linux-stable/drivers/net/phy/mediatek-ge-soc.c
Daniel Golle 5b5f724b05 net: phy: mediatek-ge-soc: follow netdev LED trigger semantics
Only blink if the link is up on a LED which is programmed to also
indicate link-status.

Otherwise, if both LEDs are in use to indicate different speeds, the
resulting blinking being inverted on LEDs which aren't switched on at
a specific speed is quite counter-intuitive.

Also make sure that state left behind by reset or the bootloader is
recognized correctly including the half-duplex and full-duplex bits as
well as the (unsupported by Linux netdev trigger semantics) link-down
bit.

Fixes: c66937b0f8 ("net: phy: mediatek-ge-soc: support PHY LEDs")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2024-04-24 11:50:49 +01:00

1556 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0+
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/phy.h>
#include <linux/regmap.h>
#define MTK_GPHY_ID_MT7981 0x03a29461
#define MTK_GPHY_ID_MT7988 0x03a29481
#define MTK_EXT_PAGE_ACCESS 0x1f
#define MTK_PHY_PAGE_STANDARD 0x0000
#define MTK_PHY_PAGE_EXTENDED_3 0x0003
#define MTK_PHY_LPI_REG_14 0x14
#define MTK_PHY_LPI_WAKE_TIMER_1000_MASK GENMASK(8, 0)
#define MTK_PHY_LPI_REG_1c 0x1c
#define MTK_PHY_SMI_DET_ON_THRESH_MASK GENMASK(13, 8)
#define MTK_PHY_PAGE_EXTENDED_2A30 0x2a30
#define MTK_PHY_PAGE_EXTENDED_52B5 0x52b5
#define ANALOG_INTERNAL_OPERATION_MAX_US 20
#define TXRESERVE_MIN 0
#define TXRESERVE_MAX 7
#define MTK_PHY_ANARG_RG 0x10
#define MTK_PHY_TCLKOFFSET_MASK GENMASK(12, 8)
/* Registers on MDIO_MMD_VEND1 */
#define MTK_PHY_TXVLD_DA_RG 0x12
#define MTK_PHY_DA_TX_I2MPB_A_GBE_MASK GENMASK(15, 10)
#define MTK_PHY_DA_TX_I2MPB_A_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_A2 0x16
#define MTK_PHY_DA_TX_I2MPB_A_HBT_MASK GENMASK(15, 10)
#define MTK_PHY_DA_TX_I2MPB_A_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_B1 0x17
#define MTK_PHY_DA_TX_I2MPB_B_GBE_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_B_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_B2 0x18
#define MTK_PHY_DA_TX_I2MPB_B_HBT_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_B_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_C1 0x19
#define MTK_PHY_DA_TX_I2MPB_C_GBE_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_C_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_C2 0x20
#define MTK_PHY_DA_TX_I2MPB_C_HBT_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_C_TST_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_D1 0x21
#define MTK_PHY_DA_TX_I2MPB_D_GBE_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_D_TBT_MASK GENMASK(5, 0)
#define MTK_PHY_TX_I2MPB_TEST_MODE_D2 0x22
#define MTK_PHY_DA_TX_I2MPB_D_HBT_MASK GENMASK(13, 8)
#define MTK_PHY_DA_TX_I2MPB_D_TST_MASK GENMASK(5, 0)
#define MTK_PHY_RXADC_CTRL_RG7 0xc6
#define MTK_PHY_DA_AD_BUF_BIAS_LP_MASK GENMASK(9, 8)
#define MTK_PHY_RXADC_CTRL_RG9 0xc8
#define MTK_PHY_DA_RX_PSBN_TBT_MASK GENMASK(14, 12)
#define MTK_PHY_DA_RX_PSBN_HBT_MASK GENMASK(10, 8)
#define MTK_PHY_DA_RX_PSBN_GBE_MASK GENMASK(6, 4)
#define MTK_PHY_DA_RX_PSBN_LP_MASK GENMASK(2, 0)
#define MTK_PHY_LDO_OUTPUT_V 0xd7
#define MTK_PHY_RG_ANA_CAL_RG0 0xdb
#define MTK_PHY_RG_CAL_CKINV BIT(12)
#define MTK_PHY_RG_ANA_CALEN BIT(8)
#define MTK_PHY_RG_ZCALEN_A BIT(0)
#define MTK_PHY_RG_ANA_CAL_RG1 0xdc
#define MTK_PHY_RG_ZCALEN_B BIT(12)
#define MTK_PHY_RG_ZCALEN_C BIT(8)
#define MTK_PHY_RG_ZCALEN_D BIT(4)
#define MTK_PHY_RG_TXVOS_CALEN BIT(0)
#define MTK_PHY_RG_ANA_CAL_RG5 0xe0
#define MTK_PHY_RG_REXT_TRIM_MASK GENMASK(13, 8)
#define MTK_PHY_RG_TX_FILTER 0xfe
#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120 0x120
