
if (ret == 0 || ret == -ECANCELED) {
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
}
kfree(bctl);
out_unlock:
mutex_unlock(&fs_info->balance_mutex);
if (need_unlock)
btrfs_exclop_finish(fs_info);
out:
mnt_drop_write_file(file);
kfree(bargs);
return ret;
}
static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case BTRFS_BALANCE_CTL_PAUSE:
return btrfs_pause_balance(fs_info);
case BTRFS_BALANCE_CTL_CANCEL:
return btrfs_cancel_balance(fs_info);
}
return -EINVAL;
}
static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_balance_args *bargs;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
ret = -ENOTCONN;
goto out;
}
bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
if (!bargs) {
ret = -ENOMEM;
goto out;
}
btrfs_update_ioctl_balance_args(fs_info, bargs);
if (copy_to_user(arg, bargs, sizeof(*bargs)))
ret = -EFAULT;
kfree(bargs);
out:
mutex_unlock(&fs_info->balance_mutex);
return ret;
}
static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_ioctl_quota_ctl_args *sa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
switch (sa->cmd) {
case BTRFS_QUOTA_CTL_ENABLE:
case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
down_write(&fs_info->subvol_sem);
ret = btrfs_quota_enable(fs_info, sa);
up_write(&fs_info->subvol_sem);
break;
case BTRFS_QUOTA_CTL_DISABLE:
/*
* Lock the cleaner mutex to prevent races with concurrent
* relocation, because relocation may be building backrefs for
* blocks of the quota root while we are deleting the root. This
* is like dropping fs roots of deleted snapshots/subvolumes, we
* need the same protection.
*
* This also prevents races between concurrent tasks trying to
* disable quotas, because we will unlock and relock
* qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
*
* We take this here because we have the dependency of
*
* inode_lock -> subvol_sem
*
* because of rename. With relocation we can prealloc extents,
* so that makes the dependency chain
*
* cleaner_mutex -> inode_lock -> subvol_sem
*
* so we must take the cleaner_mutex here before we take the
* subvol_sem. The deadlock can't actually happen, but this
* quiets lockdep.
*/
mutex_lock(&fs_info->cleaner_mutex);
down_write(&fs_info->subvol_sem);
ret = btrfs_quota_disable(fs_info);
up_write(&fs_info->subvol_sem);
mutex_unlock(&fs_info->cleaner_mutex);
break;
default:
ret = -EINVAL;
break;
}
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
/*
* Quick check for ioctl handlers if quotas are enabled. Proper locking must be
* done before any operations.
*/
static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
{
bool ret = true;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root)
ret = false;
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_assign_args *sa;
struct btrfs_qgroup_list *prealloc = NULL;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!qgroup_enabled(root->fs_info))
return -ENOTCONN;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
if (sa->assign) {
prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
if (!prealloc) {
ret = -ENOMEM;
goto drop_write;
}
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
/*
* Prealloc ownership is moved to the relation handler, there it's used
* or freed on error.
*/
if (sa->assign) {
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
prealloc = NULL;
} else {
ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
}
/* update qgroup status and info */
mutex_lock(&fs_info->qgroup_ioctl_lock);
err = btrfs_run_qgroups(trans);
mutex_unlock(&fs_info->qgroup_ioctl_lock);
if (err < 0)
btrfs_warn(fs_info,
"qgroup status update failed after %s relation, marked as inconsistent",
sa->assign ? "adding" : "deleting");
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(prealloc);
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_create_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!qgroup_enabled(root->fs_info))
return -ENOTCONN;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
if (!sa->qgroupid) {
ret = -EINVAL;
goto out;
}
if (sa->create && is_fstree(sa->qgroupid)) {
ret = -EINVAL;
goto out;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
if (sa->create) {
ret = btrfs_create_qgroup(trans, sa->qgroupid);
} else {
ret = btrfs_remove_qgroup(trans, sa->qgroupid);
}
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ioctl_qgroup_limit_args *sa;
struct btrfs_trans_handle *trans;
int ret;
int err;
u64 qgroupid;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!qgroup_enabled(root->fs_info))
return -ENOTCONN;
ret = mnt_want_write_file(file);
if (ret)
return ret;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa)) {
ret = PTR_ERR(sa);
goto drop_write;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
qgroupid = sa->qgroupid;
if (!qgroupid) {
/* take the current subvol as qgroup */
qgroupid = btrfs_root_id(root);
}
ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
err = btrfs_end_transaction(trans);
if (err && !ret)
ret = err;
out:
