linux-stable/net/socket.c
Ignat Korchagin 6310831433 net: explicitly clear the sk pointer, when pf->create fails
We have recently noticed the exact same KASAN splat as in commit
6cd4a78d96 ("net: do not leave a dangling sk pointer, when socket
creation fails"). The problem is that commit did not fully address the
problem, as some pf->create implementations do not use sk_common_release
in their error paths.

For example, we can use the same reproducer as in the above commit, but
changing ping to arping. arping uses AF_PACKET socket and if packet_create
fails, it will just sk_free the allocated sk object.

While we could chase all the pf->create implementations and make sure they
NULL the freed sk object on error from the socket, we can't guarantee
future protocols will not make the same mistake.

So it is easier to just explicitly NULL the sk pointer upon return from
pf->create in __sock_create. We do know that pf->create always releases the
allocated sk object on error, so if the pointer is not NULL, it is
definitely dangling.

Fixes: 6cd4a78d96 ("net: do not leave a dangling sk pointer, when socket creation fails")
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20241003170151.69445-1-ignat@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-07 16:21:59 -07:00

3749 lines
91 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NET An implementation of the SOCKET network access protocol.
*
* Version: @(#)socket.c 1.1.93 18/02/95
*
* Authors: Orest Zborowski, <obz@Kodak.COM>
* Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
*
* Fixes:
* Anonymous : NOTSOCK/BADF cleanup. Error fix in
* shutdown()
* Alan Cox : verify_area() fixes
* Alan Cox : Removed DDI
* Jonathan Kamens : SOCK_DGRAM reconnect bug
* Alan Cox : Moved a load of checks to the very
* top level.
* Alan Cox : Move address structures to/from user
* mode above the protocol layers.
* Rob Janssen : Allow 0 length sends.
* Alan Cox : Asynchronous I/O support (cribbed from the
* tty drivers).
* Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
* Jeff Uphoff : Made max number of sockets command-line
* configurable.
* Matti Aarnio : Made the number of sockets dynamic,
* to be allocated when needed, and mr.
* Uphoff's max is used as max to be
* allowed to allocate.
* Linus : Argh. removed all the socket allocation
* altogether: it's in the inode now.
* Alan Cox : Made sock_alloc()/sock_release() public
* for NetROM and future kernel nfsd type
* stuff.
* Alan Cox : sendmsg/recvmsg basics.
* Tom Dyas : Export net symbols.
* Marcin Dalecki : Fixed problems with CONFIG_NET="n".
* Alan Cox : Added thread locking to sys_* calls
* for sockets. May have errors at the
* moment.
* Kevin Buhr : Fixed the dumb errors in the above.
* Andi Kleen : Some small cleanups, optimizations,
* and fixed a copy_from_user() bug.
* Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
* Tigran Aivazian : Made listen(2) backlog sanity checks
* protocol-independent
*
* This module is effectively the top level interface to the BSD socket
* paradigm.
*
* Based upon Swansea University Computer Society NET3.039
*/
#include <linux/bpf-cgroup.h>
#include <linux/ethtool.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/splice.h>
#include <linux/net.h>
#include <linux/interrupt.h>
#include <linux/thread_info.h>
#include <linux/rcupdate.h>
#include <linux/netdevice.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/mutex.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/ptp_classify.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/mount.h>
#include <linux/pseudo_fs.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/kmod.h>
#include <linux/audit.h>
#include <linux/wireless.h>
#include <linux/nsproxy.h>
#include <linux/magic.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/nospec.h>
#include <linux/indirect_call_wrapper.h>
#include <linux/io_uring/net.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <net/compat.h>
#include <net/wext.h>
#include <net/cls_cgroup.h>
#include <net/sock.h>
#include <linux/netfilter.h>
#include <linux/if_tun.h>
#include <linux/ipv6_route.h>
#include <linux/route.h>
#include <linux/termios.h>
#include <linux/sockios.h>
#include <net/busy_poll.h>
#include <linux/errqueue.h>
#include <linux/ptp_clock_kernel.h>
#include <trace/events/sock.h>
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int sysctl_net_busy_read __read_mostly;
unsigned int sysctl_net_busy_poll __read_mostly;
#endif
static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
static int sock_mmap(struct file *file, struct vm_area_struct *vma);
static int sock_close(struct inode *inode, struct file *file);
static __poll_t sock_poll(struct file *file,
struct poll_table_struct *wait);
static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
#ifdef CONFIG_COMPAT
static long compat_sock_ioctl(struct file *file,
unsigned int cmd, unsigned long arg);
#endif
static int sock_fasync(int fd, struct file *filp, int on);
static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags);
static void sock_splice_eof(struct file *file);
#ifdef CONFIG_PROC_FS
static void sock_show_fdinfo(struct seq_file *m, struct file *f)
{
struct socket *sock = f->private_data;
const struct proto_ops *ops = READ_ONCE(sock->ops);
if (ops->show_fdinfo)
ops->show_fdinfo(m, sock);
}
#else
#define sock_show_fdinfo NULL
#endif
/*
* Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
* in the operation structures but are done directly via the socketcall() multiplexor.
*/
static const struct file_operations socket_file_ops = {
.owner = THIS_MODULE,
.read_iter = sock_read_iter,
.write_iter = sock_write_iter,
.poll = sock_poll,
.unlocked_ioctl = sock_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = compat_sock_ioctl,
#endif
.uring_cmd = io_uring_cmd_sock,
.mmap = sock_mmap,
.release = sock_close,
.fasync = sock_fasync,
.splice_write = splice_to_socket,
.splice_read = sock_splice_read,
.splice_eof = sock_splice_eof,
.show_fdinfo = sock_show_fdinfo,
};
static const char * const pf_family_names[] = {
[PF_UNSPEC] = "PF_UNSPEC",
[PF_UNIX] = "PF_UNIX/PF_LOCAL",
[PF_INET] = "PF_INET",
[PF_AX25] = "PF_AX25",
[PF_IPX] = "PF_IPX",
[PF_APPLETALK] = "PF_APPLETALK",
[PF_NETROM] = "PF_NETROM",
[PF_BRIDGE] = "PF_BRIDGE",
[PF_ATMPVC] = "PF_ATMPVC",
[PF_X25] = "PF_X25",
[PF_INET6] = "PF_INET6",
[PF_ROSE] = "PF_ROSE",
[PF_DECnet] = "PF_DECnet",
[PF_NETBEUI] = "PF_NETBEUI",
[PF_SECURITY] = "PF_SECURITY",
[PF_KEY] = "PF_KEY",
[PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
[PF_PACKET] = "PF_PACKET",
[PF_ASH] = "PF_ASH",
[PF_ECONET] = "PF_ECONET",
[PF_ATMSVC] = "PF_ATMSVC",
[PF_RDS] = "PF_RDS",
[PF_SNA] = "PF_SNA",
[PF_IRDA] = "PF_IRDA",
[PF_PPPOX] = "PF_PPPOX",
[PF_WANPIPE] = "PF_WANPIPE",
[PF_LLC] = "PF_LLC",
[PF_IB] = "PF_IB",
[PF_MPLS] = "PF_MPLS",
[PF_CAN] = "PF_CAN",
[PF_TIPC] = "PF_TIPC",
[PF_BLUETOOTH] = "PF_BLUETOOTH",
[PF_IUCV] = "PF_IUCV",
[PF_RXRPC] = "PF_RXRPC",
[PF_ISDN] = "PF_ISDN",
[PF_PHONET] = "PF_PHONET",
[PF_IEEE802154] = "PF_IEEE802154",
[PF_CAIF] = "PF_CAIF",
[PF_ALG] = "PF_ALG",
[PF_NFC] = "PF_NFC",
[PF_VSOCK] = "PF_VSOCK",
[PF_KCM] = "PF_KCM",
[PF_QIPCRTR] = "PF_QIPCRTR",
[PF_SMC] = "PF_SMC",
[PF_XDP] = "PF_XDP",
[PF_MCTP] = "PF_MCTP",
};
/*
* The protocol list. Each protocol is registered in here.
*/
static DEFINE_SPINLOCK(net_family_lock);
static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
/*
* Support routines.
* Move socket addresses back and forth across the kernel/user
* divide and look after the messy bits.
*/
/**
* move_addr_to_kernel - copy a socket address into kernel space
* @uaddr: Address in user space
* @kaddr: Address in kernel space
* @ulen: Length in user space
*
* The address is copied into kernel space. If the provided address is
* too long an error code of -EINVAL is returned. If the copy gives
* invalid addresses -EFAULT is returned. On a success 0 is returned.
*/
int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
{
if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
return -EINVAL;
if (ulen == 0)
return 0;
if (copy_from_user(kaddr, uaddr, ulen))
return -EFAULT;
return audit_sockaddr(ulen, kaddr);
}
/**
* move_addr_to_user - copy an address to user space
* @kaddr: kernel space address
* @klen: length of address in kernel
* @uaddr: user space address
* @ulen: pointer to user length field
*
* The value pointed to by ulen on entry is the buffer length available.
* This is overwritten with the buffer space used. -EINVAL is returned
* if an overlong buffer is specified or a negative buffer size. -EFAULT
* is returned if either the buffer or the length field are not
* accessible.
* After copying the data up to the limit the user specifies, the true
* length of the data is written over the length limit the user
* specified. Zero is returned for a success.
*/
static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
void __user *uaddr, int __user *ulen)
{
int err;
int len;
BUG_ON(klen > sizeof(struct sockaddr_storage));
err = get_user(len, ulen);
if (err)
return err;
if (len > klen)
len = klen;
if (len < 0)
return -EINVAL;
if (len) {
if (audit_sockaddr(klen, kaddr))
return -ENOMEM;
if (copy_to_user(uaddr, kaddr, len))
return -EFAULT;
}
/*
* "fromlen shall refer to the value before truncation.."
