linux-stable/security/commoncap.c
Paul Moore b1a867eeb8 lsm: mark the lsm_id variables are marked as static
As the kernel test robot helpfully reminded us, all of the lsm_id
instances defined inside the various LSMs should be marked as static.
The one exception is Landlock which uses its lsm_id variable across
multiple source files with an extern declaration in a header file.

Reported-by: kernel test robot <lkp@intel.com>
Suggested-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-11-12 22:54:42 -05:00

1484 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Common capabilities, needed by capability.o.
*/
#include <linux/capability.h>
#include <linux/audit.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lsm_hooks.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
#include <linux/mount.h>
#include <linux/sched.h>
#include <linux/prctl.h>
#include <linux/securebits.h>
#include <linux/user_namespace.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/mnt_idmapping.h>
#include <uapi/linux/lsm.h>
/*
* If a non-root user executes a setuid-root binary in
* !secure(SECURE_NOROOT) mode, then we raise capabilities.
* However if fE is also set, then the intent is for only
* the file capabilities to be applied, and the setuid-root
* bit is left on either to change the uid (plausible) or
* to get full privilege on a kernel without file capabilities
* support. So in that case we do not raise capabilities.
*
* Warn if that happens, once per boot.
*/
static void warn_setuid_and_fcaps_mixed(const char *fname)
{
static int warned;
if (!warned) {
printk(KERN_INFO "warning: `%s' has both setuid-root and"
" effective capabilities. Therefore not raising all"
" capabilities.\n", fname);
warned = 1;
}
}
/**
* cap_capable - Determine whether a task has a particular effective capability
* @cred: The credentials to use
* @targ_ns: The user namespace in which we need the capability
* @cap: The capability to check for
* @opts: Bitmask of options defined in include/linux/security.h
*
* Determine whether the nominated task has the specified capability amongst
* its effective set, returning 0 if it does, -ve if it does not.
*
* NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
* and has_capability() functions. That is, it has the reverse semantics:
* cap_has_capability() returns 0 when a task has a capability, but the
* kernel's capable() and has_capability() returns 1 for this case.
*/
int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
int cap, unsigned int opts)
{
struct user_namespace *ns = targ_ns;
/* See if cred has the capability in the target user namespace
* by examining the target user namespace and all of the target
* user namespace's parents.
*/
for (;;) {
/* Do we have the necessary capabilities? */
if (ns == cred->user_ns)
return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
/*
* If we're already at a lower level than we're looking for,
* we're done searching.
*/
if (ns->level <= cred->user_ns->level)
return -EPERM;
/*
* The owner of the user namespace in the parent of the
* user namespace has all caps.
*/
if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
return 0;
/*
* If you have a capability in a parent user ns, then you have
* it over all children user namespaces as well.
*/
ns = ns->parent;
}
/* We never get here */
}
/**
* cap_settime - Determine whether the current process may set the system clock
* @ts: The time to set
* @tz: The timezone to set
*
* Determine whether the current process may set the system clock and timezone
* information, returning 0 if permission granted, -ve if denied.
*/
int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
/**
* cap_ptrace_access_check - Determine whether the current process may access
* another
* @child: The process to be accessed
* @mode: The mode of attachment.
*
* If we are in the same or an ancestor user_ns and have all the target
* task's capabilities, then ptrace access is allowed.
* If we have the ptrace capability to the target user_ns, then ptrace
* access is allowed.
* Else denied.
*
* Determine whether a process may access another, returning 0 if permission
* granted, -ve if denied.
*/
int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
int ret = 0;
const struct cred *cred, *child_cred;
const kernel_cap_t *caller_caps;
rcu_read_lock();
cred = current_cred();
child_cred = __task_cred(child);
if (mode & PTRACE_MODE_FSCREDS)
caller_caps = &cred->cap_effective;
else
caller_caps = &cred->cap_permitted;
if (cred->user_ns == child_cred->user_ns &&
cap_issubset(child_cred->cap_permitted, *caller_caps))
goto out;
if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
goto out;
ret = -EPERM;
out:
rcu_read_unlock();
return ret;
}
/**
* cap_ptrace_traceme - Determine whether another process may trace the current
* @parent: The task proposed to be the tracer
*
* If parent is in the same or an ancestor user_ns and has all current's
* capabilities, then ptrace access is allowed.
* If parent has the ptrace capability to current's user_ns, then ptrace
* access is allowed.
* Else denied.
*
* Determine whether the nominated task is permitted to trace the current
* process, returning 0 if permission is granted, -ve if denied.