kfree(sa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_ioctl_quota_rescan_args *qsa;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!qgroup_enabled(fs_info))
return -ENOTCONN;
ret = mnt_want_write_file(file);
if (ret)
return ret;
qsa = memdup_user(arg, sizeof(*qsa));
if (IS_ERR(qsa)) {
ret = PTR_ERR(qsa);
goto drop_write;
}
if (qsa->flags) {
ret = -EINVAL;
goto out;
}
ret = btrfs_qgroup_rescan(fs_info);
out:
kfree(qsa);
drop_write:
mnt_drop_write_file(file);
return ret;
}
static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_ioctl_quota_rescan_args qsa = {0};
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
qsa.flags = 1;
qsa.progress = fs_info->qgroup_rescan_progress.objectid;
}
if (copy_to_user(arg, &qsa, sizeof(qsa)))
return -EFAULT;
return 0;
}
static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
{
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return btrfs_qgroup_wait_for_completion(fs_info, true);
}
static long _btrfs_ioctl_set_received_subvol(struct file *file,
struct mnt_idmap *idmap,
struct btrfs_ioctl_received_subvol_args *sa)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_root_item *root_item = &root->root_item;
struct btrfs_trans_handle *trans;
struct timespec64 ct = current_time(inode);
int ret = 0;
int received_uuid_changed;
if (!inode_owner_or_capable(idmap, inode))
return -EPERM;
ret = mnt_want_write_file(file);
if (ret < 0)
return ret;
down_write(&fs_info->subvol_sem);
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
ret = -EINVAL;
goto out;
}
if (btrfs_root_readonly(root)) {
ret = -EROFS;
goto out;
}
/*
* 1 - root item
* 2 - uuid items (received uuid + subvol uuid)
*/
trans = btrfs_start_transaction(root, 3);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
sa->rtransid = trans->transid;
sa->rtime.sec = ct.tv_sec;
sa->rtime.nsec = ct.tv_nsec;
received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
BTRFS_UUID_SIZE);
if (received_uuid_changed &&
!btrfs_is_empty_uuid(root_item->received_uuid)) {
ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
btrfs_root_id(root));
if (ret && ret != -ENOENT) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
}
memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
btrfs_set_root_stransid(root_item, sa->stransid);
btrfs_set_root_rtransid(root_item, sa->rtransid);
btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
if (ret < 0) {
btrfs_end_transaction(trans);
goto out;
}
if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
ret = btrfs_uuid_tree_add(trans, sa->uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
btrfs_root_id(root));
if (ret < 0 && ret != -EEXIST) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
goto out;
}
}
ret = btrfs_commit_transaction(trans);
out:
up_write(&fs_info->subvol_sem);
mnt_drop_write_file(file);
return ret;
}
#ifdef CONFIG_64BIT
static long btrfs_ioctl_set_received_subvol_32(struct file *file,
void __user *arg)
{
struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
struct btrfs_ioctl_received_subvol_args *args64 = NULL;
int ret = 0;
args32 = memdup_user(arg, sizeof(*args32));
if (IS_ERR(args32))
return PTR_ERR(args32);
args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
if (!args64) {
ret = -ENOMEM;
goto out;
}
memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
args64->stransid = args32->stransid;
args64->rtransid = args32->rtransid;
args64->stime.sec = args32->stime.sec;
args64->stime.nsec = args32->stime.nsec;
args64->rtime.sec = args32->rtime.sec;
args64->rtime.nsec = args32->rtime.nsec;
args64->flags = args32->flags;
ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
if (ret)
goto out;
memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
args32->stransid = args64->stransid;
args32->rtransid = args64->rtransid;
args32->stime.sec = args64->stime.sec;
args32->stime.nsec = args64->stime.nsec;
args32->rtime.sec = args64->rtime.sec;
args32->rtime.nsec = args64->rtime.nsec;
args32->flags = args64->flags;
ret = copy_to_user(arg, args32, sizeof(*args32));
if (ret)
ret = -EFAULT;
out:
kfree(args32);
kfree(args64);
return ret;
}
#endif
static long btrfs_ioctl_set_received_subvol(struct file *file,
void __user *arg)
{
struct btrfs_ioctl_received_subvol_args *sa = NULL;
int ret = 0;
sa = memdup_user(arg, sizeof(*sa));
if (IS_ERR(sa))
return PTR_ERR(sa);
ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
if (ret)
goto out;
ret = copy_to_user(arg, sa, sizeof(*sa));
if (ret)
ret = -EFAULT;
out:
kfree(sa);
return ret;
}
static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
void __user *arg)
{
size_t len;
int ret;
char label[BTRFS_LABEL_SIZE];
spin_lock(&fs_info->super_lock);
memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
spin_unlock(&fs_info->super_lock);
len = strnlen(label, BTRFS_LABEL_SIZE);
if (len == BTRFS_LABEL_SIZE) {
btrfs_warn(fs_info,
"label is too long, return the first %zu bytes",
--len);
}
ret = copy_to_user(arg, label, len);
return ret ? -EFAULT : 0;
}
