mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-08 14:13:53 +00:00
f84754dbc5
dpaa_eth_napi_schedule() and caam_qi_napi_schedule() schedule NAPI if invoked from: - Hard interrupt context - Any context which is not serving soft interrupts Any context which is not serving soft interrupts includes hard interrupts so the in_irq() check is redundant. caam_qi_napi_schedule() has a comment about this: /* * In case of threaded ISR, for RT kernels in_irq() does not return * appropriate value, so use in_serving_softirq to distinguish between * softirq and irq contexts. */ if (in_irq() || !in_serving_softirq()) This has nothing to do with RT. Even on a non RT kernel force threaded interrupts run obviously in thread context and therefore in_irq() returns false when invoked from the handler. The extension of the in_irq() check with !in_serving_softirq() was there when the drivers were added, but in the out of tree FSL BSP the original condition was in_irq() which got extended due to failures on RT. The usage of in_xxx() in drivers is phased out and Linus clearly requested that code which changes behaviour depending on context should either be separated or the context be conveyed in an argument passed by the caller, which usually knows the context. Right he is, the above construct is clearly showing why. The following callchains have been analyzed to end up in dpaa_eth_napi_schedule(): qman_p_poll_dqrr() __poll_portal_fast() fq->cb.dqrr() dpaa_eth_napi_schedule() portal_isr() __poll_portal_fast() fq->cb.dqrr() dpaa_eth_napi_schedule() Both need to schedule NAPI. The crypto part has another code path leading up to this: kill_fq() empty_retired_fq() qman_p_poll_dqrr() __poll_portal_fast() fq->cb.dqrr() dpaa_eth_napi_schedule() kill_fq() is called from task context and ends up scheduling NAPI, but that's pointless and an unintended side effect of the !in_serving_softirq() check. The code path: caam_qi_poll() -> qman_p_poll_dqrr() is invoked from NAPI and I *assume* from crypto's NAPI device and not from qbman's NAPI device. I *guess* it is okay to skip scheduling NAPI (because this is what happens now) but could be changed if it is wrong due to `budget' handling. Add an argument to __poll_portal_fast() which is true if NAPI needs to be scheduled. This requires propagating the value to the caller including `qman_cb_dqrr' typedef which is used by the dpaa and the crypto driver. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Aymen Sghaier <aymen.sghaier@nxp.com> Cc: Herbert XS <herbert@gondor.apana.org.au> Cc: Li Yang <leoyang.li@nxp.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Madalin Bucur <madalin.bucur@oss.nxp.com> Tested-by: Camelia Groza <camelia.groza@nxp.com>
630 lines
17 KiB
C
630 lines
17 KiB
C
/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Freescale Semiconductor nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* ALTERNATIVELY, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") as published by the Free Software
|
|
* Foundation, either version 2 of that License or (at your option) any
|
|
* later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "qman_test.h"
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
|
|
/*
|
|
* Algorithm:
|
|
*
|
|
* Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
|
|
* an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
|
|
* organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
|
|
* shuttle a "hot potato" frame around them such that every forwarding action
|
|
* moves it from one cpu to another. (The use of more than one handler per cpu
|
|
* is to allow enough handlers/FQs to truly test the significance of caching -
|
|
* ie. when cache-expiries are occurring.)
|
|
*
|
|
* The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
|
|
* first and last words of the frame data will undergo a transformation step on
|
|
* each forwarding action. To achieve this, each handler will be assigned a
|
|
* 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
|
|
* received by a handler, the mixer of the expected sender is XOR'd into all
|
|
* words of the entire frame, which is then validated against the original
|
|
* values. Then, before forwarding, the entire frame is XOR'd with the mixer of
|
|
* the current handler. Apart from validating that the frame is taking the
|
|
* expected path, this also provides some quasi-realistic overheads to each
|
|
* forwarding action - dereferencing *all* the frame data, computation, and
|
|
* conditional branching. There is a "special" handler designated to act as the
|
|
* instigator of the test by creating an enqueuing the "hot potato" frame, and
|
|
* to determine when the test has completed by counting HP_LOOPS iterations.
|
|
*
|
|
* Init phases:
|
|
*
|
|
* 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
|
|
* into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
|
|
* handlers and link-list them (but do no other handler setup).
|
|
*
|
|
* 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
|
|
* hp_cpu's 'iterator' to point to its first handler. With each loop,
|
|
* allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
|
|
* and advance the iterator for the next loop. This includes a final fixup,
|
|
* which connects the last handler to the first (and which is why phase 2
|
|
* and 3 are separate).
|
|
*
|
|
* 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
|
|
* hp_cpu's 'iterator' to point to its first handler. With each loop,
|
|
* initialise FQ objects and advance the iterator for the next loop.
|
|
* Moreover, do this initialisation on the cpu it applies to so that Rx FQ
|
|
* initialisation targets the correct cpu.
|
|
*/
|
|
|
|
/*
|
|
* helper to run something on all cpus (can't use on_each_cpu(), as that invokes
|
|
* the fn from irq context, which is too restrictive).
|
|
*/
|
|
struct bstrap {
|
|
int (*fn)(void);
|
|
atomic_t started;
|
|
};
|
|
static int bstrap_fn(void *bs)
|
|
{
|
|
struct bstrap *bstrap = bs;
|
|
int err;
|
|
|
|
atomic_inc(&bstrap->started);
|
|
err = bstrap->fn();
|
|
if (err)
|
|
return err;
|
|
while (!kthread_should_stop())
|
|
msleep(20);
|
|
return 0;
|
|
}
|
|
static int on_all_cpus(int (*fn)(void))
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, cpu_online_mask) {
|
|
struct bstrap bstrap = {
|
|
.fn = fn,
|
|
.started = ATOMIC_INIT(0)
|
|
};
|
|
struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
|
|
"hotpotato%d", cpu);
|
|
int ret;
|
|
|
|
if (IS_ERR(k))
|
|
return -ENOMEM;
|
|
kthread_bind(k, cpu);
|
|
wake_up_process(k);
|
|
/*
|
|
* If we call kthread_stop() before the "wake up" has had an
|
|
* effect, then the thread may exit with -EINTR without ever
|
|
* running the function. So poll until it's started before
|
|
* requesting it to stop.
|
|
*/
|
|
while (!atomic_read(&bstrap.started))
|
|
msleep(20);
|
|
ret = kthread_stop(k);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct hp_handler {
|
|
|
|
/* The following data is stashed when 'rx' is dequeued; */
|
|
/* -------------- */
|
|
/* The Rx FQ, dequeues of which will stash the entire hp_handler */
|
|
struct qman_fq rx;
|
|
/* The Tx FQ we should forward to */
|
|
struct qman_fq tx;
|
|
/* The value we XOR post-dequeue, prior to validating */
|
|
u32 rx_mixer;
|
|
/* The value we XOR pre-enqueue, after validating */
|
|
u32 tx_mixer;
|
|
/* what the hotpotato address should be on dequeue */
|
|
dma_addr_t addr;
|
|
u32 *frame_ptr;
|
|
|
|
/* The following data isn't (necessarily) stashed on dequeue; */
|
|
/* -------------- */
|
|
u32 fqid_rx, fqid_tx;
|
|
/* list node for linking us into 'hp_cpu' */
|
|
struct list_head node;
|
|
/* Just to check ... */
|
|
unsigned int processor_id;
|
|
} ____cacheline_aligned;
|
|
|
|
struct hp_cpu {
|
|
/* identify the cpu we run on; */
|
|
unsigned int processor_id;
|
|
/* root node for the per-cpu list of handlers */
|
|
struct list_head handlers;
|
|
/* list node for linking us into 'hp_cpu_list' */
|
|
struct list_head node;
|
|
/*
|
|
* when repeatedly scanning 'hp_list', each time linking the n'th
|
|
* handlers together, this is used as per-cpu iterator state
|
|
*/
|
|
struct hp_handler *iterator;
|
|
};
|
|
|
|
/* Each cpu has one of these */
|
|
static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
|
|
|
|
/* links together the hp_cpu structs, in first-come first-serve order. */
|
|
static LIST_HEAD(hp_cpu_list);
|
|
static DEFINE_SPINLOCK(hp_lock);
|
|
|
|
static unsigned int hp_cpu_list_length;
|
|
|
|
/* the "special" handler, that starts and terminates the test. */
|
|
static struct hp_handler *special_handler;
|
|
static int loop_counter;
|
|
|
|
/* handlers are allocated out of this, so they're properly aligned. */
|
|
static struct kmem_cache *hp_handler_slab;
|
|
|
|
/* this is the frame data */
|
|
static void *__frame_ptr;
|
|
static u32 *frame_ptr;
|
|
static dma_addr_t frame_dma;
|
|
|
|
/* needed for dma_map*() */
|
|
static const struct qm_portal_config *pcfg;
|
|
|
|
/* the main function waits on this */
|
|
static DECLARE_WAIT_QUEUE_HEAD(queue);
|
|
|
|
#define HP_PER_CPU 2
|
|
#define HP_LOOPS 8
|
|
/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
|
|
#define HP_NUM_WORDS 80
|
|
/* First word of the LFSR-based frame data */
|
|
#define HP_FIRST_WORD 0xabbaf00d
|
|
|
|
static inline u32 do_lfsr(u32 prev)
|
|
{
|
|
return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
|
|
}
|
|
|
|
static int allocate_frame_data(void)
|
|
{
|
|
u32 lfsr = HP_FIRST_WORD;
|
|
int loop;
|
|
|
|
if (!qman_dma_portal) {
|
|
pr_crit("portal not available\n");
|
|
return -EIO;
|
|
}
|
|
|
|
pcfg = qman_get_qm_portal_config(qman_dma_portal);
|
|
|
|
__frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
|
|
if (!__frame_ptr)
|
|
return -ENOMEM;
|
|
|
|
frame_ptr = PTR_ALIGN(__frame_ptr, 64);
|
|
for (loop = 0; loop < HP_NUM_WORDS; loop++) {
|
|
frame_ptr[loop] = lfsr;
|
|
lfsr = do_lfsr(lfsr);
|
|
}
|
|
|
|
frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(pcfg->dev, frame_dma)) {
|
|
pr_crit("dma mapping failure\n");
|
|
kfree(__frame_ptr);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void deallocate_frame_data(void)
|
|
{
|
|
dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
|
|
DMA_BIDIRECTIONAL);
|
|
kfree(__frame_ptr);
|
|
}
|
|
|
|
static inline int process_frame_data(struct hp_handler *handler,
|
|
const struct qm_fd *fd)
|
|
{
|
|
u32 *p = handler->frame_ptr;
|
|
u32 lfsr = HP_FIRST_WORD;
|
|
int loop;
|
|
|
|
if (qm_fd_addr_get64(fd) != handler->addr) {
|
|
pr_crit("bad frame address, [%llX != %llX]\n",
|
|
qm_fd_addr_get64(fd), handler->addr);
|
|
return -EIO;
|
|
}
|
|
for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
|
|
*p ^= handler->rx_mixer;
|
|
if (*p != lfsr) {
|
|
pr_crit("corrupt frame data");
|
|
return -EIO;
|
|
}
|
|
*p ^= handler->tx_mixer;
|
|
lfsr = do_lfsr(lfsr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
|
|
struct qman_fq *fq,
|
|
const struct qm_dqrr_entry *dqrr,
|
|
bool sched_napi)
|
|
{
|
|
struct hp_handler *handler = (struct hp_handler *)fq;
|
|
|
|
if (process_frame_data(handler, &dqrr->fd)) {
|
|
WARN_ON(1);
|
|
goto skip;
|
|
}
|
|
if (qman_enqueue(&handler->tx, &dqrr->fd)) {
|
|
pr_crit("qman_enqueue() failed");
|
|
WARN_ON(1);
|
|
}
|
|
skip:
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
|
|
struct qman_fq *fq,
|
|
const struct qm_dqrr_entry *dqrr,
|
|
bool sched_napi)
|
|
{
|
|
struct hp_handler *handler = (struct hp_handler *)fq;
|
|
|
|
process_frame_data(handler, &dqrr->fd);
|
|
if (++loop_counter < HP_LOOPS) {
|
|
if (qman_enqueue(&handler->tx, &dqrr->fd)) {
|
|
pr_crit("qman_enqueue() failed");
|
|
WARN_ON(1);
|
|
goto skip;
|
|
}
|
|
} else {
|
|
pr_info("Received final (%dth) frame\n", loop_counter);
|
|
wake_up(&queue);
|
|
}
|
|
skip:
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
static int create_per_cpu_handlers(void)
|
|
{
|
|
struct hp_handler *handler;
|
|
int loop;
|
|
struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
|
|
|
|
hp_cpu->processor_id = smp_processor_id();
|
|
spin_lock(&hp_lock);
|
|
list_add_tail(&hp_cpu->node, &hp_cpu_list);
|
|
hp_cpu_list_length++;
|
|
spin_unlock(&hp_lock);
|
|
INIT_LIST_HEAD(&hp_cpu->handlers);
|
|
for (loop = 0; loop < HP_PER_CPU; loop++) {
|
|
handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
|
|
if (!handler) {
|
|
pr_crit("kmem_cache_alloc() failed");
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
handler->processor_id = hp_cpu->processor_id;
|
|
handler->addr = frame_dma;
|
|
handler->frame_ptr = frame_ptr;
|
|
list_add_tail(&handler->node, &hp_cpu->handlers);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int destroy_per_cpu_handlers(void)
|
|
{
|
|
struct list_head *loop, *tmp;
|
|
struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
|
|
|
|
spin_lock(&hp_lock);
|
|
list_del(&hp_cpu->node);
|
|
spin_unlock(&hp_lock);
|
|
list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
|
|
u32 flags = 0;
|
|
struct hp_handler *handler = list_entry(loop, struct hp_handler,
|
|
node);
|
|
if (qman_retire_fq(&handler->rx, &flags) ||
|
|
(flags & QMAN_FQ_STATE_BLOCKOOS)) {
|
|
pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
if (qman_oos_fq(&handler->rx)) {
|
|
pr_crit("qman_oos_fq(rx) failed");
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
qman_destroy_fq(&handler->rx);
|
|
qman_destroy_fq(&handler->tx);
|
|
qman_release_fqid(handler->fqid_rx);
|
|
list_del(&handler->node);
|
|
kmem_cache_free(hp_handler_slab, handler);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u8 num_cachelines(u32 offset)
|
|
{
|
|
u8 res = (offset + (L1_CACHE_BYTES - 1))
|
|
/ (L1_CACHE_BYTES);
|
|
if (res > 3)
|
|
return 3;
|
|
return res;
|
|
}
|
|
#define STASH_DATA_CL \
|
|
num_cachelines(HP_NUM_WORDS * 4)
|
|
#define STASH_CTX_CL \
|
|
num_cachelines(offsetof(struct hp_handler, fqid_rx))
|
|
|
|
static int init_handler(void *h)
|
|
{
|
|
struct qm_mcc_initfq opts;
|
|
struct hp_handler *handler = h;
|
|
int err;
|
|
|
|
if (handler->processor_id != smp_processor_id()) {
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
/* Set up rx */
|
|
memset(&handler->rx, 0, sizeof(handler->rx));
|
|
if (handler == special_handler)
|
|
handler->rx.cb.dqrr = special_dqrr;
|
|
else
|
|
handler->rx.cb.dqrr = normal_dqrr;
|
|
err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
|
|
if (err) {
|
|
pr_crit("qman_create_fq(rx) failed");
|
|
goto failed;
|
|
}
|
|
memset(&opts, 0, sizeof(opts));
|
|
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
|
|
QM_INITFQ_WE_CONTEXTA);
|
|
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
|
|
qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
|
|
err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
|
|
QMAN_INITFQ_FLAG_LOCAL, &opts);
|
|
if (err) {
|
|
pr_crit("qman_init_fq(rx) failed");
|
|
goto failed;
|
|
}
|
|
/* Set up tx */
|
|
memset(&handler->tx, 0, sizeof(handler->tx));
|
|
err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
|
|
&handler->tx);
|
|
if (err) {
|
|
pr_crit("qman_create_fq(tx) failed");
|
|
goto failed;
|
|
}
|
|
|
|
return 0;
|
|
failed:
|
|
return err;
|
|
}
|
|
|
|
static void init_handler_cb(void *h)
|
|
{
|
|
if (init_handler(h))
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static int init_phase2(void)
|
|
{
|
|
int loop;
|
|
u32 fqid = 0;
|
|
u32 lfsr = 0xdeadbeef;
|
|
struct hp_cpu *hp_cpu;
|
|
struct hp_handler *handler;
|
|
|
|
for (loop = 0; loop < HP_PER_CPU; loop++) {
|
|
list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
|
|
int err;
|
|
|
|
if (!loop)
|
|
hp_cpu->iterator = list_first_entry(
|
|
&hp_cpu->handlers,
|
|
struct hp_handler, node);
|
|
else
|
|
hp_cpu->iterator = list_entry(
|
|
hp_cpu->iterator->node.next,
|
|
struct hp_handler, node);
|
|
/* Rx FQID is the previous handler's Tx FQID */
|
|
hp_cpu->iterator->fqid_rx = fqid;
|
|
/* Allocate new FQID for Tx */
|
|
err = qman_alloc_fqid(&fqid);
|
|
if (err) {
|
|
pr_crit("qman_alloc_fqid() failed");
|
|
return err;
|
|
}
|
|
hp_cpu->iterator->fqid_tx = fqid;
|
|
/* Rx mixer is the previous handler's Tx mixer */
|
|
hp_cpu->iterator->rx_mixer = lfsr;
|
|
/* Get new mixer for Tx */
|
|
lfsr = do_lfsr(lfsr);
|
|
hp_cpu->iterator->tx_mixer = lfsr;
|
|
}
|
|
}
|
|
/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
|
|
hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
|
|
handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
|
|
if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
|
|
return 1;
|
|
handler->fqid_rx = fqid;
|
|
handler->rx_mixer = lfsr;
|
|
/* and tag it as our "special" handler */
|
|
special_handler = handler;
|
|
return 0;
|
|
}
|
|
|
|
static int init_phase3(void)
|
|
{
|
|
int loop, err;
|
|
struct hp_cpu *hp_cpu;
|
|
|
|
for (loop = 0; loop < HP_PER_CPU; loop++) {
|
|
list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
|
|
if (!loop)
|
|
hp_cpu->iterator = list_first_entry(
|
|
&hp_cpu->handlers,
|
|
struct hp_handler, node);
|
|
else
|
|
hp_cpu->iterator = list_entry(
|
|
hp_cpu->iterator->node.next,
|
|
struct hp_handler, node);
|
|
preempt_disable();
|
|
if (hp_cpu->processor_id == smp_processor_id()) {
|
|
err = init_handler(hp_cpu->iterator);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
smp_call_function_single(hp_cpu->processor_id,
|
|
init_handler_cb, hp_cpu->iterator, 1);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int send_first_frame(void *ignore)
|
|
{
|
|
u32 *p = special_handler->frame_ptr;
|
|
u32 lfsr = HP_FIRST_WORD;
|
|
int loop, err;
|
|
struct qm_fd fd;
|
|
|
|
if (special_handler->processor_id != smp_processor_id()) {
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
memset(&fd, 0, sizeof(fd));
|
|
qm_fd_addr_set64(&fd, special_handler->addr);
|
|
qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
|
|
for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
|
|
if (*p != lfsr) {
|
|
err = -EIO;
|
|
pr_crit("corrupt frame data");
|
|
goto failed;
|
|
}
|
|
*p ^= special_handler->tx_mixer;
|
|
lfsr = do_lfsr(lfsr);
|
|
}
|
|
pr_info("Sending first frame\n");
|
|
err = qman_enqueue(&special_handler->tx, &fd);
|
|
if (err) {
|
|
pr_crit("qman_enqueue() failed");
|
|
goto failed;
|
|
}
|
|
|
|
return 0;
|
|
failed:
|
|
return err;
|
|
}
|
|
|
|
static void send_first_frame_cb(void *ignore)
|
|
{
|
|
if (send_first_frame(NULL))
|
|
WARN_ON(1);
|
|
}
|
|
|
|
int qman_test_stash(void)
|
|
{
|
|
int err;
|
|
|
|
if (cpumask_weight(cpu_online_mask) < 2) {
|
|
pr_info("%s(): skip - only 1 CPU\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
pr_info("%s(): Starting\n", __func__);
|
|
|
|
hp_cpu_list_length = 0;
|
|
loop_counter = 0;
|
|
hp_handler_slab = kmem_cache_create("hp_handler_slab",
|
|
sizeof(struct hp_handler), L1_CACHE_BYTES,
|
|
SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!hp_handler_slab) {
|
|
err = -EIO;
|
|
pr_crit("kmem_cache_create() failed");
|
|
goto failed;
|
|
}
|
|
|
|
err = allocate_frame_data();
|
|
if (err)
|
|
goto failed;
|
|
|
|
/* Init phase 1 */
|
|
pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
|
|
if (on_all_cpus(create_per_cpu_handlers)) {
|
|
err = -EIO;
|
|
pr_crit("on_each_cpu() failed");
|
|
goto failed;
|
|
}
|
|
pr_info("Number of cpus: %d, total of %d handlers\n",
|
|
hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
|
|
|
|
err = init_phase2();
|
|
if (err)
|
|
goto failed;
|
|
|
|
err = init_phase3();
|
|
if (err)
|
|
goto failed;
|
|
|
|
preempt_disable();
|
|
if (special_handler->processor_id == smp_processor_id()) {
|
|
err = send_first_frame(NULL);
|
|
if (err)
|
|
goto failed;
|
|
} else {
|
|
smp_call_function_single(special_handler->processor_id,
|
|
send_first_frame_cb, NULL, 1);
|
|
}
|
|
preempt_enable();
|
|
|
|
wait_event(queue, loop_counter == HP_LOOPS);
|
|
deallocate_frame_data();
|
|
if (on_all_cpus(destroy_per_cpu_handlers)) {
|
|
err = -EIO;
|
|
pr_crit("on_each_cpu() failed");
|
|
goto failed;
|
|
}
|
|
kmem_cache_destroy(hp_handler_slab);
|
|
pr_info("%s(): Finished\n", __func__);
|
|
|
|
return 0;
|
|
failed:
|
|
WARN_ON(1);
|
|
return err;
|
|
}
|