mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-17 18:56:24 +00:00
9d7809aaea
These two defines have the same purpose and this change doesn't introduce any differences in drivers/counter/stm32-timer-cnt.o. The only difference between the two is that TIM_DIER_CC_IE(1) == TIM_DIER_CC2IE while TIM_DIER_CCxIE(1) == TIM_DIER_CC1IE . That makes it necessary to have an explicit "+ 1" in the user code, but IMHO this is a good thing as this is the code locatation that "knows" that for software channel 1 you have to use TIM_DIER_CC2IE (because software guys start counting at 0, while the relevant hardware designer started at 1). Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com> Acked-by: William Breathitt Gray <wbg@kernel.org> Link: https://lore.kernel.org/r/126bd153a03f39e42645573eecf44ffab5354fc7.1718791090.git.u.kleine-koenig@baylibre.com Signed-off-by: Lee Jones <lee@kernel.org>
857 lines
23 KiB
C
857 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* STM32 Timer Encoder and Counter driver
|
|
*
|
|
* Copyright (C) STMicroelectronics 2018
|
|
*
|
|
* Author: Benjamin Gaignard <benjamin.gaignard@st.com>
|
|
*
|
|
*/
|
|
#include <linux/counter.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mfd/stm32-timers.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/types.h>
|
|
|
|
#define TIM_CCMR_CCXS (BIT(8) | BIT(0))
|
|
#define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
|
|
TIM_CCMR_IC1F | TIM_CCMR_IC2F)
|
|
#define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
|
|
TIM_CCER_CC2P | TIM_CCER_CC2NP)
|
|
|
|
#define STM32_CH1_SIG 0
|
|
#define STM32_CH2_SIG 1
|
|
#define STM32_CLOCK_SIG 2
|
|
#define STM32_CH3_SIG 3
|
|
#define STM32_CH4_SIG 4
|
|
|
|
struct stm32_timer_regs {
|
|
u32 cr1;
|
|
u32 cnt;
|
|
u32 smcr;
|
|
u32 arr;
|
|
};
|
|
|
|
struct stm32_timer_cnt {
|
|
struct regmap *regmap;
|
|
struct clk *clk;
|
|
u32 max_arr;
|
|
bool enabled;
|
|
struct stm32_timer_regs bak;
|
|
bool has_encoder;
|
|
unsigned int nchannels;
|
|
unsigned int nr_irqs;
|
|
spinlock_t lock; /* protects nb_ovf */
|
|
u64 nb_ovf;
|
|
};
|
|
|
|
static const enum counter_function stm32_count_functions[] = {
|
|
COUNTER_FUNCTION_INCREASE,
|
|
COUNTER_FUNCTION_QUADRATURE_X2_A,
|
|
COUNTER_FUNCTION_QUADRATURE_X2_B,
|
|
COUNTER_FUNCTION_QUADRATURE_X4,
|
|
};
|
|
|
|
static int stm32_count_read(struct counter_device *counter,
|
|
struct counter_count *count, u64 *val)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 cnt;
|
|
|
|
regmap_read(priv->regmap, TIM_CNT, &cnt);
|
|
*val = cnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_write(struct counter_device *counter,
|
|
struct counter_count *count, const u64 val)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 ceiling;
|
|
|
|
regmap_read(priv->regmap, TIM_ARR, &ceiling);
|
|
if (val > ceiling)
|
|
return -EINVAL;
|
|
|
|
return regmap_write(priv->regmap, TIM_CNT, val);
|
|
}
|
|
|
|
static int stm32_count_function_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
enum counter_function *function)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 smcr;
|
|
|
|
regmap_read(priv->regmap, TIM_SMCR, &smcr);
|
|
|
|
switch (smcr & TIM_SMCR_SMS) {
|
|
case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
|
|
*function = COUNTER_FUNCTION_INCREASE;
|
|
return 0;
|
|
case TIM_SMCR_SMS_ENCODER_MODE_1:
|
|
*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
|
|
return 0;
|
|
case TIM_SMCR_SMS_ENCODER_MODE_2:
|
|
*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
|
|
return 0;
|
|
case TIM_SMCR_SMS_ENCODER_MODE_3:
|
|
*function = COUNTER_FUNCTION_QUADRATURE_X4;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int stm32_count_function_write(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
enum counter_function function)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 cr1, sms;
|
|
|
|
switch (function) {
|
|
case COUNTER_FUNCTION_INCREASE:
|
|
sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
|
|
break;
|
|
case COUNTER_FUNCTION_QUADRATURE_X2_A:
|
|
if (!priv->has_encoder)
|
|
return -EOPNOTSUPP;
|
|
sms = TIM_SMCR_SMS_ENCODER_MODE_1;
|
|
break;
|
|
case COUNTER_FUNCTION_QUADRATURE_X2_B:
|
|
if (!priv->has_encoder)
|
|
return -EOPNOTSUPP;
|
|
sms = TIM_SMCR_SMS_ENCODER_MODE_2;
|
|
break;
|
|
case COUNTER_FUNCTION_QUADRATURE_X4:
|
|
if (!priv->has_encoder)
|
|
return -EOPNOTSUPP;
|
|
sms = TIM_SMCR_SMS_ENCODER_MODE_3;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Store enable status */
|
|
regmap_read(priv->regmap, TIM_CR1, &cr1);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
|
|
|
|
/* Make sure that registers are updated */
|
|
regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
|
|
|
|
/* Restore the enable status */
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_direction_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
enum counter_count_direction *direction)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 cr1;
|
|
|
|
regmap_read(priv->regmap, TIM_CR1, &cr1);
|
|
*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
|
|
COUNTER_COUNT_DIRECTION_FORWARD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_ceiling_read(struct counter_device *counter,
|
|
struct counter_count *count, u64 *ceiling)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 arr;
|
|
|
|
regmap_read(priv->regmap, TIM_ARR, &arr);
|
|
|
|
*ceiling = arr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_ceiling_write(struct counter_device *counter,
|
|
struct counter_count *count, u64 ceiling)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
|
|
if (ceiling > priv->max_arr)
|
|
return -ERANGE;
|
|
|
|
/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
|
|
regmap_write(priv->regmap, TIM_ARR, ceiling);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_enable_read(struct counter_device *counter,
|
|
struct counter_count *count, u8 *enable)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 cr1;
|
|
|
|
regmap_read(priv->regmap, TIM_CR1, &cr1);
|
|
|
|
*enable = cr1 & TIM_CR1_CEN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_enable_write(struct counter_device *counter,
|
|
struct counter_count *count, u8 enable)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 cr1;
|
|
|
|
if (enable) {
|
|
regmap_read(priv->regmap, TIM_CR1, &cr1);
|
|
if (!(cr1 & TIM_CR1_CEN))
|
|
clk_enable(priv->clk);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
|
|
TIM_CR1_CEN);
|
|
} else {
|
|
regmap_read(priv->regmap, TIM_CR1, &cr1);
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
|
|
if (cr1 & TIM_CR1_CEN)
|
|
clk_disable(priv->clk);
|
|
}
|
|
|
|
/* Keep enabled state to properly handle low power states */
|
|
priv->enabled = enable;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_prescaler_read(struct counter_device *counter,
|
|
struct counter_count *count, u64 *prescaler)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 psc;
|
|
|
|
regmap_read(priv->regmap, TIM_PSC, &psc);
|
|
|
|
*prescaler = psc + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_prescaler_write(struct counter_device *counter,
|
|
struct counter_count *count, u64 prescaler)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 psc;
|
|
|
|
if (!prescaler || prescaler > MAX_TIM_PSC + 1)
|
|
return -ERANGE;
|
|
|
|
psc = prescaler - 1;
|
|
|
|
return regmap_write(priv->regmap, TIM_PSC, psc);
|
|
}
|
|
|
|
static int stm32_count_cap_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
size_t ch, u64 *cap)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 ccrx;
|
|
|
|
if (ch >= priv->nchannels)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (ch) {
|
|
case 0:
|
|
regmap_read(priv->regmap, TIM_CCR1, &ccrx);
|
|
break;
|
|
case 1:
|
|
regmap_read(priv->regmap, TIM_CCR2, &ccrx);
|
|
break;
|
|
case 2:
|
|
regmap_read(priv->regmap, TIM_CCR3, &ccrx);
|
|
break;
|
|
case 3:
|
|
regmap_read(priv->regmap, TIM_CCR4, &ccrx);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
|
|
|
|
*cap = ccrx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_nb_ovf_read(struct counter_device *counter,
|
|
struct counter_count *count, u64 *val)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
unsigned long irqflags;
|
|
|
|
spin_lock_irqsave(&priv->lock, irqflags);
|
|
*val = priv->nb_ovf;
|
|
spin_unlock_irqrestore(&priv->lock, irqflags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_nb_ovf_write(struct counter_device *counter,
|
|
struct counter_count *count, u64 val)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
unsigned long irqflags;
|
|
|
|
spin_lock_irqsave(&priv->lock, irqflags);
|
|
priv->nb_ovf = val;
|
|
spin_unlock_irqrestore(&priv->lock, irqflags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
|
|
|
|
static struct counter_comp stm32_count_ext[] = {
|
|
COUNTER_COMP_DIRECTION(stm32_count_direction_read),
|
|
COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
|
|
COUNTER_COMP_CEILING(stm32_count_ceiling_read,
|
|
stm32_count_ceiling_write),
|
|
COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
|
|
stm32_count_prescaler_write),
|
|
COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
|
|
COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
|
|
};
|
|
|
|
static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
|
|
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
|
|
};
|
|
|
|
static const enum counter_synapse_action stm32_synapse_actions[] = {
|
|
COUNTER_SYNAPSE_ACTION_NONE,
|
|
COUNTER_SYNAPSE_ACTION_BOTH_EDGES
|
|
};
|
|
|
|
static int stm32_action_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
struct counter_synapse *synapse,
|
|
enum counter_synapse_action *action)
|
|
{
|
|
enum counter_function function;
|
|
int err;
|
|
|
|
err = stm32_count_function_read(counter, count, &function);
|
|
if (err)
|
|
return err;
|
|
|
|
switch (function) {
|
|
case COUNTER_FUNCTION_INCREASE:
|
|
/* counts on internal clock when CEN=1 */
|
|
if (synapse->signal->id == STM32_CLOCK_SIG)
|
|
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
|
|
else
|
|
*action = COUNTER_SYNAPSE_ACTION_NONE;
|
|
return 0;
|
|
case COUNTER_FUNCTION_QUADRATURE_X2_A:
|
|
/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
|
|
if (synapse->signal->id == STM32_CH1_SIG)
|
|
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
|
|
else
|
|
*action = COUNTER_SYNAPSE_ACTION_NONE;
|
|
return 0;
|
|
case COUNTER_FUNCTION_QUADRATURE_X2_B:
|
|
/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
|
|
if (synapse->signal->id == STM32_CH2_SIG)
|
|
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
|
|
else
|
|
*action = COUNTER_SYNAPSE_ACTION_NONE;
|
|
return 0;
|
|
case COUNTER_FUNCTION_QUADRATURE_X4:
|
|
/* counts up/down on both TI1FP1 and TI2FP2 edges */
|
|
if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
|
|
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
|
|
else
|
|
*action = COUNTER_SYNAPSE_ACTION_NONE;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
struct stm32_count_cc_regs {
|
|
u32 ccmr_reg;
|
|
u32 ccmr_mask;
|
|
u32 ccmr_bits;
|
|
u32 ccer_bits;
|
|
};
|
|
|
|
static const struct stm32_count_cc_regs stm32_cc[] = {
|
|
{ TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
|
|
TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
|
|
{ TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
|
|
TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
|
|
{ TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
|
|
TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
|
|
{ TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
|
|
TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
|
|
};
|
|
|
|
static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
|
|
bool enable)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
const struct stm32_count_cc_regs *cc;
|
|
u32 ccmr, ccer;
|
|
|
|
if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
|
|
dev_err(counter->parent, "invalid ch: %d\n", ch);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cc = &stm32_cc[ch];
|
|
|
|
/*
|
|
* configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
|
|
* Select both edges / non-inverted to trigger a capture.
|
|
*/
|
|
if (enable) {
|
|
/* first clear possibly latched capture flag upon enabling */
|
|
if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
|
|
regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
|
|
regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
|
|
cc->ccmr_bits);
|
|
regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
|
|
} else {
|
|
regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
|
|
regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
|
|
}
|
|
|
|
regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
|
|
regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
|
|
ch, ccmr, ccer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_events_configure(struct counter_device *counter)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
struct counter_event_node *event_node;
|
|
u32 dier = 0;
|
|
int i, ret;
|
|
|
|
list_for_each_entry(event_node, &counter->events_list, l) {
|
|
switch (event_node->event) {
|
|
case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
|
|
/* first clear possibly latched UIF before enabling */
|
|
if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
|
|
regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
|
|
dier |= TIM_DIER_UIE;
|
|
break;
|
|
case COUNTER_EVENT_CAPTURE:
|
|
ret = stm32_count_capture_configure(counter, event_node->channel, true);
|
|
if (ret)
|
|
return ret;
|
|
dier |= TIM_DIER_CCxIE(event_node->channel + 1);
|
|
break;
|
|
default:
|
|
/* should never reach this path */
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Enable / disable all events at once, from events_list, so write all DIER bits */
|
|
regmap_write(priv->regmap, TIM_DIER, dier);
|
|
|
|
/* check for disabled capture events */
|
|
for (i = 0 ; i < priv->nchannels; i++) {
|
|
if (!(dier & TIM_DIER_CCxIE(i + 1))) {
|
|
ret = stm32_count_capture_configure(counter, i, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_count_watch_validate(struct counter_device *counter,
|
|
const struct counter_watch *watch)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
|
|
/* Interrupts are optional */
|
|
if (!priv->nr_irqs)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (watch->event) {
|
|
case COUNTER_EVENT_CAPTURE:
|
|
if (watch->channel >= priv->nchannels) {
|
|
dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static const struct counter_ops stm32_timer_cnt_ops = {
|
|
.count_read = stm32_count_read,
|
|
.count_write = stm32_count_write,
|
|
.function_read = stm32_count_function_read,
|
|
.function_write = stm32_count_function_write,
|
|
.action_read = stm32_action_read,
|
|
.events_configure = stm32_count_events_configure,
|
|
.watch_validate = stm32_count_watch_validate,
|
|
};
|
|
|
|
static int stm32_count_clk_get_freq(struct counter_device *counter,
|
|
struct counter_signal *signal, u64 *freq)
|
|
{
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
|
|
*freq = clk_get_rate(priv->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct counter_comp stm32_count_clock_ext[] = {
|
|
COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
|
|
};
|
|
|
|
static struct counter_signal stm32_signals[] = {
|
|
/*
|
|
* Need to declare all the signals as a static array, and keep the signals order here,
|
|
* even if they're unused or unexisting on some timer instances. It's an abstraction,
|
|
* e.g. high level view of the counter features.
|
|
*
|
|
* Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
|
|
* and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
|
|
* to indicate that a signal doesn't affect the counter.
|
|
*/
|
|
{
|
|
.id = STM32_CH1_SIG,
|
|
.name = "Channel 1"
|
|
},
|
|
{
|
|
.id = STM32_CH2_SIG,
|
|
.name = "Channel 2"
|
|
},
|
|
{
|
|
.id = STM32_CLOCK_SIG,
|
|
.name = "Clock",
|
|
.ext = stm32_count_clock_ext,
|
|
.num_ext = ARRAY_SIZE(stm32_count_clock_ext),
|
|
},
|
|
{
|
|
.id = STM32_CH3_SIG,
|
|
.name = "Channel 3"
|
|
},
|
|
{
|
|
.id = STM32_CH4_SIG,
|
|
.name = "Channel 4"
|
|
},
|
|
};
|
|
|
|
static struct counter_synapse stm32_count_synapses[] = {
|
|
{
|
|
.actions_list = stm32_synapse_actions,
|
|
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
|
|
.signal = &stm32_signals[STM32_CH1_SIG]
|
|
},
|
|
{
|
|
.actions_list = stm32_synapse_actions,
|
|
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
|
|
.signal = &stm32_signals[STM32_CH2_SIG]
|
|
},
|
|
{
|
|
.actions_list = stm32_clock_synapse_actions,
|
|
.num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
|
|
.signal = &stm32_signals[STM32_CLOCK_SIG]
|
|
},
|
|
{
|
|
.actions_list = stm32_synapse_actions,
|
|
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
|
|
.signal = &stm32_signals[STM32_CH3_SIG]
|
|
},
|
|
{
|
|
.actions_list = stm32_synapse_actions,
|
|
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
|
|
.signal = &stm32_signals[STM32_CH4_SIG]
|
|
},
|
|
};
|
|
|
|
static struct counter_count stm32_counts = {
|
|
.id = 0,
|
|
.name = "STM32 Timer Counter",
|
|
.functions_list = stm32_count_functions,
|
|
.num_functions = ARRAY_SIZE(stm32_count_functions),
|
|
.synapses = stm32_count_synapses,
|
|
.num_synapses = ARRAY_SIZE(stm32_count_synapses),
|
|
.ext = stm32_count_ext,
|
|
.num_ext = ARRAY_SIZE(stm32_count_ext)
|
|
};
|
|
|
|
static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
|
|
{
|
|
struct counter_device *counter = ptr;
|
|
struct stm32_timer_cnt *const priv = counter_priv(counter);
|
|
u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
|
|
u32 sr, dier;
|
|
int i;
|
|
|
|
regmap_read(priv->regmap, TIM_SR, &sr);
|
|
regmap_read(priv->regmap, TIM_DIER, &dier);
|
|
/*
|
|
* Some status bits in SR don't match with the enable bits in DIER. Only take care of
|
|
* the possibly enabled bits in DIER (that matches in between SR and DIER).
|
|
*/
|
|
dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
|
|
sr &= dier;
|
|
|
|
if (sr & TIM_SR_UIF) {
|
|
spin_lock(&priv->lock);
|
|
priv->nb_ovf++;
|
|
spin_unlock(&priv->lock);
|
|
counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
|
|
dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
|
|
/* SR flags can be cleared by writing 0, only clear relevant flag */
|
|
clr &= ~TIM_SR_UIF;
|
|
}
|
|
|
|
/* Check capture events */
|
|
for (i = 0 ; i < priv->nchannels; i++) {
|
|
if (sr & TIM_SR_CC_IF(i)) {
|
|
counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
|
|
clr &= ~TIM_SR_CC_IF(i);
|
|
dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
|
|
}
|
|
}
|
|
|
|
regmap_write(priv->regmap, TIM_SR, clr);
|
|
|
|
return IRQ_HANDLED;
|
|
};
|
|
|
|
static void stm32_timer_cnt_detect_channels(struct device *dev,
|
|
struct stm32_timer_cnt *priv)
|
|
{
|
|
u32 ccer, ccer_backup;
|
|
|
|
regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
|
|
regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
|
|
regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
regmap_write(priv->regmap, TIM_CCER, ccer_backup);
|
|
priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
|
|
|
|
dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
|
|
}
|
|
|
|
/* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
|
|
#define STM32_TIM_ENCODER_SUPPORTED (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
|
|
|
|
static const char * const stm32_timer_trigger_compat[] = {
|
|
"st,stm32-timer-trigger",
|
|
"st,stm32h7-timer-trigger",
|
|
};
|
|
|
|
static int stm32_timer_cnt_probe_encoder(struct device *dev,
|
|
struct stm32_timer_cnt *priv)
|
|
{
|
|
struct device *parent = dev->parent;
|
|
struct device_node *tnode = NULL, *pnode = parent->of_node;
|
|
int i, ret;
|
|
u32 idx;
|
|
|
|
/*
|
|
* Need to retrieve the trigger node index from DT, to be able
|
|
* to determine if the counter supports encoder mode. It also
|
|
* enforce backward compatibility, and allow to support other
|
|
* counter modes in this driver (when the timer doesn't support
|
|
* encoder).
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
|
|
tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
|
|
if (!tnode) {
|
|
dev_err(dev, "Can't find trigger node\n");
|
|
return -ENODATA;
|
|
}
|
|
|
|
ret = of_property_read_u32(tnode, "reg", &idx);
|
|
if (ret) {
|
|
dev_err(dev, "Can't get index (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
|
|
|
|
dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_timer_cnt_probe(struct platform_device *pdev)
|
|
{
|
|
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
|
|
struct device *dev = &pdev->dev;
|
|
struct stm32_timer_cnt *priv;
|
|
struct counter_device *counter;
|
|
int i, ret;
|
|
|
|
if (IS_ERR_OR_NULL(ddata))
|
|
return -EINVAL;
|
|
|
|
counter = devm_counter_alloc(dev, sizeof(*priv));
|
|
if (!counter)
|
|
return -ENOMEM;
|
|
|
|
priv = counter_priv(counter);
|
|
|
|
priv->regmap = ddata->regmap;
|
|
priv->clk = ddata->clk;
|
|
priv->max_arr = ddata->max_arr;
|
|
priv->nr_irqs = ddata->nr_irqs;
|
|
|
|
ret = stm32_timer_cnt_probe_encoder(dev, priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stm32_timer_cnt_detect_channels(dev, priv);
|
|
|
|
counter->name = dev_name(dev);
|
|
counter->parent = dev;
|
|
counter->ops = &stm32_timer_cnt_ops;
|
|
counter->counts = &stm32_counts;
|
|
counter->num_counts = 1;
|
|
counter->signals = stm32_signals;
|
|
counter->num_signals = ARRAY_SIZE(stm32_signals);
|
|
|
|
spin_lock_init(&priv->lock);
|
|
|
|
platform_set_drvdata(pdev, priv);
|
|
|
|
/* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
|
|
if (priv->nr_irqs == 1) {
|
|
/* All events reported through the global interrupt */
|
|
ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
|
|
0, dev_name(dev), counter);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to request irq %d (err %d)\n",
|
|
ddata->irq[0], ret);
|
|
return ret;
|
|
}
|
|
} else {
|
|
for (i = 0; i < priv->nr_irqs; i++) {
|
|
/*
|
|
* Only take care of update IRQ for overflow events, and cc for
|
|
* capture events.
|
|
*/
|
|
if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
|
|
continue;
|
|
|
|
ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
|
|
0, dev_name(dev), counter);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to request irq %d (err %d)\n",
|
|
ddata->irq[i], ret);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset input selector to its default input */
|
|
regmap_write(priv->regmap, TIM_TISEL, 0x0);
|
|
|
|
/* Register Counter device */
|
|
ret = devm_counter_add(dev, counter);
|
|
if (ret < 0)
|
|
dev_err_probe(dev, ret, "Failed to add counter\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
|
|
{
|
|
struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
|
|
|
|
/* Only take care of enabled counter: don't disturb other MFD child */
|
|
if (priv->enabled) {
|
|
/* Backup registers that may get lost in low power mode */
|
|
regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
|
|
regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
|
|
regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
|
|
regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
|
|
|
|
/* Disable the counter */
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
|
|
clk_disable(priv->clk);
|
|
}
|
|
|
|
return pinctrl_pm_select_sleep_state(dev);
|
|
}
|
|
|
|
static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
|
|
{
|
|
struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = pinctrl_pm_select_default_state(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (priv->enabled) {
|
|
clk_enable(priv->clk);
|
|
|
|
/* Restore registers that may have been lost */
|
|
regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
|
|
regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
|
|
regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
|
|
|
|
/* Also re-enables the counter */
|
|
regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
|
|
stm32_timer_cnt_resume);
|
|
|
|
static const struct of_device_id stm32_timer_cnt_of_match[] = {
|
|
{ .compatible = "st,stm32-timer-counter", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
|
|
|
|
static struct platform_driver stm32_timer_cnt_driver = {
|
|
.probe = stm32_timer_cnt_probe,
|
|
.driver = {
|
|
.name = "stm32-timer-counter",
|
|
.of_match_table = stm32_timer_cnt_of_match,
|
|
.pm = &stm32_timer_cnt_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(stm32_timer_cnt_driver);
|
|
|
|
MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
|
|
MODULE_ALIAS("platform:stm32-timer-counter");
|
|
MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_IMPORT_NS(COUNTER);
|