static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_trans_handle *trans;
char label[BTRFS_LABEL_SIZE];
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(label, arg, sizeof(label)))
return -EFAULT;
if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
btrfs_err(fs_info,
"unable to set label with more than %d bytes",
BTRFS_LABEL_SIZE - 1);
return -EINVAL;
}
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_unlock;
}
spin_lock(&fs_info->super_lock);
strcpy(super_block->label, label);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_unlock:
mnt_drop_write_file(file);
return ret;
}
#define INIT_FEATURE_FLAGS(suffix) \
{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
.compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
.incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
int btrfs_ioctl_get_supported_features(void __user *arg)
{
static const struct btrfs_ioctl_feature_flags features[3] = {
INIT_FEATURE_FLAGS(SUPP),
INIT_FEATURE_FLAGS(SAFE_SET),
INIT_FEATURE_FLAGS(SAFE_CLEAR)
};
if (copy_to_user(arg, &features, sizeof(features)))
return -EFAULT;
return 0;
}
static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
void __user *arg)
{
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_ioctl_feature_flags features;
features.compat_flags = btrfs_super_compat_flags(super_block);
features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
features.incompat_flags = btrfs_super_incompat_flags(super_block);
if (copy_to_user(arg, &features, sizeof(features)))
return -EFAULT;
return 0;
}
static int check_feature_bits(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set,
u64 change_mask, u64 flags, u64 supported_flags,
u64 safe_set, u64 safe_clear)
{
const char *type = btrfs_feature_set_name(set);
char *names;
u64 disallowed, unsupported;
u64 set_mask = flags & change_mask;
u64 clear_mask = ~flags & change_mask;
unsupported = set_mask & ~supported_flags;
if (unsupported) {
names = btrfs_printable_features(set, unsupported);
if (names) {
btrfs_warn(fs_info,
"this kernel does not support the %s feature bit%s",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"this kernel does not support %s bits 0x%llx",
type, unsupported);
return -EOPNOTSUPP;
}
disallowed = set_mask & ~safe_set;
if (disallowed) {
names = btrfs_printable_features(set, disallowed);
if (names) {
btrfs_warn(fs_info,
"can't set the %s feature bit%s while mounted",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"can't set %s bits 0x%llx while mounted",
type, disallowed);
return -EPERM;
}
disallowed = clear_mask & ~safe_clear;
if (disallowed) {
names = btrfs_printable_features(set, disallowed);
if (names) {
btrfs_warn(fs_info,
"can't clear the %s feature bit%s while mounted",
names, strchr(names, ',') ? "s" : "");
kfree(names);
} else
btrfs_warn(fs_info,
"can't clear %s bits 0x%llx while mounted",
type, disallowed);
return -EPERM;
}
return 0;
}
#define check_feature(fs_info, change_mask, flags, mask_base) \
check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
BTRFS_FEATURE_ ## mask_base ## _SUPP, \
BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_super_block *super_block = fs_info->super_copy;
struct btrfs_ioctl_feature_flags flags[2];
struct btrfs_trans_handle *trans;
u64 newflags;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(flags, arg, sizeof(flags)))
return -EFAULT;
/* Nothing to do */
if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
!flags[0].incompat_flags)
return 0;
ret = check_feature(fs_info, flags[0].compat_flags,
flags[1].compat_flags, COMPAT);
if (ret)
return ret;
ret = check_feature(fs_info, flags[0].compat_ro_flags,
flags[1].compat_ro_flags, COMPAT_RO);
if (ret)
return ret;
ret = check_feature(fs_info, flags[0].incompat_flags,
flags[1].incompat_flags, INCOMPAT);
if (ret)
return ret;
ret = mnt_want_write_file(file);
if (ret)
return ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_drop_write;
}
spin_lock(&fs_info->super_lock);
newflags = btrfs_super_compat_flags(super_block);
newflags |= flags[0].compat_flags & flags[1].compat_flags;
newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
btrfs_set_super_compat_flags(super_block, newflags);
newflags = btrfs_super_compat_ro_flags(super_block);
newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
btrfs_set_super_compat_ro_flags(super_block, newflags);
newflags = btrfs_super_incompat_flags(super_block);
newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
btrfs_set_super_incompat_flags(super_block, newflags);
spin_unlock(&fs_info->super_lock);
ret = btrfs_commit_transaction(trans);
out_drop_write:
mnt_drop_write_file(file);
return ret;
}
static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
{
struct btrfs_ioctl_send_args *arg;
int ret;
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_send_args_32 args32 = { 0 };
ret = copy_from_user(&args32, argp, sizeof(args32));
if (ret)
return -EFAULT;
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
if (!arg)
return -ENOMEM;