*/
int cap_ptrace_traceme(struct task_struct *parent)
{
int ret = 0;
const struct cred *cred, *child_cred;
rcu_read_lock();
cred = __task_cred(parent);
child_cred = current_cred();
if (cred->user_ns == child_cred->user_ns &&
cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
goto out;
if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
goto out;
ret = -EPERM;
out:
rcu_read_unlock();
return ret;
}
/**
* cap_capget - Retrieve a task's capability sets
* @target: The task from which to retrieve the capability sets
* @effective: The place to record the effective set
* @inheritable: The place to record the inheritable set
* @permitted: The place to record the permitted set
*
* This function retrieves the capabilities of the nominated task and returns
* them to the caller.
*/
int cap_capget(const struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
const struct cred *cred;
/* Derived from kernel/capability.c:sys_capget. */
rcu_read_lock();
cred = __task_cred(target);
*effective = cred->cap_effective;
*inheritable = cred->cap_inheritable;
*permitted = cred->cap_permitted;
rcu_read_unlock();
return 0;
}
/*
* Determine whether the inheritable capabilities are limited to the old
* permitted set. Returns 1 if they are limited, 0 if they are not.
*/
static inline int cap_inh_is_capped(void)
{
/* they are so limited unless the current task has the CAP_SETPCAP
* capability
*/
if (cap_capable(current_cred(), current_cred()->user_ns,
CAP_SETPCAP, CAP_OPT_NONE) == 0)
return 0;
return 1;
}
/**
* cap_capset - Validate and apply proposed changes to current's capabilities
* @new: The proposed new credentials; alterations should be made here
* @old: The current task's current credentials
* @effective: A pointer to the proposed new effective capabilities set
* @inheritable: A pointer to the proposed new inheritable capabilities set
* @permitted: A pointer to the proposed new permitted capabilities set
*
* This function validates and applies a proposed mass change to the current
* process's capability sets. The changes are made to the proposed new
* credentials, and assuming no error, will be committed by the caller of LSM.
*/
int cap_capset(struct cred *new,
const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
if (cap_inh_is_capped() &&
!cap_issubset(*inheritable,
cap_combine(old->cap_inheritable,
old->cap_permitted)))
/* incapable of using this inheritable set */
return -EPERM;
if (!cap_issubset(*inheritable,
cap_combine(old->cap_inheritable,
old->cap_bset)))
/* no new pI capabilities outside bounding set */
return -EPERM;
/* verify restrictions on target's new Permitted set */
if (!cap_issubset(*permitted, old->cap_permitted))
return -EPERM;
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
if (!cap_issubset(*effective, *permitted))
return -EPERM;
new->cap_effective = *effective;
new->cap_inheritable = *inheritable;
new->cap_permitted = *permitted;
/*
* Mask off ambient bits that are no longer both permitted and
* inheritable.
*/
new->cap_ambient = cap_intersect(new->cap_ambient,
cap_intersect(*permitted,
*inheritable));
if (WARN_ON(!cap_ambient_invariant_ok(new)))
return -EINVAL;
return 0;
}
/**
* cap_inode_need_killpriv - Determine if inode change affects privileges
* @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
*
* Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
* affects the security markings on that inode, and if it is, should
* inode_killpriv() be invoked or the change rejected.
*
* Return: 1 if security.capability has a value, meaning inode_killpriv()
* is required, 0 otherwise, meaning inode_killpriv() is not required.
*/
int cap_inode_need_killpriv(struct dentry *dentry)
{
struct inode *inode = d_backing_inode(dentry);
int error;
error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
return error > 0;
}
/**
* cap_inode_killpriv - Erase the security markings on an inode
*
* @idmap: idmap of the mount the inode was found from
* @dentry: The inode/dentry to alter
*
* Erase the privilege-enhancing security markings on an inode.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
*
* Return: 0 if successful, -ve on error.
*/
int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry)
{
int error;
error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS);
if (error == -EOPNOTSUPP)
error = 0;
return error;
}
static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
{
struct user_namespace *ns;
kuid_t kroot;
if (!vfsuid_valid(rootvfsuid))
return false;
kroot = vfsuid_into_kuid(rootvfsuid);
for (ns = current_user_ns();; ns = ns->parent) {
if (from_kuid(ns, kroot) == 0)
return true;
if (ns == &init_user_ns)
break;
}
return false;
}
static __u32 sansflags(__u32 m)
{
return m & ~VFS_CAP_FLAGS_EFFECTIVE;
}
static bool is_v2header(int size, const struct vfs_cap_data *cap)
{
if (size != XATTR_CAPS_SZ_2)
return false;
return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
}
static bool is_v3header(int size, const struct vfs_cap_data *cap)
{
if (size != XATTR_CAPS_SZ_3)
return false;
return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
}
/*
* getsecurity: We are called for security.* before any attempt to read the
* xattr from the inode itself.
*
* This gives us a chance to read the on-disk value and convert it. If we
* return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
*
* Note we are not called by vfs_getxattr_alloc(), but that is only called
* by the integrity subsystem, which really wants the unconverted values -
* so that's good.
*/
int cap_inode_getsecurity(struct mnt_idmap *idmap,
struct inode *inode, const char *name, void **buffer,
bool alloc)
{
int size;
kuid_t kroot;
vfsuid_t vfsroot;
u32 nsmagic, magic;
uid_t root, mappedroot;
char *tmpbuf = NULL;
struct vfs_cap_data *cap;
struct vfs_ns_cap_data *nscap = NULL;
struct dentry *dentry;
struct user_namespace *fs_ns;
if (strcmp(name, "capability") != 0)
return -EOPNOTSUPP;
dentry = d_find_any_alias(inode);
if (!dentry)
return -EINVAL;
size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf,
sizeof(struct vfs_ns_cap_data), GFP_NOFS);
dput(dentry);
/* gcc11 complains if we don't check for !tmpbuf */
if (size < 0 || !tmpbuf)
goto out_free;
fs_ns = inode->i_sb->s_user_ns;
cap = (struct vfs_cap_data *) tmpbuf;
if (is_v2header(size, cap)) {
root = 0;
} else if (is_v3header(size, cap)) {
nscap = (struct vfs_ns_cap_data *) tmpbuf;
root = le32_to_cpu(nscap->rootid);
} else {
size = -EINVAL;
goto out_free;
}
kroot = make_kuid(fs_ns, root);
/* If this is an idmapped mount shift the kuid. */
vfsroot = make_vfsuid(idmap, fs_ns, kroot);
/* If the root kuid maps to a valid uid in current ns, then return
* this as a nscap. */
mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
size = sizeof(struct vfs_ns_cap_data);
if (alloc) {
if (!nscap) {
/* v2 -> v3 conversion */
nscap = kzalloc(size, GFP_ATOMIC);
if (!nscap) {
size = -ENOMEM;
goto out_free;
}
nsmagic = VFS_CAP_REVISION_3;
magic = le32_to_cpu(cap->magic_etc);
if (magic & VFS_CAP_FLAGS_EFFECTIVE)
nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
nscap->magic_etc = cpu_to_le32(nsmagic);
} else {
/* use allocated v3 buffer */
tmpbuf = NULL;
}
nscap->rootid = cpu_to_le32(mappedroot);
*buffer = nscap;
}
goto out_free;
}
if (!rootid_owns_currentns(vfsroot)) {
size = -EOVERFLOW;
goto out_free;
}
/* This comes from a parent namespace. Return as a v2 capability */
size = sizeof(struct vfs_cap_data);
if (alloc) {
if (nscap) {
/* v3 -> v2 conversion */
cap = kzalloc(size, GFP_ATOMIC);
if (!cap) {
size = -ENOMEM;
goto out_free;
}
magic = VFS_CAP_REVISION_2;
nsmagic = le32_to_cpu(nscap->magic_etc);
if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
magic |= VFS_CAP_FLAGS_EFFECTIVE;
memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
cap->magic_etc = cpu_to_le32(magic);
} else {
/* use unconverted v2 */
tmpbuf = NULL;
}
*buffer = cap;
}
out_free:
kfree(tmpbuf);
return size;
}
/**
* rootid_from_xattr - translate root uid of vfs caps
*
* @value: vfs caps value which may be modified by this function
* @size: size of @ivalue
* @task_ns: user namespace of the caller
*/
static vfsuid_t rootid_from_xattr(const void *value, size_t size,
struct user_namespace *task_ns)
{
const struct vfs_ns_cap_data *nscap = value;
uid_t rootid = 0;
if (size == XATTR_CAPS_SZ_3)
rootid = le32_to_cpu(nscap->rootid);
return VFSUIDT_INIT(make_kuid(task_ns, rootid));
}
static bool validheader(size_t size, const struct vfs_cap_data *cap)
{
return is_v2header(size, cap) || is_v3header(size, cap);
}
/**
* cap_convert_nscap - check vfs caps
*
* @idmap: idmap of the mount the inode was found from
* @dentry: used to retrieve inode to check permissions on
* @ivalue: vfs caps value which may be modified by this function
* @size: size of @ivalue
*
* User requested a write of security.capability. If needed, update the
* xattr to change from v2 to v3, or to fixup the v3 rootid.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
*
* Return: On success, return the new size; on error, return < 0.
*/
int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
const void **ivalue, size_t size)
{
struct vfs_ns_cap_data *nscap;
uid_t nsrootid;
const struct vfs_cap_data *cap = *ivalue;
__u32 magic, nsmagic;
struct inode *inode = d_backing_inode(dentry);
struct user_namespace *task_ns = current_user_ns(),
*fs_ns = inode->i_sb->s_user_ns;
kuid_t rootid;
vfsuid_t vfsrootid;
size_t newsize;
if (!*ivalue)
return -EINVAL;
if (!validheader(size, cap))
return -EINVAL;
if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
return -EPERM;
if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap))
if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
/* user is privileged, just write the v2 */
return size;
vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
if (!vfsuid_valid(vfsrootid))
return -EINVAL;
rootid = from_vfsuid(idmap, fs_ns, vfsrootid);
if (!uid_valid(rootid))
return -EINVAL;
nsrootid = from_kuid(fs_ns, rootid);
if (nsrootid == -1)
return -EINVAL;
newsize = sizeof(struct vfs_ns_cap_data);
nscap = kmalloc(newsize, GFP_ATOMIC);
if (!nscap)
return -ENOMEM;
nscap->rootid = cpu_to_le32(nsrootid);
nsmagic = VFS_CAP_REVISION_3;
magic = le32_to_cpu(cap->magic_etc);
if (magic & VFS_CAP_FLAGS_EFFECTIVE)
nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
nscap->magic_etc = cpu_to_le32(nsmagic);
memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
*ivalue = nscap;
return newsize;
}
/*
* Calculate the new process capability sets from the capability sets attached
* to a file.
*/
static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
struct linux_binprm *bprm,
bool *effective,
bool *has_fcap)
{
struct cred *new = bprm->cred;
int ret = 0;
if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
*effective = true;
if (caps->magic_etc & VFS_CAP_REVISION_MASK)
*has_fcap = true;
/*
* pP' = (X & fP) | (pI & fI)
* The addition of pA' is handled later.
*/
new->cap_permitted.val =
(new->cap_bset.val & caps->permitted.val) |
(new->cap_inheritable.val & caps->inheritable.val);
if (caps->permitted.val & ~new->cap_permitted.val)
/* insufficient to execute correctly */
ret = -EPERM;
/*
* For legacy apps, with no internal support for recognizing they
* do not have enough capabilities, we return an error if they are
* missing some "forced" (aka file-permitted) capabilities.
*/
return *effective ? ret : 0;
}
/**
* get_vfs_caps_from_disk - retrieve vfs caps from disk
*
* @idmap: idmap of the mount the inode was found from
* @dentry: dentry from which @inode is retrieved
* @cpu_caps: vfs capabilities
*
* Extract the on-exec-apply capability sets for an executable file.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
*/
int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
const struct dentry *dentry,
struct cpu_vfs_cap_data *cpu_caps)
{
struct inode *inode = d_backing_inode(dentry);
__u32 magic_etc;
int size;
struct vfs_ns_cap_data data, *nscaps = &data;
struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
kuid_t rootkuid;
vfsuid_t rootvfsuid;
struct user_namespace *fs_ns;
memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
if (!inode)
return -ENODATA;
fs_ns = inode->i_sb->s_user_ns;
size = __vfs_getxattr((struct dentry *)dentry, inode,
XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
if (size == -ENODATA || size == -EOPNOTSUPP)
/* no data, that's ok */
return -ENODATA;
if (size < 0)
return size;
if (size < sizeof(magic_etc))
return -EINVAL;
cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
rootkuid = make_kuid(fs_ns, 0);
switch (magic_etc & VFS_CAP_REVISION_MASK) {
case VFS_CAP_REVISION_1:
if (size != XATTR_CAPS_SZ_1)
return -EINVAL;
break;
case VFS_CAP_REVISION_2:
if (size != XATTR_CAPS_SZ_2)
return -EINVAL;
break;
case VFS_CAP_REVISION_3:
if (size != XATTR_CAPS_SZ_3)
return -EINVAL;
rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
break;
default:
return -EINVAL;
}
rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid);
if (!vfsuid_valid(rootvfsuid))
return -ENODATA;
/* Limit the caps to the mounter of the filesystem
* or the more limited uid specified in the xattr.
*/
if (!rootid_owns_currentns(rootvfsuid))
return -ENODATA;
cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted);
cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable);
/*
* Rev1 had just a single 32-bit word, later expanded
* to a second one for the high bits
*/
if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) {
cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32;
cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32;
}
cpu_caps->permitted.val &= CAP_VALID_MASK;
cpu_caps->inheritable.val &= CAP_VALID_MASK;
cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
return 0;
}
/*
* Attempt to get the on-exec apply capability sets for an executable file from
* its xattrs and, if present, apply them to the proposed credentials being
* constructed by execve().
*/
static int get_file_caps(struct linux_binprm *bprm, const struct file *file,
bool *effective, bool *has_fcap)
{
int rc = 0;
struct cpu_vfs_cap_data vcaps;
cap_clear(bprm->cred->cap_permitted);
if (!file_caps_enabled)
return 0;
if (!mnt_may_suid(file->f_path.mnt))
return 0;
/*
* This check is redundant with mnt_may_suid() but is kept to make
* explicit that capability bits are limited to s_user_ns and its
* descendants.
*/
if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
return 0;
rc = get_vfs_caps_from_disk(file_mnt_idmap(file),
file->f_path.dentry, &vcaps);
if (rc < 0) {
if (rc == -EINVAL)
printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
bprm->filename);
else if (rc == -ENODATA)
rc = 0;
goto out;
}
rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
out:
if (rc)
cap_clear(bprm->cred->cap_permitted);
return rc;
}
static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
static inline bool __is_real(kuid_t uid, struct cred *cred)
{ return uid_eq(cred->uid, uid); }
static inline bool __is_eff(kuid_t uid, struct cred *cred)
{ return uid_eq(cred->euid, uid); }
static inline bool __is_suid(kuid_t uid, struct cred *cred)
{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
/*
* handle_privileged_root - Handle case of privileged root
* @bprm: The execution parameters, including the proposed creds
* @has_fcap: Are any file capabilities set?
* @effective: Do we have effective root privilege?
* @root_uid: This namespace' root UID WRT initial USER namespace
*
* Handle the case where root is privileged and hasn't been neutered by
* SECURE_NOROOT. If file capabilities are set, they won't be combined with
* set UID root and nothing is changed. If we are root, cap_permitted is
* updated. If we have become set UID root, the effective bit is set.
*/
static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
bool *effective, kuid_t root_uid)
{
const struct cred *old = current_cred();
struct cred *new = bprm->cred;
if (!root_privileged())
return;
/*
* If the legacy file capability is set, then don't set privs
* for a setuid root binary run by a non-root user. Do set it
* for a root user just to cause least surprise to an admin.
*/
if (has_fcap && __is_suid(root_uid, new)) {
warn_setuid_and_fcaps_mixed(bprm->filename);
return;
}
/*
* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we override the
* capability sets for the file.
*/
if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
/* pP' = (cap_bset & ~0) | (pI & ~0) */
new->cap_permitted = cap_combine(old->cap_bset,
old->cap_inheritable);
}
/*
* If only the real uid is 0, we do not set the effective bit.
*/
if (__is_eff(root_uid, new))
*effective = true;
}
#define __cap_gained(field, target, source) \
!cap_issubset(target->cap_##field, source->cap_##field)
#define __cap_grew(target, source, cred) \
!cap_issubset(cred->cap_##target, cred->cap_##source)
#define __cap_full(field, cred) \
cap_issubset(CAP_FULL_SET, cred->cap_##field)
static inline bool __is_setuid(struct cred *new, const struct cred *old)
{ return !uid_eq(new->euid, old->uid); }
static inline bool __is_setgid(struct cred *new, const struct cred *old)
{ return !gid_eq(new->egid, old->gid); }
/*
* 1) Audit candidate if current->cap_effective is set
*
* We do not bother to audit if 3 things are true:
* 1) cap_effective has all caps
* 2) we became root *OR* are were already root
* 3) root is supposed to have all caps (SECURE_NOROOT)
* Since this is just a normal root execing a process.
*
* Number 1 above might fail if you don't have a full bset, but I think
* that is interesting information to audit.
*
* A number of other conditions require logging:
* 2) something prevented setuid root getting all caps
* 3) non-setuid root gets fcaps
* 4) non-setuid root gets ambient
*/
static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
kuid_t root, bool has_fcap)
{
bool ret = false;
if ((__cap_grew(effective, ambient, new) &&
!(__cap_full(effective, new) &&
(__is_eff(root, new) || __is_real(root, new)) &&
root_privileged())) ||
(root_privileged() &&
__is_suid(root, new) &&
!__cap_full(effective, new)) ||
(!__is_setuid(new, old) &&
((has_fcap &&
__cap_gained(permitted, new, old)) ||
__cap_gained(ambient, new, old))))
ret = true;
return ret;
}
/**
* cap_bprm_creds_from_file - Set up the proposed credentials for execve().
* @bprm: The execution parameters, including the proposed creds
* @file: The file to pull the credentials from
*
* Set up the proposed credentials for a new execution context being
* constructed by execve(). The proposed creds in @bprm->cred is altered,
* which won't take effect immediately.
*
* Return: 0 if successful, -ve on error.
*/
int cap_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
{
/* Process setpcap binaries and capabilities for uid 0 */
const struct cred *old = current_cred();
struct cred *new = bprm->cred;
bool effective = false, has_fcap = false, is_setid;
int ret;
kuid_t root_uid;
if (WARN_ON(!cap_ambient_invariant_ok(old)))
return -EPERM;
ret = get_file_caps(bprm, file, &effective, &has_fcap);
if (ret < 0)
return ret;
root_uid = make_kuid(new->user_ns, 0);
handle_privileged_root(bprm, has_fcap, &effective, root_uid);
/* if we have fs caps, clear dangerous personality flags */
if (__cap_gained(permitted, new, old))
bprm->per_clear |= PER_CLEAR_ON_SETID;
/* Don't let someone trace a set[ug]id/setpcap binary with the revised
* credentials unless they have the appropriate permit.
*
* In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
*/
is_setid = __is_setuid(new, old) || __is_setgid(new, old);
if ((is_setid || __cap_gained(permitted, new, old)) &&
((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
!ptracer_capable(current, new->user_ns))) {
/* downgrade; they get no more than they had, and maybe less */
if (!ns_capable(new->user_ns, CAP_SETUID) ||
(bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
new->euid = new->uid;
new->egid = new->gid;
}
new->cap_permitted = cap_intersect(new->cap_permitted,
old->cap_permitted);
}
new->suid = new->fsuid = new->euid;
new->sgid = new->fsgid = new->egid;
/* File caps or setid cancels ambient. */
if (has_fcap || is_setid)
cap_clear(new->cap_ambient);
/*
* Now that we've computed pA', update pP' to give:
* pP' = (X & fP) | (pI & fI) | pA'
*/
new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
/*
* Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
* this is the same as pE' = (fE ? pP' : 0) | pA'.
*/
if (effective)
new->cap_effective = new->cap_permitted;
else
new->cap_effective = new->cap_ambient;
if (WARN_ON(!cap_ambient_invariant_ok(new)))
return -EPERM;
if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
ret = audit_log_bprm_fcaps(bprm, new, old);
if (ret < 0)
return ret;
}
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
if (WARN_ON(!cap_ambient_invariant_ok(new)))
return -EPERM;
/* Check for privilege-elevated exec. */
if (is_setid ||
(!__is_real(root_uid, new) &&
(effective ||
__cap_grew(permitted, ambient, new))))
bprm->secureexec = 1;
return 0;
}
/**
* cap_inode_setxattr - Determine whether an xattr may be altered
* @dentry: The inode/dentry being altered
* @name: The name of the xattr to be changed
* @value: The value that the xattr will be changed to
* @size: The size of value
* @flags: The replacement flag
*
* Determine whether an xattr may be altered or set on an inode, returning 0 if
* permission is granted, -ve if denied.
*
* This is used to make sure security xattrs don't get updated or set by those
* who aren't privileged to do so.
*/
int cap_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
/* Ignore non-security xattrs */
if (strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN) != 0)
return 0;
/*
* For XATTR_NAME_CAPS the check will be done in
* cap_convert_nscap(), called by setxattr()
*/
if (strcmp(name, XATTR_NAME_CAPS) == 0)
return 0;
if (!ns_capable(user_ns, CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/**
* cap_inode_removexattr - Determine whether an xattr may be removed
*
* @idmap: idmap of the mount the inode was found from
* @dentry: The inode/dentry being altered
* @name: The name of the xattr to be changed
*
* Determine whether an xattr may be removed from an inode, returning 0 if
* permission is granted, -ve if denied.
*
* If the inode has been found through an idmapped mount the idmap of
* the vfsmount must be passed through @idmap. This function will then
* take care to map the inode according to @idmap before checking
* permissions. On non-idmapped mounts or if permission checking is to be
* performed on the raw inode simply pass @nop_mnt_idmap.
*
* This is used to make sure security xattrs don't get removed by those who
* aren't privileged to remove them.
*/
int cap_inode_removexattr(struct mnt_idmap *idmap,
struct dentry *dentry, const char *name)
{
struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
/* Ignore non-security xattrs */
if (strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN) != 0)
return 0;
if (strcmp(name, XATTR_NAME_CAPS) == 0) {
/* security.capability gets namespaced */
struct inode *inode = d_backing_inode(dentry);
if (!inode)
return -EINVAL;
if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
return -EPERM;
return 0;
}
if (!ns_capable(user_ns, CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/*
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
* a process after a call to setuid, setreuid, or setresuid.
*
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
* {r,e,s}uid != 0, the permitted and effective capabilities are
* cleared.
*
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
* capabilities of the process are cleared.
*
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
* capabilities are set to the permitted capabilities.
*
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
* never happen.
*
* -astor
*
* cevans - New behaviour, Oct '99
* A process may, via prctl(), elect to keep its capabilities when it
* calls setuid() and switches away from uid==0. Both permitted and
* effective sets will be retained.
* Without this change, it was impossible for a daemon to drop only some
* of its privilege. The call to setuid(!=0) would drop all privileges!
* Keeping uid 0 is not an option because uid 0 owns too many vital
* files..
* Thanks to Olaf Kirch and Peter Benie for spotting this.
*/
static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
{
kuid_t root_uid = make_kuid(old->user_ns, 0);
if ((uid_eq(old->uid, root_uid) ||
uid_eq(old->euid, root_uid) ||
uid_eq(old->suid, root_uid)) &&
(!uid_eq(new->uid, root_uid) &&
!uid_eq(new->euid, root_uid) &&
!uid_eq(new->suid, root_uid))) {
if (!issecure(SECURE_KEEP_CAPS)) {
cap_clear(new->cap_permitted);
cap_clear(new->cap_effective);
}
/*
* Pre-ambient programs expect setresuid to nonroot followed
* by exec to drop capabilities. We should make sure that
* this remains the case.
*/
cap_clear(new->cap_ambient);
}
if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
cap_clear(new->cap_effective);
if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
new->cap_effective = new->cap_permitted;
}
/**
* cap_task_fix_setuid - Fix up the results of setuid() call
* @new: The proposed credentials
* @old: The current task's current credentials
* @flags: Indications of what has changed
*
* Fix up the results of setuid() call before the credential changes are
* actually applied.
*
* Return: 0 to grant the changes, -ve to deny them.
*/
int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
{
switch (flags) {
case LSM_SETID_RE:
case LSM_SETID_ID:
case LSM_SETID_RES:
/* juggle the capabilities to follow [RES]UID changes unless
* otherwise suppressed */
if (!issecure(SECURE_NO_SETUID_FIXUP))
cap_emulate_setxuid(new, old);
break;
case LSM_SETID_FS:
/* juggle the capabilities to follow FSUID changes, unless
* otherwise suppressed
*
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
* if not, we might be a bit too harsh here.
*/
if (!issecure(SECURE_NO_SETUID_FIXUP)) {
kuid_t root_uid = make_kuid(old->user_ns, 0);
if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
new->cap_effective =
cap_drop_fs_set(new->cap_effective);
if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
new->cap_effective =
cap_raise_fs_set(new->cap_effective,
new->cap_permitted);
}
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Rationale: code calling task_setscheduler, task_setioprio, and
* task_setnice, assumes that
* . if capable(cap_sys_nice), then those actions should be allowed
* . if not capable(cap_sys_nice), but acting on your own processes,
* then those actions should be allowed
* This is insufficient now since you can call code without suid, but
* yet with increased caps.
* So we check for increased caps on the target process.
*/
static int cap_safe_nice(struct task_struct *p)
{
int is_subset, ret = 0;
rcu_read_lock();
is_subset = cap_issubset(__task_cred(p)->cap_permitted,
current_cred()->cap_permitted);
if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
ret = -EPERM;
rcu_read_unlock();
return ret;
}
/**
* cap_task_setscheduler - Determine if scheduler policy change is permitted
* @p: The task to affect
*
* Determine if the requested scheduler policy change is permitted for the
* specified task.
*
* Return: 0 if permission is granted, -ve if denied.
*/
int cap_task_setscheduler(struct task_struct *p)
{
return cap_safe_nice(p);
}
/**
* cap_task_setioprio - Determine if I/O priority change is permitted
* @p: The task to affect
* @ioprio: The I/O priority to set
*
* Determine if the requested I/O priority change is permitted for the specified
* task.
*
* Return: 0 if permission is granted, -ve if denied.
*/
int cap_task_setioprio(struct task_struct *p, int ioprio)
{
return cap_safe_nice(p);
}
/**
* cap_task_setnice - Determine if task priority change is permitted
* @p: The task to affect
* @nice: The nice value to set
*
* Determine if the requested task priority change is permitted for the
* specified task.
*
* Return: 0 if permission is granted, -ve if denied.
*/
int cap_task_setnice(struct task_struct *p, int nice)
{
return cap_safe_nice(p);
}
/*
* Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
* the current task's bounding set. Returns 0 on success, -ve on error.
*/
static int cap_prctl_drop(unsigned long cap)
{
struct cred *new;
if (!ns_capable(current_user_ns(), CAP_SETPCAP))
return -EPERM;
if (!cap_valid(cap))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
cap_lower(new->cap_bset, cap);
return commit_creds(new);
}
/**
* cap_task_prctl - Implement process control functions for this security module
* @option: The process control function requested
* @arg2: The argument data for this function
* @arg3: The argument data for this function
* @arg4: The argument data for this function
* @arg5: The argument data for this function
*
* Allow process control functions (sys_prctl()) to alter capabilities; may
* also deny access to other functions not otherwise implemented here.
*
* Return: 0 or +ve on success, -ENOSYS if this function is not implemented
* here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
* modules will consider performing the function.
*/
int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
const struct cred *old = current_cred();
struct cred *new;
switch (option) {
case PR_CAPBSET_READ:
if (!cap_valid(arg2))
return -EINVAL;
return !!cap_raised(old->cap_bset, arg2);
case PR_CAPBSET_DROP:
return cap_prctl_drop(arg2);
/*
* The next four prctl's remain to assist with transitioning a
* system from legacy UID=0 based privilege (when filesystem
* capabilities are not in use) to a system using filesystem
* capabilities only - as the POSIX.1e draft intended.