* 1003.1g
*/
return __put_user(klen, ulen);
}
static struct kmem_cache *sock_inode_cachep __ro_after_init;
static struct inode *sock_alloc_inode(struct super_block *sb)
{
struct socket_alloc *ei;
ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
init_waitqueue_head(&ei->socket.wq.wait);
ei->socket.wq.fasync_list = NULL;
ei->socket.wq.flags = 0;
ei->socket.state = SS_UNCONNECTED;
ei->socket.flags = 0;
ei->socket.ops = NULL;
ei->socket.sk = NULL;
ei->socket.file = NULL;
return &ei->vfs_inode;
}
static void sock_free_inode(struct inode *inode)
{
struct socket_alloc *ei;
ei = container_of(inode, struct socket_alloc, vfs_inode);
kmem_cache_free(sock_inode_cachep, ei);
}
static void init_once(void *foo)
{
struct socket_alloc *ei = (struct socket_alloc *)foo;
inode_init_once(&ei->vfs_inode);
}
static void init_inodecache(void)
{
sock_inode_cachep = kmem_cache_create("sock_inode_cache",
sizeof(struct socket_alloc),
0,
(SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT),
init_once);
BUG_ON(sock_inode_cachep == NULL);
}
static const struct super_operations sockfs_ops = {
.alloc_inode = sock_alloc_inode,
.free_inode = sock_free_inode,
.statfs = simple_statfs,
};
/*
* sockfs_dname() is called from d_path().
*/
static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "socket:[%lu]",
d_inode(dentry)->i_ino);
}
static const struct dentry_operations sockfs_dentry_operations = {
.d_dname = sockfs_dname,
};
static int sockfs_xattr_get(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *suffix, void *value, size_t size)
{
if (value) {
if (dentry->d_name.len + 1 > size)
return -ERANGE;
memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
}
return dentry->d_name.len + 1;
}
#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
static const struct xattr_handler sockfs_xattr_handler = {
.name = XATTR_NAME_SOCKPROTONAME,
.get = sockfs_xattr_get,
};
static int sockfs_security_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *dentry, struct inode *inode,
const char *suffix, const void *value,
size_t size, int flags)
{
/* Handled by LSM. */
return -EAGAIN;
}
static const struct xattr_handler sockfs_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.set = sockfs_security_xattr_set,
};
static const struct xattr_handler * const sockfs_xattr_handlers[] = {
&sockfs_xattr_handler,
&sockfs_security_xattr_handler,
NULL
};
static int sockfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
if (!ctx)
return -ENOMEM;
ctx->ops = &sockfs_ops;
ctx->dops = &sockfs_dentry_operations;
ctx->xattr = sockfs_xattr_handlers;
return 0;
}
static struct vfsmount *sock_mnt __read_mostly;
static struct file_system_type sock_fs_type = {
.name = "sockfs",
.init_fs_context = sockfs_init_fs_context,
.kill_sb = kill_anon_super,
};
/*
* Obtains the first available file descriptor and sets it up for use.
*
* These functions create file structures and maps them to fd space
* of the current process. On success it returns file descriptor
* and file struct implicitly stored in sock->file.
* Note that another thread may close file descriptor before we return
* from this function. We use the fact that now we do not refer
* to socket after mapping. If one day we will need it, this
* function will increment ref. count on file by 1.
*
* In any case returned fd MAY BE not valid!
* This race condition is unavoidable
* with shared fd spaces, we cannot solve it inside kernel,
* but we take care of internal coherence yet.
*/
/**
* sock_alloc_file - Bind a &socket to a &file
* @sock: socket
* @flags: file status flags
* @dname: protocol name
*
* Returns the &file bound with @sock, implicitly storing it
* in sock->file. If dname is %NULL, sets to "".
*
* On failure @sock is released, and an ERR pointer is returned.
*
* This function uses GFP_KERNEL internally.
*/
struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
{
struct file *file;
if (!dname)
dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
O_RDWR | (flags & O_NONBLOCK),
&socket_file_ops);
if (IS_ERR(file)) {
sock_release(sock);
return file;
}
file->f_mode |= FMODE_NOWAIT;
sock->file = file;
file->private_data = sock;
stream_open(SOCK_INODE(sock), file);
return file;
}
EXPORT_SYMBOL(sock_alloc_file);
static int sock_map_fd(struct socket *sock, int flags)
{
struct file *newfile;
int fd = get_unused_fd_flags(flags);
if (unlikely(fd < 0)) {
sock_release(sock);
return fd;
}
newfile = sock_alloc_file(sock, flags, NULL);
if (!IS_ERR(newfile)) {
fd_install(fd, newfile);
return fd;
}
put_unused_fd(fd);
return PTR_ERR(newfile);
}
/**
* sock_from_file - Return the &socket bounded to @file.
* @file: file
*
* On failure returns %NULL.
*/
struct socket *sock_from_file(struct file *file)
{
if (file->f_op == &socket_file_ops)
return file->private_data; /* set in sock_alloc_file */
return NULL;
}
EXPORT_SYMBOL(sock_from_file);
/**
* sockfd_lookup - Go from a file number to its socket slot
* @fd: file handle
* @err: pointer to an error code return
*
* The file handle passed in is locked and the socket it is bound
* to is returned. If an error occurs the err pointer is overwritten
* with a negative errno code and NULL is returned. The function checks
* for both invalid handles and passing a handle which is not a socket.
*
* On a success the socket object pointer is returned.
*/
struct socket *sockfd_lookup(int fd, int *err)
{
struct file *file;
struct socket *sock;
file = fget(fd);
if (!file) {
*err = -EBADF;
return NULL;
}
sock = sock_from_file(file);
if (!sock) {
*err = -ENOTSOCK;
fput(file);
}
return sock;
}
EXPORT_SYMBOL(sockfd_lookup);
static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
{
struct fd f = fdget(fd);
struct socket *sock;
*err = -EBADF;
if (fd_file(f)) {
sock = sock_from_file(fd_file(f));
if (likely(sock)) {
*fput_needed = f.word & FDPUT_FPUT;
return sock;
}
*err = -ENOTSOCK;
fdput(f);
}
return NULL;
}
static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
size_t size)
{
ssize_t len;
ssize_t used = 0;
len = security_inode_listsecurity(d_inode(dentry), buffer, size);
if (len < 0)
return len;
used += len;
if (buffer) {
if (size < used)
return -ERANGE;
buffer += len;
}
len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
used += len;
if (buffer) {
if (size < used)
return -ERANGE;
memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
buffer += len;
}
return used;
}
static int sockfs_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *iattr)
{
int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
if (!err && (iattr->ia_valid & ATTR_UID)) {
struct socket *sock = SOCKET_I(d_inode(dentry));
if (sock->sk)
sock->sk->sk_uid = iattr->ia_uid;
else
err = -ENOENT;
}
return err;
}
static const struct inode_operations sockfs_inode_ops = {
.listxattr = sockfs_listxattr,
.setattr = sockfs_setattr,
};
/**
* sock_alloc - allocate a socket
*
* Allocate a new inode and socket object. The two are bound together
* and initialised. The socket is then returned. If we are out of inodes
* NULL is returned. This functions uses GFP_KERNEL internally.
*/
struct socket *sock_alloc(void)
{
struct inode *inode;
struct socket *sock;
inode = new_inode_pseudo(sock_mnt->mnt_sb);
if (!inode)
return NULL;
sock = SOCKET_I(inode);
inode->i_ino = get_next_ino();
inode->i_mode = S_IFSOCK | S_IRWXUGO;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_op = &sockfs_inode_ops;
return sock;
}
EXPORT_SYMBOL(sock_alloc);
static void __sock_release(struct socket *sock, struct inode *inode)
{
const struct proto_ops *ops = READ_ONCE(sock->ops);
if (ops) {
struct module *owner = ops->owner;
if (inode)
inode_lock(inode);
ops->release(sock);
sock->sk = NULL;
if (inode)
inode_unlock(inode);
sock->ops = NULL;
module_put(owner);
}
if (sock->wq.fasync_list)
pr_err("%s: fasync list not empty!\n", __func__);
if (!sock->file) {
iput(SOCK_INODE(sock));
return;
}
sock->file = NULL;
}
/**
* sock_release - close a socket
* @sock: socket to close
*
* The socket is released from the protocol stack if it has a release
* callback, and the inode is then released if the socket is bound to
* an inode not a file.
*/
void sock_release(struct socket *sock)
{
__sock_release(sock, NULL);
}
EXPORT_SYMBOL(sock_release);
void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
{
u8 flags = *tx_flags;
if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
flags |= SKBTX_HW_TSTAMP;
/* PTP hardware clocks can provide a free running cycle counter
* as a time base for virtual clocks. Tell driver to use the
* free running cycle counter for timestamp if socket is bound
* to virtual clock.
*/
if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
}
if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
flags |= SKBTX_SW_TSTAMP;
if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
flags |= SKBTX_SCHED_TSTAMP;
*tx_flags = flags;
}
EXPORT_SYMBOL(__sock_tx_timestamp);
INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
size_t));
INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
size_t));
static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
int flags)
{
trace_sock_send_length(sk, ret, 0);
}
static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
{
int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
inet_sendmsg, sock, msg,
msg_data_left(msg));
BUG_ON(ret == -EIOCBQUEUED);
if (trace_sock_send_length_enabled())
call_trace_sock_send_length(sock->sk, ret, 0);
return ret;
}
static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
{
int err = security_socket_sendmsg(sock, msg,
msg_data_left(msg));
return err ?: sock_sendmsg_nosec(sock, msg);
}
/**
* sock_sendmsg - send a message through @sock
* @sock: socket
* @msg: message to send
*
* Sends @msg through @sock, passing through LSM.
* Returns the number of bytes sent, or an error code.
*/
int sock_sendmsg(struct socket *sock, struct msghdr *msg)
{
struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
struct sockaddr_storage address;
int save_len = msg->msg_namelen;
int ret;
if (msg->msg_name) {
memcpy(&address, msg->msg_name, msg->msg_namelen);
msg->msg_name = &address;
}
ret = __sock_sendmsg(sock, msg);
msg->msg_name = save_addr;
msg->msg_namelen = save_len;
return ret;
}
EXPORT_SYMBOL(sock_sendmsg);
/**
* kernel_sendmsg - send a message through @sock (kernel-space)
* @sock: socket
* @msg: message header
* @vec: kernel vec
* @num: vec array length
* @size: total message data size
*
* Builds the message data with @vec and sends it through @sock.
* Returns the number of bytes sent, or an error code.
*/
int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size)
{
iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
return sock_sendmsg(sock, msg);
}
EXPORT_SYMBOL(kernel_sendmsg);
/**
* kernel_sendmsg_locked - send a message through @sock (kernel-space)
* @sk: sock
* @msg: message header
* @vec: output s/g array
* @num: output s/g array length
* @size: total message data size
*
* Builds the message data with @vec and sends it through @sock.
* Returns the number of bytes sent, or an error code.
* Caller must hold @sk.