arg->send_fd = args32.send_fd;
arg->clone_sources_count = args32.clone_sources_count;
arg->clone_sources = compat_ptr(args32.clone_sources);
arg->parent_root = args32.parent_root;
arg->flags = args32.flags;
arg->version = args32.version;
memcpy(arg->reserved, args32.reserved,
sizeof(args32.reserved));
#else
return -ENOTTY;
#endif
} else {
arg = memdup_user(argp, sizeof(*arg));
if (IS_ERR(arg))
return PTR_ERR(arg);
}
ret = btrfs_ioctl_send(inode, arg);
kfree(arg);
return ret;
}
static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
bool compat)
{
struct btrfs_ioctl_encoded_io_args args = { 0 };
size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
flags);
size_t copy_end;
struct btrfs_inode *inode = BTRFS_I(file_inode(file));
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct extent_io_tree *io_tree = &inode->io_tree;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
loff_t pos;
struct kiocb kiocb;
ssize_t ret;
u64 disk_bytenr, disk_io_size;
struct extent_state *cached_state = NULL;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out_acct;
}
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_encoded_io_args_32 args32;
copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
flags);
if (copy_from_user(&args32, argp, copy_end)) {
ret = -EFAULT;
goto out_acct;
}
args.iov = compat_ptr(args32.iov);
args.iovcnt = args32.iovcnt;
args.offset = args32.offset;
args.flags = args32.flags;
#else
return -ENOTTY;
#endif
} else {
copy_end = copy_end_kernel;
if (copy_from_user(&args, argp, copy_end)) {
ret = -EFAULT;
goto out_acct;
}
}
if (args.flags != 0) {
ret = -EINVAL;
goto out_acct;
}
ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
&iov, &iter);
if (ret < 0)
goto out_acct;
if (iov_iter_count(&iter) == 0) {
ret = 0;
goto out_iov;
}
pos = args.offset;
ret = rw_verify_area(READ, file, &pos, args.len);
if (ret < 0)
goto out_iov;
init_sync_kiocb(&kiocb, file);
kiocb.ki_pos = pos;
ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
&disk_bytenr, &disk_io_size);
if (ret == -EIOCBQUEUED) {
bool unlocked = false;
u64 start, lockend, count;
start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
if (args.compression)
count = disk_io_size;
else
count = args.len;
ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
&cached_state, disk_bytenr,
disk_io_size, count,
args.compression, &unlocked);
if (!unlocked) {
unlock_extent(io_tree, start, lockend, &cached_state);
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
}
}
if (ret >= 0) {
fsnotify_access(file);
if (copy_to_user(argp + copy_end,
(char *)&args + copy_end_kernel,
sizeof(args) - copy_end_kernel))
ret = -EFAULT;
}
out_iov:
kfree(iov);
out_acct:
if (ret > 0)
add_rchar(current, ret);
inc_syscr(current);
return ret;
}
static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
{
struct btrfs_ioctl_encoded_io_args args;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
loff_t pos;
struct kiocb kiocb;
ssize_t ret;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out_acct;
}
if (!(file->f_mode & FMODE_WRITE)) {
ret = -EBADF;
goto out_acct;
}
if (compat) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_encoded_io_args_32 args32;
if (copy_from_user(&args32, argp, sizeof(args32))) {
ret = -EFAULT;
goto out_acct;
}
args.iov = compat_ptr(args32.iov);
args.iovcnt = args32.iovcnt;
args.offset = args32.offset;
args.flags = args32.flags;
args.len = args32.len;
args.unencoded_len = args32.unencoded_len;
args.unencoded_offset = args32.unencoded_offset;
args.compression = args32.compression;
args.encryption = args32.encryption;
memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
#else
return -ENOTTY;
#endif
} else {
if (copy_from_user(&args, argp, sizeof(args))) {
ret = -EFAULT;
goto out_acct;
}
}
ret = -EINVAL;
if (args.flags != 0)
goto out_acct;
if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
goto out_acct;
if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
goto out_acct;
if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
goto out_acct;
if (args.unencoded_offset > args.unencoded_len)
goto out_acct;
if (args.len > args.unencoded_len - args.unencoded_offset)
goto out_acct;
ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
&iov, &iter);
if (ret < 0)
goto out_acct;
if (iov_iter_count(&iter) == 0) {
ret = 0;
goto out_iov;
}
pos = args.offset;
ret = rw_verify_area(WRITE, file, &pos, args.len);
if (ret < 0)
goto out_iov;
init_sync_kiocb(&kiocb, file);
ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
if (ret)
goto out_iov;
kiocb.ki_pos = pos;
file_start_write(file);
ret = btrfs_do_write_iter(&kiocb, &iter, &args);
if (ret > 0)
fsnotify_modify(file);
file_end_write(file);
out_iov:
kfree(iov);
out_acct:
if (ret > 0)
add_wchar(current, ret);
inc_syscw(current);
return ret;
}
/*
* Context that's attached to an encoded read io_uring command, in cmd->pdu. It
* contains the fields in btrfs_uring_read_extent that are necessary to finish
* off and cleanup the I/O in btrfs_uring_read_finished.