*
* Note:
*
* PR_SET_SECUREBITS =
* issecure_mask(SECURE_KEEP_CAPS_LOCKED)
* | issecure_mask(SECURE_NOROOT)
* | issecure_mask(SECURE_NOROOT_LOCKED)
* | issecure_mask(SECURE_NO_SETUID_FIXUP)
* | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
*
* will ensure that the current process and all of its
* children will be locked into a pure
* capability-based-privilege environment.
*/
case PR_SET_SECUREBITS:
if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
& (old->securebits ^ arg2)) /*[1]*/
|| ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
|| (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
|| (cap_capable(current_cred(),
current_cred()->user_ns,
CAP_SETPCAP,
CAP_OPT_NONE) != 0) /*[4]*/
/*
* [1] no changing of bits that are locked
* [2] no unlocking of locks
* [3] no setting of unsupported bits
* [4] doing anything requires privilege (go read about
* the "sendmail capabilities bug")
*/
)
/* cannot change a locked bit */
return -EPERM;
new = prepare_creds();
if (!new)
return -ENOMEM;
new->securebits = arg2;
return commit_creds(new);
case PR_GET_SECUREBITS:
return old->securebits;
case PR_GET_KEEPCAPS:
return !!issecure(SECURE_KEEP_CAPS);
case PR_SET_KEEPCAPS:
if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
return -EINVAL;
if (issecure(SECURE_KEEP_CAPS_LOCKED))
return -EPERM;
new = prepare_creds();
if (!new)
return -ENOMEM;
if (arg2)
new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
else
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
return commit_creds(new);
case PR_CAP_AMBIENT:
if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
if (arg3 | arg4 | arg5)
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
cap_clear(new->cap_ambient);
return commit_creds(new);
}
if (((!cap_valid(arg3)) | arg4 | arg5))
return -EINVAL;
if (arg2 == PR_CAP_AMBIENT_IS_SET) {
return !!cap_raised(current_cred()->cap_ambient, arg3);
} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
arg2 != PR_CAP_AMBIENT_LOWER) {
return -EINVAL;
} else {
if (arg2 == PR_CAP_AMBIENT_RAISE &&
(!cap_raised(current_cred()->cap_permitted, arg3) ||
!cap_raised(current_cred()->cap_inheritable,
arg3) ||
issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
return -EPERM;
new = prepare_creds();
if (!new)
return -ENOMEM;
if (arg2 == PR_CAP_AMBIENT_RAISE)
cap_raise(new->cap_ambient, arg3);
else
cap_lower(new->cap_ambient, arg3);
return commit_creds(new);
}
default:
/* No functionality available - continue with default */
return -ENOSYS;
}
}
/**
* cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
* @mm: The VM space in which the new mapping is to be made
* @pages: The size of the mapping
*
* Determine whether the allocation of a new virtual mapping by the current
* task is permitted.
*
* Return: 1 if permission is granted, 0 if not.
*/
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
{
int cap_sys_admin = 0;
if (cap_capable(current_cred(), &init_user_ns,
CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
cap_sys_admin = 1;
return cap_sys_admin;
}
/**
* cap_mmap_addr - check if able to map given addr
* @addr: address attempting to be mapped
*
* If the process is attempting to map memory below dac_mmap_min_addr they need
* CAP_SYS_RAWIO. The other parameters to this function are unused by the
* capability security module.
*
* Return: 0 if this mapping should be allowed or -EPERM if not.
*/
int cap_mmap_addr(unsigned long addr)
{
int ret = 0;
if (addr < dac_mmap_min_addr) {
ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
CAP_OPT_NONE);
/* set PF_SUPERPRIV if it turns out we allow the low mmap */
if (ret == 0)
current->flags |= PF_SUPERPRIV;
}
return ret;
}
int cap_mmap_file(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags)
{
return 0;
}
#ifdef CONFIG_SECURITY
static const struct lsm_id capability_lsmid = {
.name = "capability",
.id = LSM_ID_CAPABILITY,
};
static struct security_hook_list capability_hooks[] __ro_after_init = {
LSM_HOOK_INIT(capable, cap_capable),
LSM_HOOK_INIT(settime, cap_settime),
LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
LSM_HOOK_INIT(capget, cap_capget),
LSM_HOOK_INIT(capset, cap_capset),
LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
LSM_HOOK_INIT(mmap_file, cap_mmap_file),
LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
LSM_HOOK_INIT(task_prctl, cap_task_prctl),
LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
LSM_HOOK_INIT(task_setnice, cap_task_setnice),
LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
};
static int __init capability_init(void)
{
security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
&capability_lsmid);
return 0;
}
DEFINE_LSM(capability) = {
.name = "capability",
.order = LSM_ORDER_FIRST,
.init = capability_init,
};
#endif /* CONFIG_SECURITY */