*/
int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size)
{
struct socket *sock = sk->sk_socket;
const struct proto_ops *ops = READ_ONCE(sock->ops);
if (!ops->sendmsg_locked)
return sock_no_sendmsg_locked(sk, msg, size);
iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
}
EXPORT_SYMBOL(kernel_sendmsg_locked);
static bool skb_is_err_queue(const struct sk_buff *skb)
{
/* pkt_type of skbs enqueued on the error queue are set to
* PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
* in recvmsg, since skbs received on a local socket will never
* have a pkt_type of PACKET_OUTGOING.
*/
return skb->pkt_type == PACKET_OUTGOING;
}
/* On transmit, software and hardware timestamps are returned independently.
* As the two skb clones share the hardware timestamp, which may be updated
* before the software timestamp is received, a hardware TX timestamp may be
* returned only if there is no software TX timestamp. Ignore false software
* timestamps, which may be made in the __sock_recv_timestamp() call when the
* option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
* hardware timestamp.
*/
static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
{
return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
}
static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
{
bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
struct net_device *orig_dev;
ktime_t hwtstamp;
rcu_read_lock();
orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
if (orig_dev) {
*if_index = orig_dev->ifindex;
hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
} else {
hwtstamp = shhwtstamps->hwtstamp;
}
rcu_read_unlock();
return hwtstamp;
}
static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
int if_index)
{
struct scm_ts_pktinfo ts_pktinfo;
struct net_device *orig_dev;
if (!skb_mac_header_was_set(skb))
return;
memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
if (!if_index) {
rcu_read_lock();
orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
if (orig_dev)
if_index = orig_dev->ifindex;
rcu_read_unlock();
}
ts_pktinfo.if_index = if_index;
ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
sizeof(ts_pktinfo), &ts_pktinfo);
}
/*
* called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
*/
void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
struct scm_timestamping_internal tss;
int empty = 1, false_tstamp = 0;
struct skb_shared_hwtstamps *shhwtstamps =
skb_hwtstamps(skb);
int if_index;
ktime_t hwtstamp;
u32 tsflags;
/* Race occurred between timestamp enabling and packet
receiving. Fill in the current time for now. */
if (need_software_tstamp && skb->tstamp == 0) {
__net_timestamp(skb);
false_tstamp = 1;
}
if (need_software_tstamp) {
if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
if (new_tstamp) {
struct __kernel_sock_timeval tv;
skb_get_new_timestamp(skb, &tv);
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
sizeof(tv), &tv);
} else {
struct __kernel_old_timeval tv;
skb_get_timestamp(skb, &tv);
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
sizeof(tv), &tv);
}
} else {
if (new_tstamp) {
struct __kernel_timespec ts;
skb_get_new_timestampns(skb, &ts);
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
sizeof(ts), &ts);
} else {
struct __kernel_old_timespec ts;
skb_get_timestampns(skb, &ts);
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
sizeof(ts), &ts);
}
}
}
memset(&tss, 0, sizeof(tss));
tsflags = READ_ONCE(sk->sk_tsflags);
if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
(tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
skb_is_err_queue(skb) ||
!(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
empty = 0;
if (shhwtstamps &&
(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
(tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
skb_is_err_queue(skb) ||
!(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
!skb_is_swtx_tstamp(skb, false_tstamp)) {
if_index = 0;
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
hwtstamp = get_timestamp(sk, skb, &if_index);
else
hwtstamp = shhwtstamps->hwtstamp;
if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
hwtstamp = ptp_convert_timestamp(&hwtstamp,
READ_ONCE(sk->sk_bind_phc));
if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
empty = 0;
if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
!skb_is_err_queue(skb))
put_ts_pktinfo(msg, skb, if_index);
}
}
if (!empty) {
if (sock_flag(sk, SOCK_TSTAMP_NEW))
put_cmsg_scm_timestamping64(msg, &tss);
else
put_cmsg_scm_timestamping(msg, &tss);
if (skb_is_err_queue(skb) && skb->len &&
SKB_EXT_ERR(skb)->opt_stats)
put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
skb->len, skb->data);
}
}
EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
#ifdef CONFIG_WIRELESS
void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
int ack;
if (!sock_flag(sk, SOCK_WIFI_STATUS))
return;
if (!skb->wifi_acked_valid)
return;
ack = skb->wifi_acked;
put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
}
EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
#endif
static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
}
static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
if (sock_flag(sk, SOCK_RCVMARK) && skb) {
/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
__u32 mark = skb->mark;
put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
}
}
void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
sock_recv_timestamp(msg, sk, skb);
sock_recv_drops(msg, sk, skb);
sock_recv_mark(msg, sk, skb);
}
EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
size_t, int));
INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
size_t, int));
static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
{
trace_sock_recv_length(sk, ret, flags);
}
static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
int flags)
{
int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
inet6_recvmsg,
inet_recvmsg, sock, msg,
msg_data_left(msg), flags);
if (trace_sock_recv_length_enabled())
call_trace_sock_recv_length(sock->sk, ret, flags);
return ret;
}
/**
* sock_recvmsg - receive a message from @sock
* @sock: socket
* @msg: message to receive
* @flags: message flags
*
* Receives @msg from @sock, passing through LSM. Returns the total number
* of bytes received, or an error.
*/
int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
{
int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
return err ?: sock_recvmsg_nosec(sock, msg, flags);
}
EXPORT_SYMBOL(sock_recvmsg);
/**
* kernel_recvmsg - Receive a message from a socket (kernel space)
* @sock: The socket to receive the message from
* @msg: Received message
* @vec: Input s/g array for message data
* @num: Size of input s/g array
* @size: Number of bytes to read
* @flags: Message flags (MSG_DONTWAIT, etc...)
*
* On return the msg structure contains the scatter/gather array passed in the
* vec argument. The array is modified so that it consists of the unfilled
* portion of the original array.
*
* The returned value is the total number of bytes received, or an error.
*/
int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size, int flags)
{
msg->msg_control_is_user = false;
iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
return sock_recvmsg(sock, msg, flags);
}
EXPORT_SYMBOL(kernel_recvmsg);
static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags)
{
struct socket *sock = file->private_data;
const struct proto_ops *ops;
ops = READ_ONCE(sock->ops);
if (unlikely(!ops->splice_read))
return copy_splice_read(file, ppos, pipe, len, flags);
return ops->splice_read(sock, ppos, pipe, len, flags);
}
static void sock_splice_eof(struct file *file)
{
struct socket *sock = file->private_data;
const struct proto_ops *ops;
ops = READ_ONCE(sock->ops);
if (ops->splice_eof)
ops->splice_eof(sock);
}
static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct socket *sock = file->private_data;
struct msghdr msg = {.msg_iter = *to,
.msg_iocb = iocb};
ssize_t res;
if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
msg.msg_flags = MSG_DONTWAIT;
if (iocb->ki_pos != 0)
return -ESPIPE;
if (!iov_iter_count(to)) /* Match SYS5 behaviour */
return 0;
res = sock_recvmsg(sock, &msg, msg.msg_flags);
*to = msg.msg_iter;
return res;
}
static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct socket *sock = file->private_data;
struct msghdr msg = {.msg_iter = *from,
.msg_iocb = iocb};
ssize_t res;
if (iocb->ki_pos != 0)
return -ESPIPE;
if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
msg.msg_flags = MSG_DONTWAIT;
if (sock->type == SOCK_SEQPACKET)
msg.msg_flags |= MSG_EOR;
res = __sock_sendmsg(sock, &msg);
*from = msg.msg_iter;
return res;
}
/*
* Atomic setting of ioctl hooks to avoid race
* with module unload.
*/
static DEFINE_MUTEX(br_ioctl_mutex);
static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
unsigned int cmd, struct ifreq *ifr,
void __user *uarg);
void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
unsigned int cmd, struct ifreq *ifr,
void __user *uarg))
{
mutex_lock(&br_ioctl_mutex);
br_ioctl_hook = hook;
mutex_unlock(&br_ioctl_mutex);
}
EXPORT_SYMBOL(brioctl_set);
int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
struct ifreq *ifr, void __user *uarg)
{
int err = -ENOPKG;
if (!br_ioctl_hook)
request_module("bridge");
mutex_lock(&br_ioctl_mutex);
if (br_ioctl_hook)
err = br_ioctl_hook(net, br, cmd, ifr, uarg);
mutex_unlock(&br_ioctl_mutex);
return err;
}
static DEFINE_MUTEX(vlan_ioctl_mutex);
static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
{
mutex_lock(&vlan_ioctl_mutex);
vlan_ioctl_hook = hook;
mutex_unlock(&vlan_ioctl_mutex);
}
EXPORT_SYMBOL(vlan_ioctl_set);
static long sock_do_ioctl(struct net *net, struct socket *sock,
unsigned int cmd, unsigned long arg)
{
const struct proto_ops *ops = READ_ONCE(sock->ops);
struct ifreq ifr;
bool need_copyout;
int err;
void __user *argp = (void __user *)arg;
void __user *data;
err = ops->ioctl(sock, cmd, arg);
/*
* If this ioctl is unknown try to hand it down
* to the NIC driver.
*/
if (err != -ENOIOCTLCMD)
return err;
if (!is_socket_ioctl_cmd(cmd))
return -ENOTTY;
if (get_user_ifreq(&ifr, &data, argp))
return -EFAULT;
err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
if (!err && need_copyout)
if (put_user_ifreq(&ifr, argp))
return -EFAULT;
return err;
}
/*
* With an ioctl, arg may well be a user mode pointer, but we don't know
* what to do with it - that's up to the protocol still.