*/
struct btrfs_uring_priv {
struct io_uring_cmd *cmd;
struct page **pages;
unsigned long nr_pages;
struct kiocb iocb;
struct iovec *iov;
struct iov_iter iter;
struct extent_state *cached_state;
u64 count;
u64 start;
u64 lockend;
int err;
bool compressed;
};
struct io_btrfs_cmd {
struct btrfs_uring_priv *priv;
};
static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
{
struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
struct btrfs_uring_priv *priv = bc->priv;
struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
struct extent_io_tree *io_tree = &inode->io_tree;
unsigned long index;
u64 cur;
size_t page_offset;
ssize_t ret;
if (priv->err) {
ret = priv->err;
goto out;
}
if (priv->compressed) {
index = 0;
page_offset = 0;
} else {
index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
}
cur = 0;
while (cur < priv->count) {
size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
&priv->iter) != bytes) {
ret = -EFAULT;
goto out;
}
index++;
cur += bytes;
page_offset = 0;
}
ret = priv->count;
out:
unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
io_uring_cmd_done(cmd, ret, 0, issue_flags);
add_rchar(current, ret);
for (index = 0; index < priv->nr_pages; index++)
__free_page(priv->pages[index]);
kfree(priv->pages);
kfree(priv->iov);
kfree(priv);
}
void btrfs_uring_read_extent_endio(void *ctx, int err)
{
struct btrfs_uring_priv *priv = ctx;
struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
priv->err = err;
bc->priv = priv;
io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
}
static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
u64 start, u64 lockend,
struct extent_state *cached_state,
u64 disk_bytenr, u64 disk_io_size,
size_t count, bool compressed,
struct iovec *iov, struct io_uring_cmd *cmd)
{
struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
struct extent_io_tree *io_tree = &inode->io_tree;
struct page **pages;
struct btrfs_uring_priv *priv = NULL;
unsigned long nr_pages;
int ret;
nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
if (!pages)
return -ENOMEM;
ret = btrfs_alloc_page_array(nr_pages, pages, 0);
if (ret) {
ret = -ENOMEM;
goto out_fail;
}
priv = kmalloc(sizeof(*priv), GFP_NOFS);
if (!priv) {
ret = -ENOMEM;
goto out_fail;
}
priv->iocb = *iocb;
priv->iov = iov;
priv->iter = *iter;
priv->count = count;
priv->cmd = cmd;
priv->cached_state = cached_state;
priv->compressed = compressed;
priv->nr_pages = nr_pages;
priv->pages = pages;
priv->start = start;
priv->lockend = lockend;
priv->err = 0;
ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
disk_io_size, pages, priv);
if (ret && ret != -EIOCBQUEUED)
goto out_fail;
/*
* If we return -EIOCBQUEUED, we're deferring the cleanup to
* btrfs_uring_read_finished(), which will handle unlocking the extent
* and inode and freeing the allocations.