#define MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK GENMASK(12, 8)
#define MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK GENMASK(4, 0)
#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122 0x122
#define MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK GENMASK(7, 0)
#define MTK_PHY_RG_TESTMUX_ADC_CTRL 0x144
#define MTK_PHY_RG_TXEN_DIG_MASK GENMASK(5, 5)
#define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B 0x172
#define MTK_PHY_CR_TX_AMP_OFFSET_A_MASK GENMASK(13, 8)
#define MTK_PHY_CR_TX_AMP_OFFSET_B_MASK GENMASK(6, 0)
#define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D 0x173
#define MTK_PHY_CR_TX_AMP_OFFSET_C_MASK GENMASK(13, 8)
#define MTK_PHY_CR_TX_AMP_OFFSET_D_MASK GENMASK(6, 0)
#define MTK_PHY_RG_AD_CAL_COMP 0x17a
#define MTK_PHY_AD_CAL_COMP_OUT_SHIFT (8)
#define MTK_PHY_RG_AD_CAL_CLK 0x17b
#define MTK_PHY_DA_CAL_CLK BIT(0)
#define MTK_PHY_RG_AD_CALIN 0x17c
#define MTK_PHY_DA_CALIN_FLAG BIT(0)
#define MTK_PHY_RG_DASN_DAC_IN0_A 0x17d
#define MTK_PHY_DASN_DAC_IN0_A_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN0_B 0x17e
#define MTK_PHY_DASN_DAC_IN0_B_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN0_C 0x17f
#define MTK_PHY_DASN_DAC_IN0_C_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN0_D 0x180
#define MTK_PHY_DASN_DAC_IN0_D_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_A 0x181
#define MTK_PHY_DASN_DAC_IN1_A_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_B 0x182
#define MTK_PHY_DASN_DAC_IN1_B_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_C 0x183
#define MTK_PHY_DASN_DAC_IN1_C_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DASN_DAC_IN1_D 0x184
#define MTK_PHY_DASN_DAC_IN1_D_MASK GENMASK(9, 0)
#define MTK_PHY_RG_DEV1E_REG19b 0x19b
#define MTK_PHY_BYPASS_DSP_LPI_READY BIT(8)
#define MTK_PHY_RG_LP_IIR2_K1_L 0x22a
#define MTK_PHY_RG_LP_IIR2_K1_U 0x22b
#define MTK_PHY_RG_LP_IIR2_K2_L 0x22c
#define MTK_PHY_RG_LP_IIR2_K2_U 0x22d
#define MTK_PHY_RG_LP_IIR2_K3_L 0x22e
#define MTK_PHY_RG_LP_IIR2_K3_U 0x22f
#define MTK_PHY_RG_LP_IIR2_K4_L 0x230
#define MTK_PHY_RG_LP_IIR2_K4_U 0x231
#define MTK_PHY_RG_LP_IIR2_K5_L 0x232
#define MTK_PHY_RG_LP_IIR2_K5_U 0x233
#define MTK_PHY_RG_DEV1E_REG234 0x234
#define MTK_PHY_TR_OPEN_LOOP_EN_MASK GENMASK(0, 0)
#define MTK_PHY_LPF_X_AVERAGE_MASK GENMASK(7, 4)
#define MTK_PHY_TR_LP_IIR_EEE_EN BIT(12)
#define MTK_PHY_RG_LPF_CNT_VAL 0x235
#define MTK_PHY_RG_DEV1E_REG238 0x238
#define MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK GENMASK(8, 0)
#define MTK_PHY_LPI_SLV_SEND_TX_EN BIT(12)
#define MTK_PHY_RG_DEV1E_REG239 0x239
#define MTK_PHY_LPI_SEND_LOC_TIMER_MASK GENMASK(8, 0)
#define MTK_PHY_LPI_TXPCS_LOC_RCV BIT(12)
#define MTK_PHY_RG_DEV1E_REG27C 0x27c
#define MTK_PHY_VGASTATE_FFE_THR_ST1_MASK GENMASK(12, 8)
#define MTK_PHY_RG_DEV1E_REG27D 0x27d
#define MTK_PHY_VGASTATE_FFE_THR_ST2_MASK GENMASK(4, 0)
#define MTK_PHY_RG_DEV1E_REG2C7 0x2c7
#define MTK_PHY_MAX_GAIN_MASK GENMASK(4, 0)
#define MTK_PHY_MIN_GAIN_MASK GENMASK(12, 8)
#define MTK_PHY_RG_DEV1E_REG2D1 0x2d1
#define MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK GENMASK(7, 0)
#define MTK_PHY_LPI_SKIP_SD_SLV_TR BIT(8)
#define MTK_PHY_LPI_TR_READY BIT(9)
#define MTK_PHY_LPI_VCO_EEE_STG0_EN BIT(10)
#define MTK_PHY_RG_DEV1E_REG323 0x323
#define MTK_PHY_EEE_WAKE_MAS_INT_DC BIT(0)
#define MTK_PHY_EEE_WAKE_SLV_INT_DC BIT(4)
#define MTK_PHY_RG_DEV1E_REG324 0x324
#define MTK_PHY_SMI_DETCNT_MAX_MASK GENMASK(5, 0)
#define MTK_PHY_SMI_DET_MAX_EN BIT(8)
#define MTK_PHY_RG_DEV1E_REG326 0x326
#define MTK_PHY_LPI_MODE_SD_ON BIT(0)
#define MTK_PHY_RESET_RANDUPD_CNT BIT(1)
#define MTK_PHY_TREC_UPDATE_ENAB_CLR BIT(2)
