mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 17:25:38 +00:00
545fbd0775
We saw a hang in production with WBT where there was only one waiter in the throttle path and no outstanding IO. This is because of the has_sleepers optimization that is used to make sure we don't steal an inflight counter for new submitters when there are people already on the list. We can race with our check to see if the waitqueue has any waiters (this is done locklessly) and the time we actually add ourselves to the waitqueue. If this happens we'll go to sleep and never be woken up because nobody is doing IO to wake us up. Fix this by checking if the waitqueue has a single sleeper on the list after we add ourselves, that way we have an uptodate view of the list. Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
279 lines
6.4 KiB
C
279 lines
6.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "blk-rq-qos.h"
|
|
|
|
/*
|
|
* Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
|
|
* false if 'v' + 1 would be bigger than 'below'.
|
|
*/
|
|
static bool atomic_inc_below(atomic_t *v, unsigned int below)
|
|
{
|
|
unsigned int cur = atomic_read(v);
|
|
|
|
for (;;) {
|
|
unsigned int old;
|
|
|
|
if (cur >= below)
|
|
return false;
|
|
old = atomic_cmpxchg(v, cur, cur + 1);
|
|
if (old == cur)
|
|
break;
|
|
cur = old;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
|
|
{
|
|
return atomic_inc_below(&rq_wait->inflight, limit);
|
|
}
|
|
|
|
void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
|
|
{
|
|
do {
|
|
if (rqos->ops->cleanup)
|
|
rqos->ops->cleanup(rqos, bio);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
|
|
{
|
|
do {
|
|
if (rqos->ops->done)
|
|
rqos->ops->done(rqos, rq);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
|
|
{
|
|
do {
|
|
if (rqos->ops->issue)
|
|
rqos->ops->issue(rqos, rq);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
|
|
{
|
|
do {
|
|
if (rqos->ops->requeue)
|
|
rqos->ops->requeue(rqos, rq);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
|
|
{
|
|
do {
|
|
if (rqos->ops->throttle)
|
|
rqos->ops->throttle(rqos, bio);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
|
|
{
|
|
do {
|
|
if (rqos->ops->track)
|
|
rqos->ops->track(rqos, rq, bio);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
|
|
{
|
|
do {
|
|
if (rqos->ops->done_bio)
|
|
rqos->ops->done_bio(rqos, bio);
|
|
rqos = rqos->next;
|
|
} while (rqos);
|
|
}
|
|
|
|
/*
|
|
* Return true, if we can't increase the depth further by scaling
|
|
*/
|
|
bool rq_depth_calc_max_depth(struct rq_depth *rqd)
|
|
{
|
|
unsigned int depth;
|
|
bool ret = false;
|
|
|
|
/*
|
|
* For QD=1 devices, this is a special case. It's important for those
|
|
* to have one request ready when one completes, so force a depth of
|
|
* 2 for those devices. On the backend, it'll be a depth of 1 anyway,
|
|
* since the device can't have more than that in flight. If we're
|
|
* scaling down, then keep a setting of 1/1/1.
|
|
*/
|
|
if (rqd->queue_depth == 1) {
|
|
if (rqd->scale_step > 0)
|
|
rqd->max_depth = 1;
|
|
else {
|
|
rqd->max_depth = 2;
|
|
ret = true;
|
|
}
|
|
} else {
|
|
/*
|
|
* scale_step == 0 is our default state. If we have suffered
|
|
* latency spikes, step will be > 0, and we shrink the
|
|
* allowed write depths. If step is < 0, we're only doing
|
|
* writes, and we allow a temporarily higher depth to
|
|
* increase performance.
|
|
*/
|
|
depth = min_t(unsigned int, rqd->default_depth,
|
|
rqd->queue_depth);
|
|
if (rqd->scale_step > 0)
|
|
depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
|
|
else if (rqd->scale_step < 0) {
|
|
unsigned int maxd = 3 * rqd->queue_depth / 4;
|
|
|
|
depth = 1 + ((depth - 1) << -rqd->scale_step);
|
|
if (depth > maxd) {
|
|
depth = maxd;
|
|
ret = true;
|
|
}
|
|
}
|
|
|
|
rqd->max_depth = depth;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void rq_depth_scale_up(struct rq_depth *rqd)
|
|
{
|
|
/*
|
|
* Hit max in previous round, stop here
|
|
*/
|
|
if (rqd->scaled_max)
|
|
return;
|
|
|
|
rqd->scale_step--;
|
|
|
|
rqd->scaled_max = rq_depth_calc_max_depth(rqd);
|
|
}
|
|
|
|
/*
|
|
* Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
|
|
* had a latency violation.
|
|
*/
|
|
void rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
|
|
{
|
|
/*
|
|
* Stop scaling down when we've hit the limit. This also prevents
|
|
* ->scale_step from going to crazy values, if the device can't
|
|
* keep up.
|
|
*/
|
|
if (rqd->max_depth == 1)
|
|
return;
|
|
|
|
if (rqd->scale_step < 0 && hard_throttle)
|
|
rqd->scale_step = 0;
|
|
else
|
|
rqd->scale_step++;
|
|
|
|
rqd->scaled_max = false;
|
|
rq_depth_calc_max_depth(rqd);
|
|
}
|
|
|
|
struct rq_qos_wait_data {
|
|
struct wait_queue_entry wq;
|
|
struct task_struct *task;
|
|
struct rq_wait *rqw;
|
|
acquire_inflight_cb_t *cb;
|
|
void *private_data;
|
|
bool got_token;
|
|
};
|
|
|
|
static int rq_qos_wake_function(struct wait_queue_entry *curr,
|
|
unsigned int mode, int wake_flags, void *key)
|
|
{
|
|
struct rq_qos_wait_data *data = container_of(curr,
|
|
struct rq_qos_wait_data,
|
|
wq);
|
|
|
|
/*
|
|
* If we fail to get a budget, return -1 to interrupt the wake up loop
|
|
* in __wake_up_common.
|
|
*/
|
|
if (!data->cb(data->rqw, data->private_data))
|
|
return -1;
|
|
|
|
data->got_token = true;
|
|
list_del_init(&curr->entry);
|
|
wake_up_process(data->task);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* rq_qos_wait - throttle on a rqw if we need to
|
|
* @rqw: rqw to throttle on
|
|
* @private_data: caller provided specific data
|
|
* @acquire_inflight_cb: inc the rqw->inflight counter if we can
|
|
* @cleanup_cb: the callback to cleanup in case we race with a waker
|
|
*
|
|
* This provides a uniform place for the rq_qos users to do their throttling.
|
|
* Since you can end up with a lot of things sleeping at once, this manages the
|
|
* waking up based on the resources available. The acquire_inflight_cb should
|
|
* inc the rqw->inflight if we have the ability to do so, or return false if not
|
|
* and then we will sleep until the room becomes available.
|
|
*
|
|
* cleanup_cb is in case that we race with a waker and need to cleanup the
|
|
* inflight count accordingly.
|
|
*/
|
|
void rq_qos_wait(struct rq_wait *rqw, void *private_data,
|
|
acquire_inflight_cb_t *acquire_inflight_cb,
|
|
cleanup_cb_t *cleanup_cb)
|
|
{
|
|
struct rq_qos_wait_data data = {
|
|
.wq = {
|
|
.func = rq_qos_wake_function,
|
|
.entry = LIST_HEAD_INIT(data.wq.entry),
|
|
},
|
|
.task = current,
|
|
.rqw = rqw,
|
|
.cb = acquire_inflight_cb,
|
|
.private_data = private_data,
|
|
};
|
|
bool has_sleeper;
|
|
|
|
has_sleeper = wq_has_sleeper(&rqw->wait);
|
|
if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
|
|
return;
|
|
|
|
prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
|
|
has_sleeper = !wq_has_single_sleeper(&rqw->wait);
|
|
do {
|
|
if (data.got_token)
|
|
break;
|
|
if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
|
|
finish_wait(&rqw->wait, &data.wq);
|
|
|
|
/*
|
|
* We raced with wbt_wake_function() getting a token,
|
|
* which means we now have two. Put our local token
|
|
* and wake anyone else potentially waiting for one.
|
|
*/
|
|
if (data.got_token)
|
|
cleanup_cb(rqw, private_data);
|
|
break;
|
|
}
|
|
io_schedule();
|
|
has_sleeper = false;
|
|
} while (1);
|
|
finish_wait(&rqw->wait, &data.wq);
|
|
}
|
|
|
|
void rq_qos_exit(struct request_queue *q)
|
|
{
|
|
blk_mq_debugfs_unregister_queue_rqos(q);
|
|
|
|
while (q->rq_qos) {
|
|
struct rq_qos *rqos = q->rq_qos;
|
|
q->rq_qos = rqos->next;
|
|
rqos->ops->exit(rqos);
|
|
}
|
|
}
|