*/
return -EIOCBQUEUED;
out_fail:
unlock_extent(io_tree, start, lockend, &cached_state);
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
kfree(priv);
return ret;
}
static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
{
size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
size_t copy_end;
struct btrfs_ioctl_encoded_io_args args = { 0 };
int ret;
u64 disk_bytenr, disk_io_size;
struct file *file;
struct btrfs_inode *inode;
struct btrfs_fs_info *fs_info;
struct extent_io_tree *io_tree;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
loff_t pos;
struct kiocb kiocb;
struct extent_state *cached_state = NULL;
u64 start, lockend;
void __user *sqe_addr;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out_acct;
}
file = cmd->file;
inode = BTRFS_I(file->f_inode);
fs_info = inode->root->fs_info;
io_tree = &inode->io_tree;
sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
if (issue_flags & IO_URING_F_COMPAT) {
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
struct btrfs_ioctl_encoded_io_args_32 args32;
copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
if (copy_from_user(&args32, sqe_addr, copy_end)) {
ret = -EFAULT;
goto out_acct;
}
args.iov = compat_ptr(args32.iov);
args.iovcnt = args32.iovcnt;
args.offset = args32.offset;
args.flags = args32.flags;
#else
return -ENOTTY;
#endif
} else {
copy_end = copy_end_kernel;
if (copy_from_user(&args, sqe_addr, copy_end)) {
ret = -EFAULT;
goto out_acct;
}
}
if (args.flags != 0)
return -EINVAL;
ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
&iov, &iter);
if (ret < 0)
goto out_acct;
if (iov_iter_count(&iter) == 0) {
ret = 0;
goto out_free;
}
pos = args.offset;
ret = rw_verify_area(READ, file, &pos, args.len);
if (ret < 0)
goto out_free;
init_sync_kiocb(&kiocb, file);
kiocb.ki_pos = pos;
if (issue_flags & IO_URING_F_NONBLOCK)
kiocb.ki_flags |= IOCB_NOWAIT;
start = ALIGN_DOWN(pos, fs_info->sectorsize);
lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
&disk_bytenr, &disk_io_size);
if (ret < 0 && ret != -EIOCBQUEUED)
goto out_free;
file_accessed(file);
if (copy_to_user(sqe_addr + copy_end, (const char *)&args + copy_end_kernel,
sizeof(args) - copy_end_kernel)) {
if (ret == -EIOCBQUEUED) {
unlock_extent(io_tree, start, lockend, &cached_state);
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
}
ret = -EFAULT;
goto out_free;
}
if (ret == -EIOCBQUEUED) {
u64 count;
/*
* If we've optimized things by storing the iovecs on the stack,
* undo this.
*/
if (!iov) {
iov = kmalloc(sizeof(struct iovec) * args.iovcnt, GFP_NOFS);
if (!iov) {
unlock_extent(io_tree, start, lockend, &cached_state);
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
ret = -ENOMEM;
goto out_acct;
}
memcpy(iov, iovstack, sizeof(struct iovec) * args.iovcnt);
}
count = min_t(u64, iov_iter_count(&iter), disk_io_size);
/* Match ioctl by not returning past EOF if uncompressed. */
if (!args.compression)
count = min_t(u64, count, args.len);
ret = btrfs_uring_read_extent(&kiocb, &iter, start, lockend,
cached_state, disk_bytenr,
disk_io_size, count,
args.compression, iov, cmd);
goto out_acct;
}
out_free:
kfree(iov);
out_acct:
if (ret > 0)
add_rchar(current, ret);
inc_syscr(current);
return ret;
}
int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
{
switch (cmd->cmd_op) {
case BTRFS_IOC_ENCODED_READ:
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
case BTRFS_IOC_ENCODED_READ_32:
#endif
return btrfs_uring_encoded_read(cmd, issue_flags);
}
return -EINVAL;
}
static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
{
struct btrfs_root *root;
struct btrfs_ioctl_subvol_wait args = { 0 };
signed long sched_ret;
int refs;
u64 root_flags;
bool wait_for_deletion = false;
bool found = false;
if (copy_from_user(&args, argp, sizeof(args)))
return -EFAULT;
switch (args.mode) {
case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
/*
* Wait for the first one deleted that waits until all previous
* are cleaned.
*/
spin_lock(&fs_info->trans_lock);
if (!list_empty(&fs_info->dead_roots)) {
root = list_last_entry(&fs_info->dead_roots,
struct btrfs_root, root_list);
args.subvolid = btrfs_root_id(root);
found = true;
}
spin_unlock(&fs_info->trans_lock);
if (!found)
return -ENOENT;
fallthrough;
case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
BTRFS_LAST_FREE_OBJECTID < args.subvolid)
return -EINVAL;
break;
case BTRFS_SUBVOL_SYNC_COUNT:
spin_lock(&fs_info->trans_lock);
args.count = list_count_nodes(&fs_info->dead_roots);
spin_unlock(&fs_info->trans_lock);
if (copy_to_user(argp, &args, sizeof(args)))
return -EFAULT;
return 0;
case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