#define MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF BIT(4)
#define MTK_PHY_TR_READY_SKIP_AFE_WAKEUP BIT(5)
#define MTK_PHY_LDO_PUMP_EN_PAIRAB 0x502
#define MTK_PHY_LDO_PUMP_EN_PAIRCD 0x503
#define MTK_PHY_DA_TX_R50_PAIR_A 0x53d
#define MTK_PHY_DA_TX_R50_PAIR_B 0x53e
#define MTK_PHY_DA_TX_R50_PAIR_C 0x53f
#define MTK_PHY_DA_TX_R50_PAIR_D 0x540
/* Registers on MDIO_MMD_VEND2 */
#define MTK_PHY_LED0_ON_CTRL 0x24
#define MTK_PHY_LED1_ON_CTRL 0x26
#define MTK_PHY_LED_ON_MASK GENMASK(6, 0)
#define MTK_PHY_LED_ON_LINK1000 BIT(0)
#define MTK_PHY_LED_ON_LINK100 BIT(1)
#define MTK_PHY_LED_ON_LINK10 BIT(2)
#define MTK_PHY_LED_ON_LINK (MTK_PHY_LED_ON_LINK10 |\
MTK_PHY_LED_ON_LINK100 |\
MTK_PHY_LED_ON_LINK1000)
#define MTK_PHY_LED_ON_LINKDOWN BIT(3)
#define MTK_PHY_LED_ON_FDX BIT(4) /* Full duplex */
#define MTK_PHY_LED_ON_HDX BIT(5) /* Half duplex */
#define MTK_PHY_LED_ON_FORCE_ON BIT(6)
#define MTK_PHY_LED_ON_POLARITY BIT(14)
#define MTK_PHY_LED_ON_ENABLE BIT(15)
#define MTK_PHY_LED0_BLINK_CTRL 0x25
#define MTK_PHY_LED1_BLINK_CTRL 0x27
#define MTK_PHY_LED_BLINK_1000TX BIT(0)
#define MTK_PHY_LED_BLINK_1000RX BIT(1)
#define MTK_PHY_LED_BLINK_100TX BIT(2)
#define MTK_PHY_LED_BLINK_100RX BIT(3)
#define MTK_PHY_LED_BLINK_10TX BIT(4)
#define MTK_PHY_LED_BLINK_10RX BIT(5)
#define MTK_PHY_LED_BLINK_RX (MTK_PHY_LED_BLINK_10RX |\
MTK_PHY_LED_BLINK_100RX |\
MTK_PHY_LED_BLINK_1000RX)
#define MTK_PHY_LED_BLINK_TX (MTK_PHY_LED_BLINK_10TX |\
MTK_PHY_LED_BLINK_100TX |\
MTK_PHY_LED_BLINK_1000TX)
#define MTK_PHY_LED_BLINK_COLLISION BIT(6)
#define MTK_PHY_LED_BLINK_RX_CRC_ERR BIT(7)
#define MTK_PHY_LED_BLINK_RX_IDLE_ERR BIT(8)
#define MTK_PHY_LED_BLINK_FORCE_BLINK BIT(9)
#define MTK_PHY_LED1_DEFAULT_POLARITIES BIT(1)
#define MTK_PHY_RG_BG_RASEL 0x115
#define MTK_PHY_RG_BG_RASEL_MASK GENMASK(2, 0)
/* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
#define RG_GPIO_MISC_TPBANK0 0x6f0
#define RG_GPIO_MISC_TPBANK0_BOOTMODE GENMASK(11, 8)
/* These macro privides efuse parsing for internal phy. */
#define EFS_DA_TX_I2MPB_A(x) (((x) >> 0) & GENMASK(5, 0))
#define EFS_DA_TX_I2MPB_B(x) (((x) >> 6) & GENMASK(5, 0))
#define EFS_DA_TX_I2MPB_C(x) (((x) >> 12) & GENMASK(5, 0))
#define EFS_DA_TX_I2MPB_D(x) (((x) >> 18) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_A(x) (((x) >> 24) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_B(x) (((x) >> 0) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_C(x) (((x) >> 6) & GENMASK(5, 0))
#define EFS_DA_TX_AMP_OFFSET_D(x) (((x) >> 12) & GENMASK(5, 0))
#define EFS_DA_TX_R50_A(x) (((x) >> 18) & GENMASK(5, 0))
#define EFS_DA_TX_R50_B(x) (((x) >> 24) & GENMASK(5, 0))
#define EFS_DA_TX_R50_C(x) (((x) >> 0) & GENMASK(5, 0))
#define EFS_DA_TX_R50_D(x) (((x) >> 6) & GENMASK(5, 0))
#define EFS_RG_BG_RASEL(x) (((x) >> 4) & GENMASK(2, 0))
#define EFS_RG_REXT_TRIM(x) (((x) >> 7) & GENMASK(5, 0))
enum {
NO_PAIR,
PAIR_A,
PAIR_B,
PAIR_C,
PAIR_D,
};
enum calibration_mode {
EFUSE_K,
SW_K
};
enum CAL_ITEM {
REXT,
TX_OFFSET,
TX_AMP,
TX_R50,
TX_VCM
};
enum CAL_MODE {
EFUSE_M,
SW_M
};
#define MTK_PHY_LED_STATE_FORCE_ON 0
#define MTK_PHY_LED_STATE_FORCE_BLINK 1
#define MTK_PHY_LED_STATE_NETDEV 2
struct mtk_socphy_priv {
unsigned long led_state;
};
struct mtk_socphy_shared {
u32 boottrap;
struct mtk_socphy_priv priv[4];
};
static int mtk_socphy_read_page(struct phy_device *phydev)
{
return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
}
static int mtk_socphy_write_page(struct phy_device *phydev, int page)
{
return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
}
/* One calibration cycle consists of:
* 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
* until AD_CAL_COMP is ready to output calibration result.
* 2.Wait until DA_CAL_CLK is available.
* 3.Fetch AD_CAL_COMP_OUT.
*/
static int cal_cycle(struct phy_device *phydev, int devad,
u32 regnum, u16 mask, u16 cal_val)
{
int reg_val;
int ret;
phy_modify_mmd(phydev, devad, regnum,
mask, cal_val);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
MTK_PHY_DA_CALIN_FLAG);
ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_AD_CAL_CLK, reg_val,
reg_val & MTK_PHY_DA_CAL_CLK, 500,
ANALOG_INTERNAL_OPERATION_MAX_US, false);
if (ret) {
phydev_err(phydev, "Calibration cycle timeout\n");
return ret;
}
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
MTK_PHY_DA_CALIN_FLAG);
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
return ret;
}
static int rext_fill_result(struct phy_device *phydev, u16 *buf)
{
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
return 0;
}
static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
{
u16 rext_cal_val[2];
rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
rext_fill_result(phydev, rext_cal_val);
return 0;
}
static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
{
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
return 0;
}
static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
{
u16 tx_offset_cal_val[4];
tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
tx_offset_fill_result(phydev, tx_offset_cal_val);
return 0;
}
static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
{
int i;
int bias[16] = {};
const int vals_9461[16] = { 7, 1, 4, 7,
7, 1, 4, 7,
7, 1, 4, 7,
7, 1, 4, 7 };
const int vals_9481[16] = { 10, 6, 6, 10,
10, 6, 6, 10,
10, 6, 6, 10,
10, 6, 6, 10 };
switch (phydev->drv->phy_id) {
case MTK_GPHY_ID_MT7981:
/* We add some calibration to efuse values
* due to board level influence.
* GBE: +7, TBT: +1, HBT: +4, TST: +7
*/
memcpy(bias, (const void *)vals_9461, sizeof(bias));
break;
case MTK_GPHY_ID_MT7988:
memcpy(bias, (const void *)vals_9481, sizeof(bias));
break;
}
/* Prevent overflow */
for (i = 0; i < 12; i++) {
if (buf[i >> 2] + bias[i] > 63) {
buf[i >> 2] = 63;
bias[i] = 0;
}
}
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
return 0;
}
static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
{
u16 tx_amp_cal_val[4];
tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
tx_amp_fill_result(phydev, tx_amp_cal_val);
return 0;
}
static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
u8 txg_calen_x)
{
int bias = 0;
u16 reg, val;
if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
bias = -1;
val = clamp_val(bias + tx_r50_cal_val, 0, 63);
switch (txg_calen_x) {
case PAIR_A:
reg = MTK_PHY_DA_TX_R50_PAIR_A;
break;
case PAIR_B:
reg = MTK_PHY_DA_TX_R50_PAIR_B;
break;
case PAIR_C:
reg = MTK_PHY_DA_TX_R50_PAIR_C;
break;
case PAIR_D:
reg = MTK_PHY_DA_TX_R50_PAIR_D;
break;
default:
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
return 0;
}
static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
u8 txg_calen_x)
{
u16 tx_r50_cal_val;
switch (txg_calen_x) {
case PAIR_A:
tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
break;
case PAIR_B:
tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
break;
case PAIR_C:
tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
break;
case PAIR_D:
tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
break;
default:
return -EINVAL;
}
tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
return 0;
}
static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
{
u8 lower_idx, upper_idx, txreserve_val;
u8 lower_ret, upper_ret;
int ret;
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ANA_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_CAL_CKINV);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_TXVOS_CALEN);
switch (rg_txreserve_x) {
case PAIR_A:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_A,
MTK_PHY_DASN_DAC_IN0_A_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_A,
MTK_PHY_DASN_DAC_IN1_A_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ZCALEN_A);
break;
case PAIR_B:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_B,
MTK_PHY_DASN_DAC_IN0_B_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_B,
MTK_PHY_DASN_DAC_IN1_B_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_B);
break;
case PAIR_C:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_C,
MTK_PHY_DASN_DAC_IN0_C_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_C,
MTK_PHY_DASN_DAC_IN1_C_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_C);
break;
case PAIR_D:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN0_D,
MTK_PHY_DASN_DAC_IN0_D_MASK);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DASN_DAC_IN1_D,
MTK_PHY_DASN_DAC_IN1_D_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_D);
break;
default:
ret = -EINVAL;
goto restore;
}
lower_idx = TXRESERVE_MIN;
upper_idx = TXRESERVE_MAX;
phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
while ((upper_idx - lower_idx) > 1) {
txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
txreserve_val << 12 | txreserve_val << 8 |
txreserve_val << 4 | txreserve_val);
if (ret == 1) {
upper_idx = txreserve_val;
upper_ret = ret;
} else if (ret == 0) {
lower_idx = txreserve_val;
lower_ret = ret;
} else {
goto restore;
}
}
if (lower_idx == TXRESERVE_MIN) {
lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
lower_idx << 12 | lower_idx << 8 |
lower_idx << 4 | lower_idx);
ret = lower_ret;
} else if (upper_idx == TXRESERVE_MAX) {
upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
upper_idx << 12 | upper_idx << 8 |
upper_idx << 4 | upper_idx);
ret = upper_ret;
}
if (ret < 0)
goto restore;
/* We calibrate TX-VCM in different logic. Check upper index and then
* lower index. If this calibration is valid, apply lower index's result.
*/
ret = upper_ret - lower_ret;
if (ret == 1) {
ret = 0;
/* Make sure we use upper_idx in our calibration system */
cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
upper_idx << 12 | upper_idx << 8 |
upper_idx << 4 | upper_idx);
phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
lower_ret == 1) {
ret = 0;
cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
MTK_PHY_DA_RX_PSBN_TBT_MASK |
MTK_PHY_DA_RX_PSBN_HBT_MASK |
MTK_PHY_DA_RX_PSBN_GBE_MASK |
MTK_PHY_DA_RX_PSBN_LP_MASK,
lower_idx << 12 | lower_idx << 8 |
lower_idx << 4 | lower_idx);
phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
lower_idx);
} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
lower_ret == 0) {
ret = 0;
phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
upper_idx);
} else {
ret = -EINVAL;
}
restore:
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ANA_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_TXVOS_CALEN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
MTK_PHY_RG_ZCALEN_A);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
MTK_PHY_RG_ZCALEN_D);
return ret;
}
static void mt798x_phy_common_finetune(struct phy_device *phydev)
{
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
/* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
__phy_write(phydev, 0x11, 0xc71);
__phy_write(phydev, 0x12, 0xc);
__phy_write(phydev, 0x10, 0x8fae);
/* EnabRandUpdTrig = 1 */
__phy_write(phydev, 0x11, 0x2f00);
__phy_write(phydev, 0x12, 0xe);
__phy_write(phydev, 0x10, 0x8fb0);
/* NormMseLoThresh = 85 */
__phy_write(phydev, 0x11, 0x55a0);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x83aa);
/* FfeUpdGainForce = 1(Enable), FfeUpdGainForceVal = 4 */
__phy_write(phydev, 0x11, 0x240);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x9680);
/* TrFreeze = 0 (mt7988 default) */
__phy_write(phydev, 0x11, 0x0);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x9686);
/* SSTrKp100 = 5 */
/* SSTrKf100 = 6 */
/* SSTrKp1000Mas = 5 */
/* SSTrKf1000Mas = 6 */
/* SSTrKp1000Slv = 5 */
/* SSTrKf1000Slv = 6 */
__phy_write(phydev, 0x11, 0xbaef);
__phy_write(phydev, 0x12, 0x2e);
__phy_write(phydev, 0x10, 0x968c);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
}
static void mt7981_phy_finetune(struct phy_device *phydev)
{
u16 val[8] = { 0x01ce, 0x01c1,
0x020f, 0x0202,
0x03d0, 0x03c0,
0x0013, 0x0005 };
int i, k;
/* 100M eye finetune:
* Keep middle level of TX MLT3 shapper as default.
* Only change TX MLT3 overshoot level here.
*/
for (k = 0, i = 1; i < 12; i++) {
if (i % 3 == 0)
continue;
phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
}
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
/* ResetSyncOffset = 6 */
__phy_write(phydev, 0x11, 0x600);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8fc0);
/* VgaDecRate = 1 */
__phy_write(phydev, 0x11, 0x4c2a);
__phy_write(phydev, 0x12, 0x3e);
__phy_write(phydev, 0x10, 0x8fa4);
/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
* MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
*/
__phy_write(phydev, 0x11, 0xd10a);
__phy_write(phydev, 0x12, 0x34);
__phy_write(phydev, 0x10, 0x8f82);
/* VcoSlicerThreshBitsHigh */
__phy_write(phydev, 0x11, 0x5555);
__phy_write(phydev, 0x12, 0x55);
__phy_write(phydev, 0x10, 0x8ec0);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9 */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
/* rg_tr_lpf_cnt_val = 512 */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
/* IIR2 related */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
/* FFE peaking */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
/* Disable LDO pump */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
/* Adjust LDO output voltage */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
}
static void mt7988_phy_finetune(struct phy_device *phydev)
{
u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
0x020d, 0x0206, 0x0384, 0x03d0,
0x03c6, 0x030a, 0x0011, 0x0005 };
int i;
/* Set default MLT3 shaper first */
for (i = 0; i < 12; i++)
phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
/* TCT finetune */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
/* ResetSyncOffset = 5 */
__phy_write(phydev, 0x11, 0x500);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8fc0);
/* VgaDecRate is 1 at default on mt7988 */
/* MrvlTrFix100Kp = 6, MrvlTrFix100Kf = 7,
* MrvlTrFix1000Kp = 6, MrvlTrFix1000Kf = 7
*/
__phy_write(phydev, 0x11, 0xb90a);
__phy_write(phydev, 0x12, 0x6f);
__phy_write(phydev, 0x10, 0x8f82);
/* RemAckCntLimitCtrl = 1 */
__phy_write(phydev, 0x11, 0xfbba);
__phy_write(phydev, 0x12, 0xc3);
__phy_write(phydev, 0x10, 0x87f8);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 10 */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0xa));
/* rg_tr_lpf_cnt_val = 1023 */
phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x3ff);
}
static void mt798x_phy_eee(struct phy_device *phydev)
{
phy_modify_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
phy_modify_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
0xff));
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_TESTMUX_ADC_CTRL,
MTK_PHY_RG_TXEN_DIG_MASK);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
MTK_PHY_LPI_SLV_SEND_TX_EN,
FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
/* Keep MTK_PHY_LPI_SEND_LOC_TIMER as 375 */
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
MTK_PHY_LPI_TXPCS_LOC_RCV);
/* This also fixes some IoT issues, such as CH340 */
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
0x33) |
MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
MTK_PHY_LPI_VCO_EEE_STG0_EN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
MTK_PHY_EEE_WAKE_MAS_INT_DC |
MTK_PHY_EEE_WAKE_SLV_INT_DC);
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
MTK_PHY_SMI_DETCNT_MAX_MASK,
FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
MTK_PHY_SMI_DET_MAX_EN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
MTK_PHY_TREC_UPDATE_ENAB_CLR |
MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
/* Regsigdet_sel_1000 = 0 */
__phy_write(phydev, 0x11, 0xb);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x9690);
/* REG_EEE_st2TrKf1000 = 2 */
__phy_write(phydev, 0x11, 0x114f);
__phy_write(phydev, 0x12, 0x2);
__phy_write(phydev, 0x10, 0x969a);
/* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
__phy_write(phydev, 0x11, 0x3028);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x969e);
/* RegEEE_slv_wake_int_timer_tar = 8 */
__phy_write(phydev, 0x11, 0x5010);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x96a0);
/* RegEEE_trfreeze_timer2 = 586 */
__phy_write(phydev, 0x11, 0x24a);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x96a8);
/* RegEEE100Stg1_tar = 16 */
__phy_write(phydev, 0x11, 0x3210);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x96b8);
/* REGEEE_wake_slv_tr_wait_dfesigdet_en = 0 */
__phy_write(phydev, 0x11, 0x1463);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x96ca);
/* DfeTailEnableVgaThresh1000 = 27 */
__phy_write(phydev, 0x11, 0x36);
__phy_write(phydev, 0x12, 0x0);
__phy_write(phydev, 0x10, 0x8f80);
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
__phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
__phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
phy_modify_mmd(phydev, MDIO_MMD_VEND1,
MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
}
static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
u8 start_pair, u8 end_pair)
{
u8 pair_n;
int ret;
for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
/* TX_OFFSET & TX_AMP have no SW calibration. */
switch (cal_item) {
case TX_VCM:
ret = tx_vcm_cal_sw(phydev, pair_n);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
}
return 0;
}
static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
u8 start_pair, u8 end_pair, u32 *buf)
{
u8 pair_n;
int ret;
for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
/* TX_VCM has no efuse calibration. */
switch (cal_item) {
case REXT:
ret = rext_cal_efuse(phydev, buf);
break;
case TX_OFFSET:
ret = tx_offset_cal_efuse(phydev, buf);
break;
case TX_AMP:
ret = tx_amp_cal_efuse(phydev, buf);
break;
case TX_R50:
ret = tx_r50_cal_efuse(phydev, buf, pair_n);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
}
return 0;
}
static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
enum CAL_MODE cal_mode, u8 start_pair,
u8 end_pair, u32 *buf)
{
int ret;
switch (cal_mode) {
case EFUSE_M:
ret = cal_efuse(phydev, cal_item, start_pair,
end_pair, buf);
break;
case SW_M:
ret = cal_sw(phydev, cal_item, start_pair, end_pair);
break;
default:
return -EINVAL;
}
if (ret) {
phydev_err(phydev, "cal %d failed\n", cal_item);
return -EIO;
}
return 0;
}
static int mt798x_phy_calibration(struct phy_device *phydev)
{
int ret = 0;
u32 *buf;
size_t len;
struct nvmem_cell *cell;
cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
if (IS_ERR(cell)) {
if (PTR_ERR(cell) == -EPROBE_DEFER)
return PTR_ERR(cell);
return 0;
}
buf = (u32 *)nvmem_cell_read(cell, &len);
if (IS_ERR(buf))
return PTR_ERR(buf);
nvmem_cell_put(cell);
if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
phydev_err(phydev, "invalid efuse data\n");
ret = -EINVAL;
goto out;
}
ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
if (ret)
goto out;
ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
if (ret)
goto out;
out:
kfree(buf);
return ret;
}
static int mt798x_phy_config_init(struct phy_device *phydev)
{
switch (phydev->drv->phy_id) {
case MTK_GPHY_ID_MT7981:
mt7981_phy_finetune(phydev);
break;
case MTK_GPHY_ID_MT7988:
mt7988_phy_finetune(phydev);
break;
}
mt798x_phy_common_finetune(phydev);
mt798x_phy_eee(phydev);
return mt798x_phy_calibration(phydev);
}
static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
bool on)
{
unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
struct mtk_socphy_priv *priv = phydev->priv;
bool changed;
if (on)
changed = !test_and_set_bit(bit_on, &priv->led_state);
else
changed = !!test_and_clear_bit(bit_on, &priv->led_state);
changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
(index ? 16 : 0), &priv->led_state);
if (changed)
return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
MTK_PHY_LED_ON_MASK,
on ? MTK_PHY_LED_ON_FORCE_ON : 0);
else
return 0;
}
static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
bool blinking)
{
unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
struct mtk_socphy_priv *priv = phydev->priv;
bool changed;
if (blinking)
changed = !test_and_set_bit(bit_blink, &priv->led_state);
else
changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
(index ? 16 : 0), &priv->led_state);
if (changed)
return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
else
return 0;
}
static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
unsigned long *delay_on,
unsigned long *delay_off)
{
bool blinking = false;
int err = 0;
if (index > 1)
return -EINVAL;
if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
blinking = true;
*delay_on = 50;
*delay_off = 50;
}
err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
if (err)
return err;
return mt798x_phy_hw_led_on_set(phydev, index, false);
}
static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
u8 index, enum led_brightness value)
{
int err;
err = mt798x_phy_hw_led_blink_set(phydev, index, false);
if (err)
return err;
return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
}
static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
BIT(TRIGGER_NETDEV_LINK) |
BIT(TRIGGER_NETDEV_LINK_10) |
BIT(TRIGGER_NETDEV_LINK_100) |
BIT(TRIGGER_NETDEV_LINK_1000) |
BIT(TRIGGER_NETDEV_RX) |
BIT(TRIGGER_NETDEV_TX));
static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
unsigned long rules)
{
if (index > 1)
return -EINVAL;
/* All combinations of the supported triggers are allowed */
if (rules & ~supported_triggers)
return -EOPNOTSUPP;
return 0;
};
static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
unsigned long *rules)
{
unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
struct mtk_socphy_priv *priv = phydev->priv;
int on, blink;
if (index > 1)
return -EINVAL;
on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
if (on < 0)
return -EIO;
blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
index ? MTK_PHY_LED1_BLINK_CTRL :
MTK_PHY_LED0_BLINK_CTRL);
if (blink < 0)
return -EIO;
if ((on & (MTK_PHY_LED_ON_LINK | MTK_PHY_LED_ON_FDX | MTK_PHY_LED_ON_HDX |
MTK_PHY_LED_ON_LINKDOWN)) ||
(blink & (MTK_PHY_LED_BLINK_RX | MTK_PHY_LED_BLINK_TX)))
set_bit(bit_netdev, &priv->led_state);
else
clear_bit(bit_netdev, &priv->led_state);
if (on & MTK_PHY_LED_ON_FORCE_ON)
set_bit(bit_on, &priv->led_state);
else
clear_bit(bit_on, &priv->led_state);
if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
set_bit(bit_blink, &priv->led_state);
else
clear_bit(bit_blink, &priv->led_state);
if (!rules)
return 0;
if (on & MTK_PHY_LED_ON_LINK)
*rules |= BIT(TRIGGER_NETDEV_LINK);
if (on & MTK_PHY_LED_ON_LINK10)
*rules |= BIT(TRIGGER_NETDEV_LINK_10);
if (on & MTK_PHY_LED_ON_LINK100)
*rules |= BIT(TRIGGER_NETDEV_LINK_100);
if (on & MTK_PHY_LED_ON_LINK1000)
*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
if (on & MTK_PHY_LED_ON_FDX)
*rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
if (on & MTK_PHY_LED_ON_HDX)
*rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
if (blink & MTK_PHY_LED_BLINK_RX)
*rules |= BIT(TRIGGER_NETDEV_RX);
if (blink & MTK_PHY_LED_BLINK_TX)
*rules |= BIT(TRIGGER_NETDEV_TX);
return 0;
};
static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
unsigned long rules)
{
unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
struct mtk_socphy_priv *priv = phydev->priv;
u16 on = 0, blink = 0;
int ret;
if (index > 1)
return -EINVAL;
if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
on |= MTK_PHY_LED_ON_FDX;
if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
on |= MTK_PHY_LED_ON_HDX;
if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
on |= MTK_PHY_LED_ON_LINK10;
if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
on |= MTK_PHY_LED_ON_LINK100;
if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
on |= MTK_PHY_LED_ON_LINK1000;
if (rules & BIT(TRIGGER_NETDEV_RX)) {
blink |= (on & MTK_PHY_LED_ON_LINK) ?
(((on & MTK_PHY_LED_ON_LINK10) ? MTK_PHY_LED_BLINK_10RX : 0) |
((on & MTK_PHY_LED_ON_LINK100) ? MTK_PHY_LED_BLINK_100RX : 0) |
((on & MTK_PHY_LED_ON_LINK1000) ? MTK_PHY_LED_BLINK_1000RX : 0)) :
MTK_PHY_LED_BLINK_RX;
}
if (rules & BIT(TRIGGER_NETDEV_TX)) {
blink |= (on & MTK_PHY_LED_ON_LINK) ?
(((on & MTK_PHY_LED_ON_LINK10) ? MTK_PHY_LED_BLINK_10TX : 0) |
((on & MTK_PHY_LED_ON_LINK100) ? MTK_PHY_LED_BLINK_100TX : 0) |
((on & MTK_PHY_LED_ON_LINK1000) ? MTK_PHY_LED_BLINK_1000TX : 0)) :
MTK_PHY_LED_BLINK_TX;
}
if (blink || on)
set_bit(bit_netdev, &priv->led_state);
else
clear_bit(bit_netdev, &priv->led_state);
ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
MTK_PHY_LED1_ON_CTRL :
MTK_PHY_LED0_ON_CTRL,
MTK_PHY_LED_ON_FDX |
MTK_PHY_LED_ON_HDX |
MTK_PHY_LED_ON_LINK,
on);
if (ret)
return ret;
return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
MTK_PHY_LED1_BLINK_CTRL :
MTK_PHY_LED0_BLINK_CTRL, blink);
};
static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
{
struct mtk_socphy_shared *priv = phydev->shared->priv;
u32 polarities;
if (led_num == 0)
polarities = ~(priv->boottrap);
else
polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
if (polarities & BIT(phydev->mdio.addr))
return true;
return false;
}
static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
{
struct pinctrl *pinctrl;
int index;
/* Setup LED polarity according to bootstrap use of LED pins */
for (index = 0; index < 2; ++index)
phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
MTK_PHY_LED_ON_POLARITY,
mt7988_phy_led_get_polarity(phydev, index) ?
MTK_PHY_LED_ON_POLARITY : 0);
/* Only now setup pinctrl to avoid bogus blinking */
pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
if (IS_ERR(pinctrl))
dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
return 0;
}
static int mt7988_phy_probe_shared(struct phy_device *phydev)
{
struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
struct mtk_socphy_shared *shared = phydev->shared->priv;
struct regmap *regmap;
u32 reg;
int ret;
/* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
* LED_C and LED_D respectively. At the same time those pins are used to
* bootstrap configuration of the reference clock source (LED_A),
* DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
* In practise this is done using a LED and a resistor pulling the pin
* either to GND or to VIO.
* The detected value at boot time is accessible at run-time using the
* TPBANK0 register located in the gpio base of the pinctrl, in order
* to read it here it needs to be referenced by a phandle called
* 'mediatek,pio' in the MDIO bus hosting the PHY.
* The 4 bits in TPBANK0 are kept as package shared data and are used to
* set LED polarity for each of the LED0.
*/
regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
if (IS_ERR(regmap))
return PTR_ERR(regmap);
ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, &reg);
if (ret)
return ret;
shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
return 0;
}
static void mt798x_phy_leds_state_init(struct phy_device *phydev)
{
int i;
for (i = 0; i < 2; ++i)
mt798x_phy_led_hw_control_get(phydev, i, NULL);
}
static int mt7988_phy_probe(struct phy_device *phydev)
{
struct mtk_socphy_shared *shared;
struct mtk_socphy_priv *priv;
int err;
if (phydev->mdio.addr > 3)
return -EINVAL;
err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
sizeof(struct mtk_socphy_shared));
if (err)
return err;
if (phy_package_probe_once(phydev)) {
err = mt7988_phy_probe_shared(phydev);
if (err)
return err;
}
shared = phydev->shared->priv;
priv = &shared->priv[phydev->mdio.addr];
phydev->priv = priv;
mt798x_phy_leds_state_init(phydev);
err = mt7988_phy_fix_leds_polarities(phydev);
if (err)
return err;
/* Disable TX power saving at probing to:
* 1. Meet common mode compliance test criteria
* 2. Make sure that TX-VCM calibration works fine
*/
phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
return mt798x_phy_calibration(phydev);
}
static int mt7981_phy_probe(struct phy_device *phydev)
{
struct mtk_socphy_priv *priv;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
mt798x_phy_leds_state_init(phydev);
return mt798x_phy_calibration(phydev);
}
static struct phy_driver mtk_socphy_driver[] = {
{
PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
.name = "MediaTek MT7981 PHY",
.config_init = mt798x_phy_config_init,
.config_intr = genphy_no_config_intr,
.handle_interrupt = genphy_handle_interrupt_no_ack,
.probe = mt7981_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_page = mtk_socphy_read_page,
.write_page = mtk_socphy_write_page,
.led_blink_set = mt798x_phy_led_blink_set,
.led_brightness_set = mt798x_phy_led_brightness_set,
.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
.led_hw_control_set = mt798x_phy_led_hw_control_set,
.led_hw_control_get = mt798x_phy_led_hw_control_get,
},
{
PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
.name = "MediaTek MT7988 PHY",
.config_init = mt798x_phy_config_init,
.config_intr = genphy_no_config_intr,
.handle_interrupt = genphy_handle_interrupt_no_ack,
.probe = mt7988_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.read_page = mtk_socphy_read_page,
.write_page = mtk_socphy_write_page,
.led_blink_set = mt798x_phy_led_blink_set,
.led_brightness_set = mt798x_phy_led_brightness_set,
.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
.led_hw_control_set = mt798x_phy_led_hw_control_set,
.led_hw_control_get = mt798x_phy_led_hw_control_get,
},
};
module_phy_driver(mtk_socphy_driver);
static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
{ }
};
MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);