*/
static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
const struct proto_ops *ops;
struct socket *sock;
struct sock *sk;
void __user *argp = (void __user *)arg;
int pid, err;
struct net *net;
sock = file->private_data;
ops = READ_ONCE(sock->ops);
sk = sock->sk;
net = sock_net(sk);
if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
struct ifreq ifr;
void __user *data;
bool need_copyout;
if (get_user_ifreq(&ifr, &data, argp))
return -EFAULT;
err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
if (!err && need_copyout)
if (put_user_ifreq(&ifr, argp))
return -EFAULT;
} else
#ifdef CONFIG_WEXT_CORE
if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
err = wext_handle_ioctl(net, cmd, argp);
} else
#endif
switch (cmd) {
case FIOSETOWN:
case SIOCSPGRP:
err = -EFAULT;
if (get_user(pid, (int __user *)argp))
break;
err = f_setown(sock->file, pid, 1);
break;
case FIOGETOWN:
case SIOCGPGRP:
err = put_user(f_getown(sock->file),
(int __user *)argp);
break;
case SIOCGIFBR:
case SIOCSIFBR:
case SIOCBRADDBR:
case SIOCBRDELBR:
err = br_ioctl_call(net, NULL, cmd, NULL, argp);
break;
case SIOCGIFVLAN:
case SIOCSIFVLAN:
err = -ENOPKG;
if (!vlan_ioctl_hook)
request_module("8021q");
mutex_lock(&vlan_ioctl_mutex);
if (vlan_ioctl_hook)
err = vlan_ioctl_hook(net, argp);
mutex_unlock(&vlan_ioctl_mutex);
break;
case SIOCGSKNS:
err = -EPERM;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
break;
err = open_related_ns(&net->ns, get_net_ns);
break;
case SIOCGSTAMP_OLD:
case SIOCGSTAMPNS_OLD:
if (!ops->gettstamp) {
err = -ENOIOCTLCMD;
break;
}
err = ops->gettstamp(sock, argp,
cmd == SIOCGSTAMP_OLD,
!IS_ENABLED(CONFIG_64BIT));
break;
case SIOCGSTAMP_NEW:
case SIOCGSTAMPNS_NEW:
if (!ops->gettstamp) {
err = -ENOIOCTLCMD;
break;
}
err = ops->gettstamp(sock, argp,
cmd == SIOCGSTAMP_NEW,
false);
break;
case SIOCGIFCONF:
err = dev_ifconf(net, argp);
break;
default:
err = sock_do_ioctl(net, sock, cmd, arg);
break;
}
return err;
}
/**
* sock_create_lite - creates a socket
* @family: protocol family (AF_INET, ...)
* @type: communication type (SOCK_STREAM, ...)
* @protocol: protocol (0, ...)
* @res: new socket
*
* Creates a new socket and assigns it to @res, passing through LSM.
* The new socket initialization is not complete, see kernel_accept().
* Returns 0 or an error. On failure @res is set to %NULL.
* This function internally uses GFP_KERNEL.
*/
int sock_create_lite(int family, int type, int protocol, struct socket **res)
{
int err;
struct socket *sock = NULL;
err = security_socket_create(family, type, protocol, 1);
if (err)
goto out;
sock = sock_alloc();
if (!sock) {
err = -ENOMEM;
goto out;
}
sock->type = type;
err = security_socket_post_create(sock, family, type, protocol, 1);
if (err)
goto out_release;
out:
*res = sock;
return err;
out_release:
sock_release(sock);
sock = NULL;
goto out;
}
EXPORT_SYMBOL(sock_create_lite);
/* No kernel lock held - perfect */
static __poll_t sock_poll(struct file *file, poll_table *wait)
{
struct socket *sock = file->private_data;
const struct proto_ops *ops = READ_ONCE(sock->ops);
__poll_t events = poll_requested_events(wait), flag = 0;
if (!ops->poll)
return 0;
if (sk_can_busy_loop(sock->sk)) {
/* poll once if requested by the syscall */
if (events & POLL_BUSY_LOOP)
sk_busy_loop(sock->sk, 1);
/* if this socket can poll_ll, tell the system call */
flag = POLL_BUSY_LOOP;
}
return ops->poll(file, sock, wait) | flag;
}
static int sock_mmap(struct file *file, struct vm_area_struct *vma)
{
struct socket *sock = file->private_data;
return READ_ONCE(sock->ops)->mmap(file, sock, vma);
}
static int sock_close(struct inode *inode, struct file *filp)
{
__sock_release(SOCKET_I(inode), inode);
return 0;
}
/*
* Update the socket async list
*
* Fasync_list locking strategy.
*
* 1. fasync_list is modified only under process context socket lock
* i.e. under semaphore.
* 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
* or under socket lock
*/
static int sock_fasync(int fd, struct file *filp, int on)
{
struct socket *sock = filp->private_data;
struct sock *sk = sock->sk;
struct socket_wq *wq = &sock->wq;
if (sk == NULL)
return -EINVAL;
lock_sock(sk);
fasync_helper(fd, filp, on, &wq->fasync_list);
if (!wq->fasync_list)
sock_reset_flag(sk, SOCK_FASYNC);
else
sock_set_flag(sk, SOCK_FASYNC);
release_sock(sk);
return 0;
}
/* This function may be called only under rcu_lock */
int sock_wake_async(struct socket_wq *wq, int how, int band)
{
if (!wq || !wq->fasync_list)
return -1;
switch (how) {
case SOCK_WAKE_WAITD:
if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
break;
goto call_kill;
case SOCK_WAKE_SPACE:
if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
break;
fallthrough;
case SOCK_WAKE_IO:
call_kill:
kill_fasync(&wq->fasync_list, SIGIO, band);
break;
case SOCK_WAKE_URG:
kill_fasync(&wq->fasync_list, SIGURG, band);
}
return 0;
}
EXPORT_SYMBOL(sock_wake_async);
/**
* __sock_create - creates a socket
* @net: net namespace
* @family: protocol family (AF_INET, ...)
* @type: communication type (SOCK_STREAM, ...)
* @protocol: protocol (0, ...)
* @res: new socket
* @kern: boolean for kernel space sockets
*
* Creates a new socket and assigns it to @res, passing through LSM.
* Returns 0 or an error. On failure @res is set to %NULL. @kern must
* be set to true if the socket resides in kernel space.
* This function internally uses GFP_KERNEL.
*/
int __sock_create(struct net *net, int family, int type, int protocol,
struct socket **res, int kern)
{
int err;
struct socket *sock;
const struct net_proto_family *pf;
/*
* Check protocol is in range
*/
if (family < 0 || family >= NPROTO)
return -EAFNOSUPPORT;
if (type < 0 || type >= SOCK_MAX)
return -EINVAL;
/* Compatibility.
This uglymoron is moved from INET layer to here to avoid
deadlock in module load.
*/
if (family == PF_INET && type == SOCK_PACKET) {
pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
current->comm);
family = PF_PACKET;
}
err = security_socket_create(family, type, protocol, kern);
if (err)
return err;
/*
* Allocate the socket and allow the family to set things up. if
* the protocol is 0, the family is instructed to select an appropriate
* default.
*/
sock = sock_alloc();
if (!sock) {
net_warn_ratelimited("socket: no more sockets\n");
return -ENFILE; /* Not exactly a match, but its the
closest posix thing */
}
sock->type = type;
#ifdef CONFIG_MODULES
/* Attempt to load a protocol module if the find failed.
*
* 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
* requested real, full-featured networking support upon configuration.
* Otherwise module support will break!
*/
if (rcu_access_pointer(net_families[family]) == NULL)
request_module("net-pf-%d", family);
#endif
rcu_read_lock();
pf = rcu_dereference(net_families[family]);
err = -EAFNOSUPPORT;
if (!pf)
goto out_release;
/*
* We will call the ->create function, that possibly is in a loadable
* module, so we have to bump that loadable module refcnt first.
*/
if (!try_module_get(pf->owner))
goto out_release;
/* Now protected by module ref count */
rcu_read_unlock();
err = pf->create(net, sock, protocol, kern);
if (err < 0) {
/* ->create should release the allocated sock->sk object on error
* but it may leave the dangling pointer
*/
sock->sk = NULL;
goto out_module_put;
}
/*
* Now to bump the refcnt of the [loadable] module that owns this
* socket at sock_release time we decrement its refcnt.
*/
if (!try_module_get(sock->ops->owner))
goto out_module_busy;
/*
* Now that we're done with the ->create function, the [loadable]
* module can have its refcnt decremented
*/
module_put(pf->owner);
err = security_socket_post_create(sock, family, type, protocol, kern);
if (err)
goto out_sock_release;
*res = sock;
return 0;
out_module_busy:
err = -EAFNOSUPPORT;
out_module_put:
sock->ops = NULL;
module_put(pf->owner);
out_sock_release:
sock_release(sock);
return err;
out_release:
rcu_read_unlock();
goto out_sock_release;
}
EXPORT_SYMBOL(__sock_create);
/**
* sock_create - creates a socket
* @family: protocol family (AF_INET, ...)
* @type: communication type (SOCK_STREAM, ...)
* @protocol: protocol (0, ...)
* @res: new socket
*
* A wrapper around __sock_create().
* Returns 0 or an error. This function internally uses GFP_KERNEL.
*/
int sock_create(int family, int type, int protocol, struct socket **res)
{
return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
}
EXPORT_SYMBOL(sock_create);
/**
* sock_create_kern - creates a socket (kernel space)
* @net: net namespace
* @family: protocol family (AF_INET, ...)
* @type: communication type (SOCK_STREAM, ...)
* @protocol: protocol (0, ...)
* @res: new socket
*
* A wrapper around __sock_create().
* Returns 0 or an error. This function internally uses GFP_KERNEL.
*/
int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
{
return __sock_create(net, family, type, protocol, res, 1);
}
EXPORT_SYMBOL(sock_create_kern);
static struct socket *__sys_socket_create(int family, int type, int protocol)
{
struct socket *sock;
int retval;
/* Check the SOCK_* constants for consistency. */
BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return ERR_PTR(-EINVAL);
type &= SOCK_TYPE_MASK;
retval = sock_create(family, type, protocol, &sock);
if (retval < 0)
return ERR_PTR(retval);
return sock;
}
struct file *__sys_socket_file(int family, int type, int protocol)
{
struct socket *sock;
int flags;
sock = __sys_socket_create(family, type, protocol);
if (IS_ERR(sock))
return ERR_CAST(sock);
flags = type & ~SOCK_TYPE_MASK;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
return sock_alloc_file(sock, flags, NULL);
}
/* A hook for bpf progs to attach to and update socket protocol.
*
* A static noinline declaration here could cause the compiler to
* optimize away the function. A global noinline declaration will
* keep the definition, but may optimize away the callsite.
* Therefore, __weak is needed to ensure that the call is still
* emitted, by telling the compiler that we don't know what the
* function might eventually be.
*/
__bpf_hook_start();
__weak noinline int update_socket_protocol(int family, int type, int protocol)
{
return protocol;
}
__bpf_hook_end();
int __sys_socket(int family, int type, int protocol)
{
struct socket *sock;
int flags;
sock = __sys_socket_create(family, type,
update_socket_protocol(family, type, protocol));
if (IS_ERR(sock))
return PTR_ERR(sock);
flags = type & ~SOCK_TYPE_MASK;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
}
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
return __sys_socket(family, type, protocol);
}
/*
* Create a pair of connected sockets.
*/
int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
{
struct socket *sock1, *sock2;
int fd1, fd2, err;
struct file *newfile1, *newfile2;
int flags;
flags = type & ~SOCK_TYPE_MASK;
if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
type &= SOCK_TYPE_MASK;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
/*
* reserve descriptors and make sure we won't fail
* to return them to userland.
*/
fd1 = get_unused_fd_flags(flags);
if (unlikely(fd1 < 0))
return fd1;
fd2 = get_unused_fd_flags(flags);
if (unlikely(fd2 < 0)) {
put_unused_fd(fd1);
return fd2;
}
err = put_user(fd1, &usockvec[0]);
if (err)
goto out;
err = put_user(fd2, &usockvec[1]);
if (err)
goto out;
/*
* Obtain the first socket and check if the underlying protocol
* supports the socketpair call.
*/
err = sock_create(family, type, protocol, &sock1);
if (unlikely(err < 0))
goto out;
err = sock_create(family, type, protocol, &sock2);
if (unlikely(err < 0)) {
sock_release(sock1);
goto out;
}
err = security_socket_socketpair(sock1, sock2);
if (unlikely(err)) {
sock_release(sock2);
sock_release(sock1);
goto out;
}
err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
if (unlikely(err < 0)) {
sock_release(sock2);
sock_release(sock1);
goto out;
}
newfile1 = sock_alloc_file(sock1, flags, NULL);
if (IS_ERR(newfile1)) {
err = PTR_ERR(newfile1);
sock_release(sock2);
goto out;
}
newfile2 = sock_alloc_file(sock2, flags, NULL);
if (IS_ERR(newfile2)) {
err = PTR_ERR(newfile2);
fput(newfile1);
goto out;
}
audit_fd_pair(fd1, fd2);
fd_install(fd1, newfile1);
fd_install(fd2, newfile2);
return 0;
out:
put_unused_fd(fd2);
put_unused_fd(fd1);
return err;
}
SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
int __user *, usockvec)
{
return __sys_socketpair(family, type, protocol, usockvec);
}
int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
int addrlen)
{
int err;
err = security_socket_bind(sock, (struct sockaddr *)address,
addrlen);
if (!err)
err = READ_ONCE(sock->ops)->bind(sock,
(struct sockaddr *)address,
addrlen);
return err;
}
/*
* Bind a name to a socket. Nothing much to do here since it's
* the protocol's responsibility to handle the local address.
*
* We move the socket address to kernel space before we call
* the protocol layer (having also checked the address is ok).
*/
int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
{
struct socket *sock;
struct sockaddr_storage address;
int err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock) {
err = move_addr_to_kernel(umyaddr, addrlen, &address);
if (!err)
err = __sys_bind_socket(sock, &address, addrlen);
fput_light(sock->file, fput_needed);
}
return err;
}
SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
{
return __sys_bind(fd, umyaddr, addrlen);
}
/*
* Perform a listen. Basically, we allow the protocol to do anything
* necessary for a listen, and if that works, we mark the socket as
* ready for listening.
*/
int __sys_listen_socket(struct socket *sock, int backlog)
{
int somaxconn, err;
somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
if ((unsigned int)backlog > somaxconn)
backlog = somaxconn;
err = security_socket_listen(sock, backlog);
if (!err)
err = READ_ONCE(sock->ops)->listen(sock, backlog);
return err;
}
int __sys_listen(int fd, int backlog)
{
struct socket *sock;
int err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock) {
err = __sys_listen_socket(sock, backlog);
fput_light(sock->file, fput_needed);
}
return err;
}
SYSCALL_DEFINE2(listen, int, fd, int, backlog)
{
return __sys_listen(fd, backlog);
}
struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
struct sockaddr __user *upeer_sockaddr,
int __user *upeer_addrlen, int flags)
{
struct socket *sock, *newsock;
struct file *newfile;
int err, len;
struct sockaddr_storage address;
const struct proto_ops *ops;
sock = sock_from_file(file);
if (!sock)
return ERR_PTR(-ENOTSOCK);
newsock = sock_alloc();
if (!newsock)
return ERR_PTR(-ENFILE);
ops = READ_ONCE(sock->ops);
newsock->type = sock->type;
newsock->ops = ops;
/*
* We don't need try_module_get here, as the listening socket (sock)
* has the protocol module (sock->ops->owner) held.
*/
__module_get(ops->owner);
newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
if (IS_ERR(newfile))
return newfile;
err = security_socket_accept(sock, newsock);
if (err)
goto out_fd;
arg->flags |= sock->file->f_flags;
err = ops->accept(sock, newsock, arg);
if (err < 0)
goto out_fd;
if (upeer_sockaddr) {
len = ops->getname(newsock, (struct sockaddr *)&address, 2);
if (len < 0) {
err = -ECONNABORTED;
goto out_fd;
}
err = move_addr_to_user(&address,
len, upeer_sockaddr, upeer_addrlen);
if (err < 0)
goto out_fd;
}
/* File flags are not inherited via accept() unlike another OSes. */
return newfile;
out_fd:
fput(newfile);
return ERR_PTR(err);
}
static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
int __user *upeer_addrlen, int flags)
{
struct proto_accept_arg arg = { };
struct file *newfile;
int newfd;
if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
newfd = get_unused_fd_flags(flags);
if (unlikely(newfd < 0))
return newfd;
newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
flags);
if (IS_ERR(newfile)) {
put_unused_fd(newfd);
return PTR_ERR(newfile);
}
fd_install(newfd, newfile);
return newfd;
}
/*
* For accept, we attempt to create a new socket, set up the link
* with the client, wake up the client, then return the new
* connected fd. We collect the address of the connector in kernel
* space and move it to user at the very end. This is unclean because
* we open the socket then return an error.
*
* 1003.1g adds the ability to recvmsg() to query connection pending
* status to recvmsg. We need to add that support in a way thats
* clean when we restructure accept also.
*/
int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
int __user *upeer_addrlen, int flags)
{
int ret = -EBADF;
struct fd f;
f = fdget(fd);
if (fd_file(f)) {
ret = __sys_accept4_file(fd_file(f), upeer_sockaddr,
upeer_addrlen, flags);
fdput(f);
}
return ret;
}
SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
int __user *, upeer_addrlen, int, flags)
{
return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
}
SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
int __user *, upeer_addrlen)
{
return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
}
/*
* Attempt to connect to a socket with the server address. The address
* is in user space so we verify it is OK and move it to kernel space.
*
* For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
* break bindings
*
* NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
* other SEQPACKET protocols that take time to connect() as it doesn't
* include the -EINPROGRESS status for such sockets.
*/
int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
int addrlen, int file_flags)
{
struct socket *sock;
int err;
sock = sock_from_file(file);
if (!sock) {
err = -ENOTSOCK;
goto out;
}
err =
security_socket_connect(sock, (struct sockaddr *)address, addrlen);
if (err)
goto out;
err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
addrlen, sock->file->f_flags | file_flags);
out:
return err;
}
int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
{
int ret = -EBADF;
struct fd f;
f = fdget(fd);
if (fd_file(f)) {
struct sockaddr_storage address;
ret = move_addr_to_kernel(uservaddr, addrlen, &address);
if (!ret)
ret = __sys_connect_file(fd_file(f), &address, addrlen, 0);
fdput(f);
}
return ret;
}
SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
int, addrlen)
{
return __sys_connect(fd, uservaddr, addrlen);
}
/*
* Get the local address ('name') of a socket object. Move the obtained
* name to user space.
*/
int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
int __user *usockaddr_len)
{
struct socket *sock;
struct sockaddr_storage address;
int err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = security_socket_getsockname(sock);
if (err)
goto out_put;
err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
if (err < 0)
goto out_put;
/* "err" is actually length in this case */
err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
int __user *, usockaddr_len)
{
return __sys_getsockname(fd, usockaddr, usockaddr_len);
}
/*
* Get the remote address ('name') of a socket object. Move the obtained
* name to user space.
*/
int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
int __user *usockaddr_len)
{
struct socket *sock;
struct sockaddr_storage address;
int err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock != NULL) {
const struct proto_ops *ops = READ_ONCE(sock->ops);
err = security_socket_getpeername(sock);
if (err) {
fput_light(sock->file, fput_needed);
return err;
}
err = ops->getname(sock, (struct sockaddr *)&address, 1);
if (err >= 0)
/* "err" is actually length in this case */
err = move_addr_to_user(&address, err, usockaddr,
usockaddr_len);
fput_light(sock->file, fput_needed);
}
return err;
}
SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
int __user *, usockaddr_len)
{
return __sys_getpeername(fd, usockaddr, usockaddr_len);
}
/*
* Send a datagram to a given address. We move the address into kernel
* space and check the user space data area is readable before invoking
* the protocol.
*/
int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
struct sockaddr __user *addr, int addr_len)
{
struct socket *sock;
struct sockaddr_storage address;
int err;
struct msghdr msg;
int fput_needed;
err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
if (unlikely(err))
return err;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
msg.msg_ubuf = NULL;
if (addr) {
err = move_addr_to_kernel(addr, addr_len, &address);
if (err < 0)
goto out_put;
msg.msg_name = (struct sockaddr *)&address;
msg.msg_namelen = addr_len;
}
flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
msg.msg_flags = flags;
err = __sock_sendmsg(sock, &msg);
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
unsigned int, flags, struct sockaddr __user *, addr,
int, addr_len)
{
return __sys_sendto(fd, buff, len, flags, addr, addr_len);
}
/*
* Send a datagram down a socket.
*/
SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
unsigned int, flags)
{
return __sys_sendto(fd, buff, len, flags, NULL, 0);
}
/*
* Receive a frame from the socket and optionally record the address of the
* sender. We verify the buffers are writable and if needed move the
* sender address from kernel to user space.
*/
int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
struct sockaddr __user *addr, int __user *addr_len)
{
struct sockaddr_storage address;
struct msghdr msg = {
/* Save some cycles and don't copy the address if not needed */
.msg_name = addr ? (struct sockaddr *)&address : NULL,
};
struct socket *sock;
int err, err2;
int fput_needed;
err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
if (unlikely(err))
return err;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
err = sock_recvmsg(sock, &msg, flags);
if (err >= 0 && addr != NULL) {
err2 = move_addr_to_user(&address,
msg.msg_namelen, addr, addr_len);
if (err2 < 0)
err = err2;
}
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
unsigned int, flags, struct sockaddr __user *, addr,
int __user *, addr_len)
{
return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
}
/*
* Receive a datagram from a socket.
*/
SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
unsigned int, flags)
{
return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
}
static bool sock_use_custom_sol_socket(const struct socket *sock)
{
return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
}
int do_sock_setsockopt(struct socket *sock, bool compat, int level,
int optname, sockptr_t optval, int optlen)
{
const struct proto_ops *ops;
char *kernel_optval = NULL;
int err;
if (optlen < 0)
return -EINVAL;
err = security_socket_setsockopt(sock, level, optname);
if (err)
goto out_put;
if (!compat)
err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
optval, &optlen,
&kernel_optval);
if (err < 0)
goto out_put;
if (err > 0) {
err = 0;
goto out_put;
}
if (kernel_optval)
optval = KERNEL_SOCKPTR(kernel_optval);
ops = READ_ONCE(sock->ops);
if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
err = sock_setsockopt(sock, level, optname, optval, optlen);
else if (unlikely(!ops->setsockopt))
err = -EOPNOTSUPP;
else
err = ops->setsockopt(sock, level, optname, optval,
optlen);
kfree(kernel_optval);
out_put:
return err;
}
EXPORT_SYMBOL(do_sock_setsockopt);
/* Set a socket option. Because we don't know the option lengths we have
* to pass the user mode parameter for the protocols to sort out.
*/
int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
int optlen)
{
sockptr_t optval = USER_SOCKPTR(user_optval);
bool compat = in_compat_syscall();
int err, fput_needed;
struct socket *sock;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
return err;
err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
fput_light(sock->file, fput_needed);
return err;
}
SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
char __user *, optval, int, optlen)
{
return __sys_setsockopt(fd, level, optname, optval, optlen);
}
INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
int optname));
int do_sock_getsockopt(struct socket *sock, bool compat, int level,
int optname, sockptr_t optval, sockptr_t optlen)
{
int max_optlen __maybe_unused = 0;
const struct proto_ops *ops;
int err;
err = security_socket_getsockopt(sock, level, optname);
if (err)
return err;
if (!compat)
copy_from_sockptr(&max_optlen, optlen, sizeof(int));
ops = READ_ONCE(sock->ops);
if (level == SOL_SOCKET) {
err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
} else if (unlikely(!ops->getsockopt)) {
err = -EOPNOTSUPP;
} else {
if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
"Invalid argument type"))
return -EOPNOTSUPP;
err = ops->getsockopt(sock, level, optname, optval.user,
optlen.user);
}
if (!compat)
err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
optval, optlen, max_optlen,
err);
return err;
}
EXPORT_SYMBOL(do_sock_getsockopt);
/*
* Get a socket option. Because we don't know the option lengths we have
* to pass a user mode parameter for the protocols to sort out.
*/
int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
int __user *optlen)
{
int err, fput_needed;
struct socket *sock;
bool compat;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
return err;
compat = in_compat_syscall();
err = do_sock_getsockopt(sock, compat, level, optname,
USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
fput_light(sock->file, fput_needed);
return err;
}
SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
char __user *, optval, int __user *, optlen)
{
return __sys_getsockopt(fd, level, optname, optval, optlen);
}
/*
* Shutdown a socket.
*/
int __sys_shutdown_sock(struct socket *sock, int how)
{
int err;
err = security_socket_shutdown(sock, how);
if (!err)
err = READ_ONCE(sock->ops)->shutdown(sock, how);
return err;
}
int __sys_shutdown(int fd, int how)
{
int err, fput_needed;
struct socket *sock;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock != NULL) {
err = __sys_shutdown_sock(sock, how);
fput_light(sock->file, fput_needed);
}
return err;
}
SYSCALL_DEFINE2(shutdown, int, fd, int, how)
{
return __sys_shutdown(fd, how);
}
/* A couple of helpful macros for getting the address of the 32/64 bit
* fields which are the same type (int / unsigned) on our platforms.
*/
#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
struct used_address {
struct sockaddr_storage name;
unsigned int name_len;
};
int __copy_msghdr(struct msghdr *kmsg,
struct user_msghdr *msg,
struct sockaddr __user **save_addr)
{
ssize_t err;
kmsg->msg_control_is_user = true;
kmsg->msg_get_inq = 0;
kmsg->msg_control_user = msg->msg_control;
kmsg->msg_controllen = msg->msg_controllen;
kmsg->msg_flags = msg->msg_flags;
kmsg->msg_namelen = msg->msg_namelen;
if (!msg->msg_name)
kmsg->msg_namelen = 0;
if (kmsg->msg_namelen < 0)
return -EINVAL;
if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
kmsg->msg_namelen = sizeof(struct sockaddr_storage);
if (save_addr)
*save_addr = msg->msg_name;
if (msg->msg_name && kmsg->msg_namelen) {
if (!save_addr) {
err = move_addr_to_kernel(msg->msg_name,
kmsg->msg_namelen,
kmsg->msg_name);
if (err < 0)
return err;
}
} else {
kmsg->msg_name = NULL;
kmsg->msg_namelen = 0;
}
if (msg->msg_iovlen > UIO_MAXIOV)
return -EMSGSIZE;
kmsg->msg_iocb = NULL;
kmsg->msg_ubuf = NULL;
return 0;
}
static int copy_msghdr_from_user(struct msghdr *kmsg,
struct user_msghdr __user *umsg,
struct sockaddr __user **save_addr,
struct iovec **iov)
{
struct user_msghdr msg;
ssize_t err;
if (copy_from_user(&msg, umsg, sizeof(*umsg)))
return -EFAULT;
err = __copy_msghdr(kmsg, &msg, save_addr);
if (err)
return err;
err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
msg.msg_iov, msg.msg_iovlen,
UIO_FASTIOV, iov, &kmsg->msg_iter);
return err < 0 ? err : 0;
}
static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
unsigned int flags, struct used_address *used_address,
unsigned int allowed_msghdr_flags)
{
unsigned char ctl[sizeof(struct cmsghdr) + 20]
__aligned(sizeof(__kernel_size_t));
/* 20 is size of ipv6_pktinfo */
unsigned char *ctl_buf = ctl;
int ctl_len;
ssize_t err;
err = -ENOBUFS;
if (msg_sys->msg_controllen > INT_MAX)
goto out;
flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
ctl_len = msg_sys->msg_controllen;
if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
err =
cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
sizeof(ctl));
if (err)
goto out;
ctl_buf = msg_sys->msg_control;
ctl_len = msg_sys->msg_controllen;
} else if (ctl_len) {
BUILD_BUG_ON(sizeof(struct cmsghdr) !=
CMSG_ALIGN(sizeof(struct cmsghdr)));
if (ctl_len > sizeof(ctl)) {
ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
if (ctl_buf == NULL)
goto out;
}
err = -EFAULT;
if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
goto out_freectl;
msg_sys->msg_control = ctl_buf;
msg_sys->msg_control_is_user = false;
}
flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
msg_sys->msg_flags = flags;
if (sock->file->f_flags & O_NONBLOCK)
msg_sys->msg_flags |= MSG_DONTWAIT;
/*
* If this is sendmmsg() and current destination address is same as
* previously succeeded address, omit asking LSM's decision.
* used_address->name_len is initialized to UINT_MAX so that the first
* destination address never matches.
*/
if (used_address && msg_sys->msg_name &&
used_address->name_len == msg_sys->msg_namelen &&
!memcmp(&used_address->name, msg_sys->msg_name,
used_address->name_len)) {
err = sock_sendmsg_nosec(sock, msg_sys);
goto out_freectl;
}
err = __sock_sendmsg(sock, msg_sys);
/*
* If this is sendmmsg() and sending to current destination address was
* successful, remember it.
*/
if (used_address && err >= 0) {
used_address->name_len = msg_sys->msg_namelen;
if (msg_sys->msg_name)
memcpy(&used_address->name, msg_sys->msg_name,
used_address->name_len);
}
out_freectl:
if (ctl_buf != ctl)
sock_kfree_s(sock->sk, ctl_buf, ctl_len);
out:
return err;
}
static int sendmsg_copy_msghdr(struct msghdr *msg,
struct user_msghdr __user *umsg, unsigned flags,
struct iovec **iov)
{
int err;
if (flags & MSG_CMSG_COMPAT) {
struct compat_msghdr __user *msg_compat;
msg_compat = (struct compat_msghdr __user *) umsg;
err = get_compat_msghdr(msg, msg_compat, NULL, iov);
} else {
err = copy_msghdr_from_user(msg, umsg, NULL, iov);
}
if (err < 0)
return err;
return 0;
}
static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
struct msghdr *msg_sys, unsigned int flags,
struct used_address *used_address,
unsigned int allowed_msghdr_flags)
{
struct sockaddr_storage address;
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
ssize_t err;
msg_sys->msg_name = &address;
err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
if (err < 0)
return err;
err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
allowed_msghdr_flags);
kfree(iov);
return err;
}
/*
* BSD sendmsg interface
*/
long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
unsigned int flags)
{
return ____sys_sendmsg(sock, msg, flags, NULL, 0);
}
long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
bool forbid_cmsg_compat)
{
int fput_needed, err;
struct msghdr msg_sys;
struct socket *sock;
if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
return -EINVAL;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
{
return __sys_sendmsg(fd, msg, flags, true);
}
/*
* Linux sendmmsg interface
*/
int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
unsigned int flags, bool forbid_cmsg_compat)
{
int fput_needed, err, datagrams;
struct socket *sock;
struct mmsghdr __user *entry;
struct compat_mmsghdr __user *compat_entry;
struct msghdr msg_sys;
struct used_address used_address;
unsigned int oflags = flags;
if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
return -EINVAL;
if (vlen > UIO_MAXIOV)
vlen = UIO_MAXIOV;
datagrams = 0;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
return err;
used_address.name_len = UINT_MAX;
entry = mmsg;
compat_entry = (struct compat_mmsghdr __user *)mmsg;
err = 0;
flags |= MSG_BATCH;
while (datagrams < vlen) {
if (datagrams == vlen - 1)
flags = oflags;
if (MSG_CMSG_COMPAT & flags) {
err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
&msg_sys, flags, &used_address, MSG_EOR);
if (err < 0)
break;
err = __put_user(err, &compat_entry->msg_len);
++compat_entry;
} else {
err = ___sys_sendmsg(sock,
(struct user_msghdr __user *)entry,
&msg_sys, flags, &used_address, MSG_EOR);
if (err < 0)
break;
err = put_user(err, &entry->msg_len);
++entry;
}
if (err)
break;
++datagrams;
if (msg_data_left(&msg_sys))
break;
cond_resched();
}
fput_light(sock->file, fput_needed);
/* We only return an error if no datagrams were able to be sent */
if (datagrams != 0)
return datagrams;
return err;
}
SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
unsigned int, vlen, unsigned int, flags)
{
return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
}
static int recvmsg_copy_msghdr(struct msghdr *msg,
struct user_msghdr __user *umsg, unsigned flags,
struct sockaddr __user **uaddr,
struct iovec **iov)
{
ssize_t err;
if (MSG_CMSG_COMPAT & flags) {
struct compat_msghdr __user *msg_compat;
msg_compat = (struct compat_msghdr __user *) umsg;
err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
} else {
err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
}
if (err < 0)
return err;
return 0;
}
static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
struct user_msghdr __user *msg,
struct sockaddr __user *uaddr,
unsigned int flags, int nosec)
{
struct compat_msghdr __user *msg_compat =
(struct compat_msghdr __user *) msg;
int __user *uaddr_len = COMPAT_NAMELEN(msg);
struct sockaddr_storage addr;
unsigned long cmsg_ptr;
int len;
ssize_t err;
msg_sys->msg_name = &addr;
cmsg_ptr = (unsigned long)msg_sys->msg_control;
msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
/* We assume all kernel code knows the size of sockaddr_storage */
msg_sys->msg_namelen = 0;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
if (unlikely(nosec))
err = sock_recvmsg_nosec(sock, msg_sys, flags);
else
err = sock_recvmsg(sock, msg_sys, flags);
if (err < 0)
goto out;
len = err;
if (uaddr != NULL) {
err = move_addr_to_user(&addr,
msg_sys->msg_namelen, uaddr,
uaddr_len);
if (err < 0)
goto out;
}
err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
COMPAT_FLAGS(msg));
if (err)
goto out;
if (MSG_CMSG_COMPAT & flags)
err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
&msg_compat->msg_controllen);
else
err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
&msg->msg_controllen);
if (err)
goto out;
err = len;
out:
return err;
}
static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
struct msghdr *msg_sys, unsigned int flags, int nosec)
{
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
/* user mode address pointers */
struct sockaddr __user *uaddr;
ssize_t err;
err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
if (err < 0)
return err;
err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
kfree(iov);
return err;
}
/*
* BSD recvmsg interface
*/
long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
struct user_msghdr __user *umsg,
struct sockaddr __user *uaddr, unsigned int flags)
{
return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
}
long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
bool forbid_cmsg_compat)
{
int fput_needed, err;
struct msghdr msg_sys;
struct socket *sock;
if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
return -EINVAL;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
unsigned int, flags)
{
return __sys_recvmsg(fd, msg, flags, true);
}
/*
* Linux recvmmsg interface
*/
static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
unsigned int vlen, unsigned int flags,
struct timespec64 *timeout)
{
int fput_needed, err, datagrams;
struct socket *sock;
struct mmsghdr __user *entry;
struct compat_mmsghdr __user *compat_entry;
struct msghdr msg_sys;
struct timespec64 end_time;
struct timespec64 timeout64;
if (timeout &&
poll_select_set_timeout(&end_time, timeout->tv_sec,
timeout->tv_nsec))
return -EINVAL;
datagrams = 0;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
return err;
if (likely(!(flags & MSG_ERRQUEUE))) {
err = sock_error(sock->sk);
if (err) {
datagrams = err;
goto out_put;
}
}
entry = mmsg;
compat_entry = (struct compat_mmsghdr __user *)mmsg;
while (datagrams < vlen) {
/*
* No need to ask LSM for more than the first datagram.
*/
if (MSG_CMSG_COMPAT & flags) {
err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
&msg_sys, flags & ~MSG_WAITFORONE,
datagrams);
if (err < 0)
break;
err = __put_user(err, &compat_entry->msg_len);
++compat_entry;
} else {
err = ___sys_recvmsg(sock,
(struct user_msghdr __user *)entry,
&msg_sys, flags & ~MSG_WAITFORONE,
datagrams);
if (err < 0)
break;
err = put_user(err, &entry->msg_len);
++entry;
}
if (err)
break;
++datagrams;
/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
if (flags & MSG_WAITFORONE)
flags |= MSG_DONTWAIT;
if (timeout) {
ktime_get_ts64(&timeout64);
*timeout = timespec64_sub(end_time, timeout64);
if (timeout->tv_sec < 0) {
timeout->tv_sec = timeout->tv_nsec = 0;
break;
}
/* Timeout, return less than vlen datagrams */
if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
break;
}
/* Out of band data, return right away */
if (msg_sys.msg_flags & MSG_OOB)
break;
cond_resched();
}
if (err == 0)
goto out_put;
if (datagrams == 0) {
datagrams = err;
goto out_put;
}
/*
* We may return less entries than requested (vlen) if the
* sock is non block and there aren't enough datagrams...
*/
if (err != -EAGAIN) {
/*
* ... or if recvmsg returns an error after we
* received some datagrams, where we record the
* error to return on the next call or if the
* app asks about it using getsockopt(SO_ERROR).
*/
WRITE_ONCE(sock->sk->sk_err, -err);
}
out_put:
fput_light(sock->file, fput_needed);
return datagrams;
}
int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
unsigned int vlen, unsigned int flags,
struct __kernel_timespec __user *timeout,
struct old_timespec32 __user *timeout32)
{
int datagrams;
struct timespec64 timeout_sys;
if (timeout && get_timespec64(&timeout_sys, timeout))
return -EFAULT;
if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
return -EFAULT;
if (!timeout && !timeout32)
return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
if (datagrams <= 0)
return datagrams;
if (timeout && put_timespec64(&timeout_sys, timeout))
datagrams = -EFAULT;
if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
datagrams = -EFAULT;
return datagrams;
}
SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
unsigned int, vlen, unsigned int, flags,
struct __kernel_timespec __user *, timeout)
{
if (flags & MSG_CMSG_COMPAT)
return -EINVAL;
return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
unsigned int, vlen, unsigned int, flags,
struct old_timespec32 __user *, timeout)
{
if (flags & MSG_CMSG_COMPAT)
return -EINVAL;
return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
}
#endif
#ifdef __ARCH_WANT_SYS_SOCKETCALL
/* Argument list sizes for sys_socketcall */
#define AL(x) ((x) * sizeof(unsigned long))
static const unsigned char nargs[21] = {
AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
AL(4), AL(5), AL(4)
};
#undef AL
/*
* System call vectors.
*
* Argument checking cleaned up. Saved 20% in size.
* This function doesn't need to set the kernel lock because
* it is set by the callees.
*/
SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
{
unsigned long a[AUDITSC_ARGS];
unsigned long a0, a1;
int err;
unsigned int len;
if (call < 1 || call > SYS_SENDMMSG)
return -EINVAL;
call = array_index_nospec(call, SYS_SENDMMSG + 1);
len = nargs[call];
if (len > sizeof(a))
return -EINVAL;
/* copy_from_user should be SMP safe. */
if (copy_from_user(a, args, len))
return -EFAULT;
err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
if (err)
return err;
a0 = a[0];
a1 = a[1];
switch (call) {
case SYS_SOCKET:
err = __sys_socket(a0, a1, a[2]);
break;
case SYS_BIND:
err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_CONNECT:
err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_LISTEN:
err = __sys_listen(a0, a1);
break;
case SYS_ACCEPT:
err = __sys_accept4(a0, (struct sockaddr __user *)a1,
(int __user *)a[2], 0);
break;
case SYS_GETSOCKNAME:
err =
__sys_getsockname(a0, (struct sockaddr __user *)a1,
(int __user *)a[2]);
break;
case SYS_GETPEERNAME:
err =
__sys_getpeername(a0, (struct sockaddr __user *)a1,
(int __user *)a[2]);
break;
case SYS_SOCKETPAIR:
err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
break;
case SYS_SEND:
err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
NULL, 0);
break;
case SYS_SENDTO:
err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], a[5]);
break;
case SYS_RECV:
err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
NULL, NULL);
break;
case SYS_RECVFROM:
err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4],
(int __user *)a[5]);
break;
case SYS_SHUTDOWN:
err = __sys_shutdown(a0, a1);
break;
case SYS_SETSOCKOPT:
err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
a[4]);
break;
case SYS_GETSOCKOPT:
err =
__sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
(int __user *)a[4]);
break;
case SYS_SENDMSG:
err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
a[2], true);
break;
case SYS_SENDMMSG:
err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
a[3], true);
break;
case SYS_RECVMSG:
err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
a[2], true);
break;
case SYS_RECVMMSG:
if (IS_ENABLED(CONFIG_64BIT))
err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
a[2], a[3],
(struct __kernel_timespec __user *)a[4],
NULL);
else
err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
a[2], a[3], NULL,
(struct old_timespec32 __user *)a[4]);
break;
case SYS_ACCEPT4:
err = __sys_accept4(a0, (struct sockaddr __user *)a1,
(int __user *)a[2], a[3]);
break;
default:
err = -EINVAL;
break;
}
return err;
}
#endif /* __ARCH_WANT_SYS_SOCKETCALL */
/**
* sock_register - add a socket protocol handler
* @ops: description of protocol
*
* This function is called by a protocol handler that wants to
* advertise its address family, and have it linked into the
* socket interface. The value ops->family corresponds to the
* socket system call protocol family.
*/
int sock_register(const struct net_proto_family *ops)
{
int err;
if (ops->family >= NPROTO) {
pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
return -ENOBUFS;
}
spin_lock(&net_family_lock);
if (rcu_dereference_protected(net_families[ops->family],
lockdep_is_held(&net_family_lock)))
err = -EEXIST;
else {
rcu_assign_pointer(net_families[ops->family], ops);
err = 0;
}
spin_unlock(&net_family_lock);
pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
return err;
}
EXPORT_SYMBOL(sock_register);
/**
* sock_unregister - remove a protocol handler
* @family: protocol family to remove
*
* This function is called by a protocol handler that wants to
* remove its address family, and have it unlinked from the
* new socket creation.
*
* If protocol handler is a module, then it can use module reference
* counts to protect against new references. If protocol handler is not
* a module then it needs to provide its own protection in
* the ops->create routine.
*/
void sock_unregister(int family)
{
BUG_ON(family < 0 || family >= NPROTO);
spin_lock(&net_family_lock);
RCU_INIT_POINTER(net_families[family], NULL);
spin_unlock(&net_family_lock);
synchronize_rcu();
pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
}
EXPORT_SYMBOL(sock_unregister);
bool sock_is_registered(int family)
{
return family < NPROTO && rcu_access_pointer(net_families[family]);
}
static int __init sock_init(void)
{
int err;
/*
* Initialize the network sysctl infrastructure.
*/
err = net_sysctl_init();
if (err)
goto out;
/*
* Initialize skbuff SLAB cache
*/
skb_init();
/*
* Initialize the protocols module.
*/
init_inodecache();
err = register_filesystem(&sock_fs_type);
if (err)
goto out;
sock_mnt = kern_mount(&sock_fs_type);
if (IS_ERR(sock_mnt)) {
err = PTR_ERR(sock_mnt);
goto out_mount;
}
/* The real protocol initialization is performed in later initcalls.
*/
#ifdef CONFIG_NETFILTER
err = netfilter_init();
if (err)
goto out;
#endif
ptp_classifier_init();
out:
return err;
out_mount:
unregister_filesystem(&sock_fs_type);
goto out;
}
core_initcall(sock_init); /* early initcall */
#ifdef CONFIG_PROC_FS
void socket_seq_show(struct seq_file *seq)
{
seq_printf(seq, "sockets: used %d\n",
sock_inuse_get(seq->private));
}
#endif /* CONFIG_PROC_FS */
/* Handle the fact that while struct ifreq has the same *layout* on
* 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
* which are handled elsewhere, it still has different *size* due to
* ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
* resulting in struct ifreq being 32 and 40 bytes respectively).
* As a result, if the struct happens to be at the end of a page and
* the next page isn't readable/writable, we get a fault. To prevent
* that, copy back and forth to the full size.
*/
int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
{
if (in_compat_syscall()) {
struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
memset(ifr, 0, sizeof(*ifr));
if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
return -EFAULT;
if (ifrdata)
*ifrdata = compat_ptr(ifr32->ifr_data);
return 0;
}
if (copy_from_user(ifr, arg, sizeof(*ifr)))
return -EFAULT;
if (ifrdata)
*ifrdata = ifr->ifr_data;
return 0;
}
EXPORT_SYMBOL(get_user_ifreq);
int put_user_ifreq(struct ifreq *ifr, void __user *arg)
{
size_t size = sizeof(*ifr);
if (in_compat_syscall())
size = sizeof(struct compat_ifreq);
if (copy_to_user(arg, ifr, size))
return -EFAULT;
return 0;
}
EXPORT_SYMBOL(put_user_ifreq);
#ifdef CONFIG_COMPAT
static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
{
compat_uptr_t uptr32;
struct ifreq ifr;
void __user *saved;
int err;
if (get_user_ifreq(&ifr, NULL, uifr32))
return -EFAULT;
if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
return -EFAULT;
saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
if (!err) {
ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
if (put_user_ifreq(&ifr, uifr32))
err = -EFAULT;
}
return err;
}
/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
struct compat_ifreq __user *u_ifreq32)
{
struct ifreq ifreq;
void __user *data;
if (!is_socket_ioctl_cmd(cmd))
return -ENOTTY;
if (get_user_ifreq(&ifreq, &data, u_ifreq32))
return -EFAULT;
ifreq.ifr_data = data;
return dev_ioctl(net, cmd, &ifreq, data, NULL);
}
static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
unsigned int cmd, unsigned long arg)
{
void __user *argp = compat_ptr(arg);
struct sock *sk = sock->sk;
struct net *net = sock_net(sk);
const struct proto_ops *ops;
if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
return sock_ioctl(file, cmd, (unsigned long)argp);
switch (cmd) {
case SIOCWANDEV:
return compat_siocwandev(net, argp);
case SIOCGSTAMP_OLD:
case SIOCGSTAMPNS_OLD:
ops = READ_ONCE(sock->ops);
if (!ops->gettstamp)
return -ENOIOCTLCMD;
return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
!COMPAT_USE_64BIT_TIME);
case SIOCETHTOOL:
case SIOCBONDSLAVEINFOQUERY:
case SIOCBONDINFOQUERY:
case SIOCSHWTSTAMP:
case SIOCGHWTSTAMP:
return compat_ifr_data_ioctl(net, cmd, argp);
case FIOSETOWN:
case SIOCSPGRP:
case FIOGETOWN:
case SIOCGPGRP:
case SIOCBRADDBR:
case SIOCBRDELBR:
case SIOCGIFVLAN:
case SIOCSIFVLAN:
case SIOCGSKNS:
case SIOCGSTAMP_NEW:
case SIOCGSTAMPNS_NEW:
case SIOCGIFCONF:
case SIOCSIFBR:
case SIOCGIFBR:
return sock_ioctl(file, cmd, arg);
case SIOCGIFFLAGS:
case SIOCSIFFLAGS:
case SIOCGIFMAP:
case SIOCSIFMAP:
case SIOCGIFMETRIC:
case SIOCSIFMETRIC:
case SIOCGIFMTU:
case SIOCSIFMTU:
case SIOCGIFMEM:
case SIOCSIFMEM:
case SIOCGIFHWADDR:
case SIOCSIFHWADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
case SIOCGIFINDEX:
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCSIFHWBROADCAST:
case SIOCDIFADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCSIFPFLAGS:
case SIOCGIFPFLAGS:
case SIOCGIFTXQLEN:
case SIOCSIFTXQLEN:
case SIOCBRADDIF:
case SIOCBRDELIF:
case SIOCGIFNAME:
case SIOCSIFNAME:
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
case SIOCBONDENSLAVE:
case SIOCBONDRELEASE:
case SIOCBONDSETHWADDR:
case SIOCBONDCHANGEACTIVE:
case SIOCSARP:
case SIOCGARP:
case SIOCDARP:
case SIOCOUTQ:
case SIOCOUTQNSD:
case SIOCATMARK:
return sock_do_ioctl(net, sock, cmd, arg);
}
return -ENOIOCTLCMD;
}
static long compat_sock_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct socket *sock = file->private_data;
const struct proto_ops *ops = READ_ONCE(sock->ops);
int ret = -ENOIOCTLCMD;
struct sock *sk;
struct net *net;
sk = sock->sk;
net = sock_net(sk);
if (ops->compat_ioctl)
ret = ops->compat_ioctl(sock, cmd, arg);
if (ret == -ENOIOCTLCMD &&
(cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
ret = compat_wext_handle_ioctl(net, cmd, arg);
if (ret == -ENOIOCTLCMD)
ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
return ret;
}
#endif
/**
* kernel_bind - bind an address to a socket (kernel space)
* @sock: socket
* @addr: address
* @addrlen: length of address
*
* Returns 0 or an error.
*/
int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
{
struct sockaddr_storage address;
memcpy(&address, addr, addrlen);
return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
addrlen);
}
EXPORT_SYMBOL(kernel_bind);
/**
* kernel_listen - move socket to listening state (kernel space)
* @sock: socket
* @backlog: pending connections queue size
*
* Returns 0 or an error.
*/
int kernel_listen(struct socket *sock, int backlog)
{
return READ_ONCE(sock->ops)->listen(sock, backlog);
}
EXPORT_SYMBOL(kernel_listen);
/**
* kernel_accept - accept a connection (kernel space)
* @sock: listening socket
* @newsock: new connected socket
* @flags: flags
*
* @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
* If it fails, @newsock is guaranteed to be %NULL.
* Returns 0 or an error.
*/
int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
{
struct sock *sk = sock->sk;
const struct proto_ops *ops = READ_ONCE(sock->ops);
struct proto_accept_arg arg = {
.flags = flags,
.kern = true,
};
int err;
err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
newsock);
if (err < 0)
goto done;
err = ops->accept(sock, *newsock, &arg);
if (err < 0) {
sock_release(*newsock);
*newsock = NULL;
goto done;
}
(*newsock)->ops = ops;
__module_get(ops->owner);
done:
return err;
}
EXPORT_SYMBOL(kernel_accept);
/**
* kernel_connect - connect a socket (kernel space)
* @sock: socket
* @addr: address
* @addrlen: address length
* @flags: flags (O_NONBLOCK, ...)
*
* For datagram sockets, @addr is the address to which datagrams are sent
* by default, and the only address from which datagrams are received.
* For stream sockets, attempts to connect to @addr.
* Returns 0 or an error code.
*/
int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
int flags)
{
struct sockaddr_storage address;
memcpy(&address, addr, addrlen);
return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
addrlen, flags);
}
EXPORT_SYMBOL(kernel_connect);
/**
* kernel_getsockname - get the address which the socket is bound (kernel space)
* @sock: socket
* @addr: address holder
*
* Fills the @addr pointer with the address which the socket is bound.
* Returns the length of the address in bytes or an error code.
*/
int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
{
return READ_ONCE(sock->ops)->getname(sock, addr, 0);
}
EXPORT_SYMBOL(kernel_getsockname);
/**
* kernel_getpeername - get the address which the socket is connected (kernel space)
* @sock: socket
* @addr: address holder
*
* Fills the @addr pointer with the address which the socket is connected.
* Returns the length of the address in bytes or an error code.
*/
int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
{
return READ_ONCE(sock->ops)->getname(sock, addr, 1);
}
EXPORT_SYMBOL(kernel_getpeername);
/**
* kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
* @sock: socket
* @how: connection part
*
* Returns 0 or an error.
*/
int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
{
return READ_ONCE(sock->ops)->shutdown(sock, how);
}
EXPORT_SYMBOL(kernel_sock_shutdown);
/**
* kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
* @sk: socket
*
* This routine returns the IP overhead imposed by a socket i.e.
* the length of the underlying IP header, depending on whether
* this is an IPv4 or IPv6 socket and the length from IP options turned
* on at the socket. Assumes that the caller has a lock on the socket.
*/
u32 kernel_sock_ip_overhead(struct sock *sk)
{
struct inet_sock *inet;
struct ip_options_rcu *opt;
u32 overhead = 0;
#if IS_ENABLED(CONFIG_IPV6)
struct ipv6_pinfo *np;
struct ipv6_txoptions *optv6 = NULL;
#endif /* IS_ENABLED(CONFIG_IPV6) */
if (!sk)
return overhead;
switch (sk->sk_family) {
case AF_INET:
inet = inet_sk(sk);
overhead += sizeof(struct iphdr);
opt = rcu_dereference_protected(inet->inet_opt,
sock_owned_by_user(sk));
if (opt)
overhead += opt->opt.optlen;
return overhead;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
np = inet6_sk(sk);
overhead += sizeof(struct ipv6hdr);
if (np)
optv6 = rcu_dereference_protected(np->opt,
sock_owned_by_user(sk));
if (optv6)
overhead += (optv6->opt_flen + optv6->opt_nflen);
return overhead;
#endif /* IS_ENABLED(CONFIG_IPV6) */
default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
return overhead;
}
}
EXPORT_SYMBOL(kernel_sock_ip_overhead);