spin_lock(&fs_info->trans_lock);
/* Last in the list was deleted first. */
if (!list_empty(&fs_info->dead_roots)) {
root = list_last_entry(&fs_info->dead_roots,
struct btrfs_root, root_list);
args.subvolid = btrfs_root_id(root);
} else {
args.subvolid = 0;
}
spin_unlock(&fs_info->trans_lock);
if (copy_to_user(argp, &args, sizeof(args)))
return -EFAULT;
return 0;
case BTRFS_SUBVOL_SYNC_PEEK_LAST:
spin_lock(&fs_info->trans_lock);
/* First in the list was deleted last. */
if (!list_empty(&fs_info->dead_roots)) {
root = list_first_entry(&fs_info->dead_roots,
struct btrfs_root, root_list);
args.subvolid = btrfs_root_id(root);
} else {
args.subvolid = 0;
}
spin_unlock(&fs_info->trans_lock);
if (copy_to_user(argp, &args, sizeof(args)))
return -EFAULT;
return 0;
default:
return -EINVAL;
}
/* 32bit limitation: fs_roots_radix key is not wide enough. */
if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
return -EOVERFLOW;
while (1) {
/* Wait for the specific one. */
if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
return -EINTR;
refs = -1;
spin_lock(&fs_info->fs_roots_radix_lock);
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)args.subvolid);
if (root) {
spin_lock(&root->root_item_lock);
refs = btrfs_root_refs(&root->root_item);
root_flags = btrfs_root_flags(&root->root_item);
spin_unlock(&root->root_item_lock);
}
spin_unlock(&fs_info->fs_roots_radix_lock);
up_read(&fs_info->subvol_sem);
/* Subvolume does not exist. */
if (!root)
return -ENOENT;
/* Subvolume not deleted at all. */
if (refs > 0)
return -EEXIST;
/* We've waited and now the subvolume is gone. */
if (wait_for_deletion && refs == -1) {
/* Return the one we waited for as the last one. */
if (copy_to_user(argp, &args, sizeof(args)))
return -EFAULT;
return 0;
}
/* Subvolume not found on the first try (deleted or never existed). */
if (refs == -1)
return -ENOENT;
wait_for_deletion = true;
ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
sched_ret = schedule_timeout_interruptible(HZ);
/* Early wake up or error. */
if (sched_ret != 0)
return -EINTR;
}
return 0;
}
long btrfs_ioctl(struct file *file, unsigned int
cmd, unsigned long arg)
{
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_root *root = BTRFS_I(inode)->root;
void __user *argp = (void __user *)arg;
switch (cmd) {
case FS_IOC_GETVERSION:
return btrfs_ioctl_getversion(inode, argp);
case FS_IOC_GETFSLABEL:
return btrfs_ioctl_get_fslabel(fs_info, argp);
case FS_IOC_SETFSLABEL:
return btrfs_ioctl_set_fslabel(file, argp);
case FITRIM:
return btrfs_ioctl_fitrim(fs_info, argp);
case BTRFS_IOC_SNAP_CREATE:
return btrfs_ioctl_snap_create(file, argp, 0);
case BTRFS_IOC_SNAP_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 0);
case BTRFS_IOC_SUBVOL_CREATE:
return btrfs_ioctl_snap_create(file, argp, 1);
case BTRFS_IOC_SUBVOL_CREATE_V2:
return btrfs_ioctl_snap_create_v2(file, argp, 1);
case BTRFS_IOC_SNAP_DESTROY:
return btrfs_ioctl_snap_destroy(file, argp, false);
case BTRFS_IOC_SNAP_DESTROY_V2:
return btrfs_ioctl_snap_destroy(file, argp, true);
case BTRFS_IOC_SUBVOL_GETFLAGS:
return btrfs_ioctl_subvol_getflags(inode, argp);
case BTRFS_IOC_SUBVOL_SETFLAGS:
return btrfs_ioctl_subvol_setflags(file, argp);
case BTRFS_IOC_DEFAULT_SUBVOL:
return btrfs_ioctl_default_subvol(file, argp);
case BTRFS_IOC_DEFRAG:
return btrfs_ioctl_defrag(file, NULL);
case BTRFS_IOC_DEFRAG_RANGE:
return btrfs_ioctl_defrag(file, argp);
case BTRFS_IOC_RESIZE:
return btrfs_ioctl_resize(file, argp);
case BTRFS_IOC_ADD_DEV:
return btrfs_ioctl_add_dev(fs_info, argp);
case BTRFS_IOC_RM_DEV:
return btrfs_ioctl_rm_dev(file, argp);
case BTRFS_IOC_RM_DEV_V2:
return btrfs_ioctl_rm_dev_v2(file, argp);
case BTRFS_IOC_FS_INFO:
return btrfs_ioctl_fs_info(fs_info, argp);
case BTRFS_IOC_DEV_INFO:
return btrfs_ioctl_dev_info(fs_info, argp);
case BTRFS_IOC_TREE_SEARCH:
return btrfs_ioctl_tree_search(inode, argp);
case BTRFS_IOC_TREE_SEARCH_V2:
return btrfs_ioctl_tree_search_v2(inode, argp);
case BTRFS_IOC_INO_LOOKUP:
return btrfs_ioctl_ino_lookup(root, argp);
case BTRFS_IOC_INO_PATHS:
return btrfs_ioctl_ino_to_path(root, argp);
case BTRFS_IOC_LOGICAL_INO:
return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
case BTRFS_IOC_LOGICAL_INO_V2:
return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
case BTRFS_IOC_SPACE_INFO:
return btrfs_ioctl_space_info(fs_info, argp);
case BTRFS_IOC_SYNC: {
int ret;
ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
if (ret)
return ret;
ret = btrfs_sync_fs(inode->i_sb, 1);
/*
* There may be work for the cleaner kthread to do (subvolume
* deletion, delayed iputs, defrag inodes, etc), so wake it up.
*/
wake_up_process(fs_info->cleaner_kthread);
return ret;
}
case BTRFS_IOC_START_SYNC:
return btrfs_ioctl_start_sync(root, argp);
case BTRFS_IOC_WAIT_SYNC:
return btrfs_ioctl_wait_sync(fs_info, argp);
case BTRFS_IOC_SCRUB:
return btrfs_ioctl_scrub(file, argp);
case BTRFS_IOC_SCRUB_CANCEL:
return btrfs_ioctl_scrub_cancel(fs_info);
case BTRFS_IOC_SCRUB_PROGRESS:
return btrfs_ioctl_scrub_progress(fs_info, argp);
case BTRFS_IOC_BALANCE_V2:
return btrfs_ioctl_balance(file, argp);
case BTRFS_IOC_BALANCE_CTL:
return btrfs_ioctl_balance_ctl(fs_info, arg);
case BTRFS_IOC_BALANCE_PROGRESS:
return btrfs_ioctl_balance_progress(fs_info, argp);
case BTRFS_IOC_SET_RECEIVED_SUBVOL:
return btrfs_ioctl_set_received_subvol(file, argp);
#ifdef CONFIG_64BIT
case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
return btrfs_ioctl_set_received_subvol_32(file, argp);
#endif
case BTRFS_IOC_SEND:
return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
case BTRFS_IOC_SEND_32:
return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
#endif
case BTRFS_IOC_GET_DEV_STATS:
return btrfs_ioctl_get_dev_stats(fs_info, argp);
case BTRFS_IOC_QUOTA_CTL:
return btrfs_ioctl_quota_ctl(file, argp);
case BTRFS_IOC_QGROUP_ASSIGN:
return btrfs_ioctl_qgroup_assign(file, argp);
case BTRFS_IOC_QGROUP_CREATE:
return btrfs_ioctl_qgroup_create(file, argp);
case BTRFS_IOC_QGROUP_LIMIT:
return btrfs_ioctl_qgroup_limit(file, argp);
case BTRFS_IOC_QUOTA_RESCAN:
return btrfs_ioctl_quota_rescan(file, argp);
case BTRFS_IOC_QUOTA_RESCAN_STATUS:
return btrfs_ioctl_quota_rescan_status(fs_info, argp);
case BTRFS_IOC_QUOTA_RESCAN_WAIT:
return btrfs_ioctl_quota_rescan_wait(fs_info);
case BTRFS_IOC_DEV_REPLACE:
return btrfs_ioctl_dev_replace(fs_info, argp);
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
return btrfs_ioctl_get_supported_features(argp);
case BTRFS_IOC_GET_FEATURES:
return btrfs_ioctl_get_features(fs_info, argp);
case BTRFS_IOC_SET_FEATURES:
return btrfs_ioctl_set_features(file, argp);
case BTRFS_IOC_GET_SUBVOL_INFO:
return btrfs_ioctl_get_subvol_info(inode, argp);
case BTRFS_IOC_GET_SUBVOL_ROOTREF:
return btrfs_ioctl_get_subvol_rootref(root, argp);
case BTRFS_IOC_INO_LOOKUP_USER:
return btrfs_ioctl_ino_lookup_user(file, argp);
case FS_IOC_ENABLE_VERITY:
return fsverity_ioctl_enable(file, (const void __user *)argp);
case FS_IOC_MEASURE_VERITY:
return fsverity_ioctl_measure(file, argp);
case BTRFS_IOC_ENCODED_READ:
return btrfs_ioctl_encoded_read(file, argp, false);
case BTRFS_IOC_ENCODED_WRITE:
return btrfs_ioctl_encoded_write(file, argp, false);
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
case BTRFS_IOC_ENCODED_READ_32:
return btrfs_ioctl_encoded_read(file, argp, true);
case BTRFS_IOC_ENCODED_WRITE_32:
return btrfs_ioctl_encoded_write(file, argp, true);
#endif
case BTRFS_IOC_SUBVOL_SYNC_WAIT:
return btrfs_ioctl_subvol_sync(fs_info, argp);
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
/*
* These all access 32-bit values anyway so no further
* handling is necessary.
*/
switch (cmd) {
case FS_IOC32_GETVERSION:
cmd = FS_IOC_GETVERSION;
break;
}
return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif