Mark Brown 4c13f934e3
Merge series "regulator: fix deadlock vs memory reclaim" from Michał Mirosław <mirq-linux@rere.qmqm.pl>:
For systems that have eg. eMMC storage using voltage regulator, memory
reclaim path might call back into regulator subsystem. This means we
have to make sure no allocations happen with a regulator or regulator
list locked.

After this series I see no more lockdep complaints on my test system,
but please review and test further.

First four patches move allocations out of locked regions, next three
came as a drive-by cleanups.

---
v2: fix bug in patch #4 spotted by kernel test robot
    reworded commit #7 description

Michał Mirosław (7):
  regulator: push allocation in regulator_init_coupling() outside of
    lock
  regulator: push allocation in regulator_ena_gpio_request() out of lock
  regulator: push allocations in create_regulator() outside of lock
  regulator: push allocation in set_consumer_device_supply() out of lock
  regulator: plug of_node leak in regulator_register()'s error path
  regulator: cleanup regulator_ena_gpio_free()
  regulator: remove superfluous lock in regulator_resolve_coupling()

 drivers/regulator/core.c | 164 +++++++++++++++++++++------------------
 1 file changed, 87 insertions(+), 77 deletions(-)

--
2.20.1
2020-08-18 17:18:46 +01:00

5908 lines
150 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
//
// core.c -- Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/async.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/coupler.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/module.h>
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>
#include "dummy.h"
#include "internal.h"
#define rdev_crit(rdev, fmt, ...) \
pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_err(rdev, fmt, ...) \
pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...) \
pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...) \
pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...) \
pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
static LIST_HEAD(regulator_ena_gpio_list);
static LIST_HEAD(regulator_supply_alias_list);
static LIST_HEAD(regulator_coupler_list);
static bool has_full_constraints;
static struct dentry *debugfs_root;
/*
* struct regulator_map
*
* Used to provide symbolic supply names to devices.
*/
struct regulator_map {
struct list_head list;
const char *dev_name; /* The dev_name() for the consumer */
const char *supply;
struct regulator_dev *regulator;
};
/*
* struct regulator_enable_gpio
*
* Management for shared enable GPIO pin
*/
struct regulator_enable_gpio {
struct list_head list;
struct gpio_desc *gpiod;
u32 enable_count; /* a number of enabled shared GPIO */
u32 request_count; /* a number of requested shared GPIO */
};
/*
* struct regulator_supply_alias
*
* Used to map lookups for a supply onto an alternative device.
*/
struct regulator_supply_alias {
struct list_head list;
struct device *src_dev;
const char *src_supply;
struct device *alias_dev;
const char *alias_supply;
};
static int _regulator_is_enabled(struct regulator_dev *rdev);
static int _regulator_disable(struct regulator *regulator);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static int _notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV);
static int regulator_balance_voltage(struct regulator_dev *rdev,
suspend_state_t state);
static struct regulator *create_regulator(struct regulator_dev *rdev,
struct device *dev,
const char *supply_name);
static void destroy_regulator(struct regulator *regulator);
static void _regulator_put(struct regulator *regulator);
const char *rdev_get_name(struct regulator_dev *rdev)
{
if (rdev->constraints && rdev->constraints->name)
return rdev->constraints->name;
else if (rdev->desc->name)
return rdev->desc->name;
else
return "";
}
static bool have_full_constraints(void)
{
return has_full_constraints || of_have_populated_dt();
}
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
if (!rdev->constraints) {
rdev_err(rdev, "no constraints\n");
return false;
}
if (rdev->constraints->valid_ops_mask & ops)
return true;
return false;
}
/**
* regulator_lock_nested - lock a single regulator
* @rdev: regulator source
* @ww_ctx: w/w mutex acquire context
*
* This function can be called many times by one task on
* a single regulator and its mutex will be locked only
* once. If a task, which is calling this function is other
* than the one, which initially locked the mutex, it will
* wait on mutex.
*/
static inline int regulator_lock_nested(struct regulator_dev *rdev,
struct ww_acquire_ctx *ww_ctx)
{
bool lock = false;
int ret = 0;
mutex_lock(&regulator_nesting_mutex);
if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
if (rdev->mutex_owner == current)
rdev->ref_cnt++;
else
lock = true;
if (lock) {
mutex_unlock(&regulator_nesting_mutex);
ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
mutex_lock(&regulator_nesting_mutex);
}
} else {
lock = true;
}
if (lock && ret != -EDEADLK) {
rdev->ref_cnt++;
rdev->mutex_owner = current;
}
mutex_unlock(&regulator_nesting_mutex);
return ret;
}
/**
* regulator_lock - lock a single regulator
* @rdev: regulator source
*
* This function can be called many times by one task on
* a single regulator and its mutex will be locked only
* once. If a task, which is calling this function is other
* than the one, which initially locked the mutex, it will
* wait on mutex.
*/
void regulator_lock(struct regulator_dev *rdev)
{
regulator_lock_nested(rdev, NULL);
}
EXPORT_SYMBOL_GPL(regulator_lock);
/**
* regulator_unlock - unlock a single regulator
* @rdev: regulator_source
*
* This function unlocks the mutex when the
* reference counter reaches 0.
*/
void regulator_unlock(struct regulator_dev *rdev)
{
mutex_lock(&regulator_nesting_mutex);
if (--rdev->ref_cnt == 0) {
rdev->mutex_owner = NULL;
ww_mutex_unlock(&rdev->mutex);
}
WARN_ON_ONCE(rdev->ref_cnt < 0);
mutex_unlock(&regulator_nesting_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unlock);
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
{
struct regulator_dev *c_rdev;
int i;
for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
c_rdev = rdev->coupling_desc.coupled_rdevs[i];
if (rdev->supply->rdev == c_rdev)
return true;
}
return false;
}
static void regulator_unlock_recursive(struct regulator_dev *rdev,
unsigned int n_coupled)
{
struct regulator_dev *c_rdev;
int i;
for (i = n_coupled; i > 0; i--) {
c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
if (!c_rdev)
continue;
if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
regulator_unlock_recursive(
c_rdev->supply->rdev,
c_rdev->coupling_desc.n_coupled);
regulator_unlock(c_rdev);
}
}
static int regulator_lock_recursive(struct regulator_dev *rdev,
struct regulator_dev **new_contended_rdev,
struct regulator_dev **old_contended_rdev,
struct ww_acquire_ctx *ww_ctx)
{
struct regulator_dev *c_rdev;
int i, err;
for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
c_rdev = rdev->coupling_desc.coupled_rdevs[i];
if (!c_rdev)
continue;
if (c_rdev != *old_contended_rdev) {
err = regulator_lock_nested(c_rdev, ww_ctx);
if (err) {
if (err == -EDEADLK) {
*new_contended_rdev = c_rdev;
goto err_unlock;
}
/* shouldn't happen */
WARN_ON_ONCE(err != -EALREADY);
}
} else {
*old_contended_rdev = NULL;
}
if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
err = regulator_lock_recursive(c_rdev->supply->rdev,
new_contended_rdev,
old_contended_rdev,
ww_ctx);
if (err) {
regulator_unlock(c_rdev);
goto err_unlock;
}
}
}
return 0;
err_unlock:
regulator_unlock_recursive(rdev, i);
return err;
}
/**
* regulator_unlock_dependent - unlock regulator's suppliers and coupled
* regulators
* @rdev: regulator source
* @ww_ctx: w/w mutex acquire context
*
* Unlock all regulators related with rdev by coupling or supplying.
*/
static void regulator_unlock_dependent(struct regulator_dev *rdev,
struct ww_acquire_ctx *ww_ctx)
{
regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
ww_acquire_fini(ww_ctx);
}
/**
* regulator_lock_dependent - lock regulator's suppliers and coupled regulators
* @rdev: regulator source
* @ww_ctx: w/w mutex acquire context
*
* This function as a wrapper on regulator_lock_recursive(), which locks
* all regulators related with rdev by coupling or supplying.
*/
static void regulator_lock_dependent(struct regulator_dev *rdev,
struct ww_acquire_ctx *ww_ctx)
{
struct regulator_dev *new_contended_rdev = NULL;
struct regulator_dev *old_contended_rdev = NULL;
int err;
mutex_lock(&regulator_list_mutex);
ww_acquire_init(ww_ctx, &regulator_ww_class);
do {
if (new_contended_rdev) {
ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
old_contended_rdev = new_contended_rdev;
old_contended_rdev->ref_cnt++;
}
err = regulator_lock_recursive(rdev,
&new_contended_rdev,
&old_contended_rdev,
ww_ctx);
if (old_contended_rdev)
regulator_unlock(old_contended_rdev);
} while (err == -EDEADLK);
ww_acquire_done(ww_ctx);
mutex_unlock(&regulator_list_mutex);
}
/**
* of_get_child_regulator - get a child regulator device node
* based on supply name
* @parent: Parent device node
* @prop_name: Combination regulator supply name and "-supply"
*
* Traverse all child nodes.
* Extract the child regulator device node corresponding to the supply name.
* returns the device node corresponding to the regulator if found, else
* returns NULL.
*/
static struct device_node *of_get_child_regulator(struct device_node *parent,
const char *prop_name)
{
struct device_node *regnode = NULL;
struct device_node *child = NULL;
for_each_child_of_node(parent, child) {
regnode = of_parse_phandle(child, prop_name, 0);
if (!regnode) {
regnode = of_get_child_regulator(child, prop_name);
if (regnode)
goto err_node_put;
} else {
goto err_node_put;
}
}
return NULL;
err_node_put:
of_node_put(child);
return regnode;
}
/**
* of_get_regulator - get a regulator device node based on supply name
* @dev: Device pointer for the consumer (of regulator) device
* @supply: regulator supply name
*
* Extract the regulator device node corresponding to the supply name.
* returns the device node corresponding to the regulator if found, else
* returns NULL.
*/
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
struct device_node *regnode = NULL;
char prop_name[32]; /* 32 is max size of property name */
dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
snprintf(prop_name, 32, "%s-supply", supply);
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
if (!regnode) {
regnode = of_get_child_regulator(dev->of_node, prop_name);
if (regnode)
return regnode;
dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
prop_name, dev->of_node);
return NULL;
}
return regnode;
}
/* Platform voltage constraint check */
int regulator_check_voltage(struct regulator_dev *rdev,
int *min_uV, int *max_uV)
{
BUG_ON(*min_uV > *max_uV);
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
rdev_err(rdev, "voltage operation not allowed\n");
return -EPERM;
}
if (*max_uV > rdev->constraints->max_uV)
*max_uV = rdev->constraints->max_uV;
if (*min_uV < rdev->constraints->min_uV)
*min_uV = rdev->constraints->min_uV;
if (*min_uV > *max_uV) {
rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
*min_uV, *max_uV);
return -EINVAL;
}
return 0;
}
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}
/* Make sure we select a voltage that suits the needs of all
* regulator consumers
*/
int regulator_check_consumers(struct regulator_dev *rdev,
int *min_uV, int *max_uV,
suspend_state_t state)
{
struct regulator *regulator;
struct regulator_voltage *voltage;
list_for_each_entry(regulator, &rdev->consumer_list, list) {
voltage = &regulator->voltage[state];
/*
* Assume consumers that didn't say anything are OK
* with anything in the constraint range.
*/
if (!voltage->min_uV && !voltage->max_uV)
continue;
if (*max_uV > voltage->max_uV)
*max_uV = voltage->max_uV;
if (*min_uV < voltage->min_uV)
*min_uV = voltage->min_uV;
}
if (*min_uV > *max_uV) {
rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
*min_uV, *max_uV);
return -EINVAL;
}
return 0;
}
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
int *min_uA, int *max_uA)
{
BUG_ON(*min_uA > *max_uA);
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
rdev_err(rdev, "current operation not allowed\n");
return -EPERM;
}
if (*max_uA > rdev->constraints->max_uA)
*max_uA = rdev->constraints->max_uA;
if (*min_uA < rdev->constraints->min_uA)
*min_uA = rdev->constraints->min_uA;
if (*min_uA > *max_uA) {
rdev_err(rdev, "unsupportable current range: %d-%duA\n",
*min_uA, *max_uA);
return -EINVAL;
}
return 0;
}
/* operating mode constraint check */
static int regulator_mode_constrain(struct regulator_dev *rdev,
unsigned int *mode)
{
switch (*mode) {
case REGULATOR_MODE_FAST:
case REGULATOR_MODE_NORMAL:
case REGULATOR_MODE_IDLE:
case REGULATOR_MODE_STANDBY:
break;
default:
rdev_err(rdev, "invalid mode %x specified\n", *mode);
return -EINVAL;
}
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
rdev_err(rdev, "mode operation not allowed\n");
return -EPERM;
}
/* The modes are bitmasks, the most power hungry modes having
* the lowest values. If the requested mode isn't supported
* try higher modes. */
while (*mode) {
if (rdev->constraints->valid_modes_mask & *mode)
return 0;
*mode /= 2;
}
return -EINVAL;
}
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
if (rdev->constraints == NULL)
return NULL;
switch (state) {
case PM_SUSPEND_STANDBY:
return &rdev->constraints->state_standby;
case PM_SUSPEND_MEM:
return &rdev->constraints->state_mem;
case PM_SUSPEND_MAX:
return &rdev->constraints->state_disk;
default:
return NULL;
}
}
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
const struct regulator_state *rstate;
rstate = regulator_get_suspend_state(rdev, state);
if (rstate == NULL)
return NULL;
/* If we have no suspend mode configuration don't set anything;
* only warn if the driver implements set_suspend_voltage or
* set_suspend_mode callback.
*/
if (rstate->enabled != ENABLE_IN_SUSPEND &&
rstate->enabled != DISABLE_IN_SUSPEND) {
if (rdev->desc->ops->set_suspend_voltage ||
rdev->desc->ops->set_suspend_mode)
rdev_warn(rdev, "No configuration\n");
return NULL;
}
return rstate;
}
static ssize_t regulator_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
int uV;
regulator_lock(rdev);
uV = regulator_get_voltage_rdev(rdev);
regulator_unlock(rdev);
if (uV < 0)
return uV;
return sprintf(buf, "%d\n", uV);
}
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
static ssize_t regulator_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", rdev_get_name(rdev));
}
static DEVICE_ATTR_RO(name);
static const char *regulator_opmode_to_str(int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
return "fast";
case REGULATOR_MODE_NORMAL:
return "normal";
case REGULATOR_MODE_IDLE:
return "idle";
case REGULATOR_MODE_STANDBY:
return "standby";
}
return "unknown";
}
static ssize_t regulator_print_opmode(char *buf, int mode)
{
return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
}
static ssize_t regulator_opmode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
static ssize_t regulator_print_state(char *buf, int state)
{
if (state > 0)
return sprintf(buf, "enabled\n");
else if (state == 0)
return sprintf(buf, "disabled\n");
else
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
ssize_t ret;
regulator_lock(rdev);
ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
regulator_unlock(rdev);
return ret;
}
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
static ssize_t regulator_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
int status;
char *label;
status = rdev->desc->ops->get_status(rdev);
if (status < 0)
return status;
switch (status) {
case REGULATOR_STATUS_OFF:
label = "off";
break;
case REGULATOR_STATUS_ON:
label = "on";
break;
case REGULATOR_STATUS_ERROR:
label = "error";
break;
case REGULATOR_STATUS_FAST:
label = "fast";
break;
case REGULATOR_STATUS_NORMAL:
label = "normal";
break;
case REGULATOR_STATUS_IDLE:
label = "idle";
break;
case REGULATOR_STATUS_STANDBY:
label = "standby";
break;
case REGULATOR_STATUS_BYPASS:
label = "bypass";
break;
case REGULATOR_STATUS_UNDEFINED:
label = "undefined";
break;
default:
return -ERANGE;
}
return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
static ssize_t regulator_min_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
static ssize_t regulator_max_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
static ssize_t regulator_min_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
static ssize_t regulator_max_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
static ssize_t regulator_total_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
struct regulator *regulator;
int uA = 0;
regulator_lock(rdev);
list_for_each_entry(regulator, &rdev->consumer_list, list) {
if (regulator->enable_count)
uA += regulator->uA_load;
}
regulator_unlock(rdev);
return sprintf(buf, "%d\n", uA);
}
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->use_count);
}
static DEVICE_ATTR_RO(num_users);
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
switch (rdev->desc->type) {
case REGULATOR_VOLTAGE:
return sprintf(buf, "voltage\n");
case REGULATOR_CURRENT:
return sprintf(buf, "current\n");
}
return sprintf(buf, "unknown\n");
}
static DEVICE_ATTR_RO(type);
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
regulator_suspend_mem_uV_show, NULL);
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
regulator_suspend_disk_uV_show, NULL);
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
regulator_suspend_standby_uV_show, NULL);
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_mem.mode);
}
static DEVICE_ATTR(suspend_mem_mode, 0444,
regulator_suspend_mem_mode_show, NULL);
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_disk.mode);
}
static DEVICE_ATTR(suspend_disk_mode, 0444,
regulator_suspend_disk_mode_show, NULL);
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_standby.mode);
}
static DEVICE_ATTR(suspend_standby_mode, 0444,
regulator_suspend_standby_mode_show, NULL);
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_mem.enabled);
}
static DEVICE_ATTR(suspend_mem_state, 0444,
regulator_suspend_mem_state_show, NULL);
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_disk.enabled);
}
static DEVICE_ATTR(suspend_disk_state, 0444,
regulator_suspend_disk_state_show, NULL);
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_standby.enabled);
}
static DEVICE_ATTR(suspend_standby_state, 0444,
regulator_suspend_standby_state_show, NULL);
static ssize_t regulator_bypass_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
const char *report;
bool bypass;
int ret;
ret = rdev->desc->ops->get_bypass(rdev, &bypass);
if (ret != 0)
report = "unknown";
else if (bypass)
report = "enabled";
else
report = "disabled";
return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
regulator_bypass_show, NULL);
/* Calculate the new optimum regulator operating mode based on the new total
* consumer load. All locks held by caller */
static int drms_uA_update(struct regulator_dev *rdev)
{
struct regulator *sibling;
int current_uA = 0, output_uV, input_uV, err;
unsigned int mode;
/*
* first check to see if we can set modes at all, otherwise just
* tell the consumer everything is OK.
*/
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
rdev_dbg(rdev, "DRMS operation not allowed\n");
return 0;
}
if (!rdev->desc->ops->get_optimum_mode &&
!rdev->desc->ops->set_load)
return 0;
if (!rdev->desc->ops->set_mode &&
!rdev->desc->ops->set_load)
return -EINVAL;
/* calc total requested load */
list_for_each_entry(sibling, &rdev->consumer_list, list) {
if (sibling->enable_count)
current_uA += sibling->uA_load;
}
current_uA += rdev->constraints->system_load;
if (rdev->desc->ops->set_load) {
/* set the optimum mode for our new total regulator load */
err = rdev->desc->ops->set_load(rdev, current_uA);
if (err < 0)
rdev_err(rdev, "failed to set load %d\n", current_uA);
} else {
/* get output voltage */
output_uV = regulator_get_voltage_rdev(rdev);
if (output_uV <= 0) {
rdev_err(rdev, "invalid output voltage found\n");
return -EINVAL;
}
/* get input voltage */
input_uV = 0;
if (rdev->supply)
input_uV = regulator_get_voltage(rdev->supply);
if (input_uV <= 0)
input_uV = rdev->constraints->input_uV;
if (input_uV <= 0) {
rdev_err(rdev, "invalid input voltage found\n");
return -EINVAL;
}
/* now get the optimum mode for our new total regulator load */
mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
output_uV, current_uA);
/* check the new mode is allowed */
err = regulator_mode_constrain(rdev, &mode);
if (err < 0) {
rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
current_uA, input_uV, output_uV);
return err;
}
err = rdev->desc->ops->set_mode(rdev, mode);
if (err < 0)
rdev_err(rdev, "failed to set optimum mode %x\n", mode);
}
return err;
}
static int __suspend_set_state(struct regulator_dev *rdev,
const struct regulator_state *rstate)
{
int ret = 0;
if (rstate->enabled == ENABLE_IN_SUSPEND &&
rdev->desc->ops->set_suspend_enable)
ret = rdev->desc->ops->set_suspend_enable(rdev);
else if (rstate->enabled == DISABLE_IN_SUSPEND &&
rdev->desc->ops->set_suspend_disable)
ret = rdev->desc->ops->set_suspend_disable(rdev);
else /* OK if set_suspend_enable or set_suspend_disable is NULL */
ret = 0;
if (ret < 0) {
rdev_err(rdev, "failed to enabled/disable\n");
return ret;
}
if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
if (ret < 0) {
rdev_err(rdev, "failed to set voltage\n");
return ret;
}
}
if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
if (ret < 0) {
rdev_err(rdev, "failed to set mode\n");
return ret;
}
}
return ret;
}
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
const struct regulator_state *rstate;
rstate = regulator_get_suspend_state_check(rdev,
rdev->constraints->initial_state);
if (!rstate)
return 0;
return __suspend_set_state(rdev, rstate);
}
static void print_constraints(struct regulator_dev *rdev)
{
struct regulation_constraints *constraints = rdev->constraints;
char buf[160] = "";
size_t len = sizeof(buf) - 1;
int count = 0;
int ret;
if (constraints->min_uV && constraints->max_uV) {
if (constraints->min_uV == constraints->max_uV)
count += scnprintf(buf + count, len - count, "%d mV ",
constraints->min_uV / 1000);
else
count += scnprintf(buf + count, len - count,
"%d <--> %d mV ",
constraints->min_uV / 1000,
constraints->max_uV / 1000);
}
if (!constraints->min_uV ||
constraints->min_uV != constraints->max_uV) {
ret = regulator_get_voltage_rdev(rdev);
if (ret > 0)
count += scnprintf(buf + count, len - count,
"at %d mV ", ret / 1000);
}
if (constraints->uV_offset)
count += scnprintf(buf + count, len - count, "%dmV offset ",
constraints->uV_offset / 1000);
if (constraints->min_uA && constraints->max_uA) {
if (constraints->min_uA == constraints->max_uA)
count += scnprintf(buf + count, len - count, "%d mA ",
constraints->min_uA / 1000);
else
count += scnprintf(buf + count, len - count,
"%d <--> %d mA ",
constraints->min_uA / 1000,
constraints->max_uA / 1000);
}
if (!constraints->min_uA ||
constraints->min_uA != constraints->max_uA) {
ret = _regulator_get_current_limit(rdev);
if (ret > 0)
count += scnprintf(buf + count, len - count,
"at %d mA ", ret / 1000);
}
if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
count += scnprintf(buf + count, len - count, "fast ");
if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
count += scnprintf(buf + count, len - count, "normal ");
if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
count += scnprintf(buf + count, len - count, "idle ");
if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
count += scnprintf(buf + count, len - count, "standby");
if (!count)
scnprintf(buf, len, "no parameters");
rdev_dbg(rdev, "%s\n", buf);
if ((constraints->min_uV != constraints->max_uV) &&
!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
rdev_warn(rdev,
"Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
}
static int machine_constraints_voltage(struct regulator_dev *rdev,
struct regulation_constraints *constraints)
{
const struct regulator_ops *ops = rdev->desc->ops;
int ret;
/* do we need to apply the constraint voltage */
if (rdev->constraints->apply_uV &&
rdev->constraints->min_uV && rdev->constraints->max_uV) {
int target_min, target_max;
int current_uV = regulator_get_voltage_rdev(rdev);
if (current_uV == -ENOTRECOVERABLE) {
/* This regulator can't be read and must be initialized */
rdev_info(rdev, "Setting %d-%duV\n",
rdev->constraints->min_uV,
rdev->constraints->max_uV);
_regulator_do_set_voltage(rdev,
rdev->constraints->min_uV,
rdev->constraints->max_uV);
current_uV = regulator_get_voltage_rdev(rdev);
}
if (current_uV < 0) {
rdev_err(rdev,
"failed to get the current voltage(%d)\n",
current_uV);
return current_uV;
}
/*
* If we're below the minimum voltage move up to the
* minimum voltage, if we're above the maximum voltage
* then move down to the maximum.
*/
target_min = current_uV;
target_max = current_uV;
if (current_uV < rdev->constraints->min_uV) {
target_min = rdev->constraints->min_uV;
target_max = rdev->constraints->min_uV;
}
if (current_uV > rdev->constraints->max_uV) {
target_min = rdev->constraints->max_uV;
target_max = rdev->constraints->max_uV;
}
if (target_min != current_uV || target_max != current_uV) {
rdev_info(rdev, "Bringing %duV into %d-%duV\n",
current_uV, target_min, target_max);
ret = _regulator_do_set_voltage(
rdev, target_min, target_max);
if (ret < 0) {
rdev_err(rdev,
"failed to apply %d-%duV constraint(%d)\n",
target_min, target_max, ret);
return ret;
}
}
}
/* constrain machine-level voltage specs to fit
* the actual range supported by this regulator.
*/
if (ops->list_voltage && rdev->desc->n_voltages) {
int count = rdev->desc->n_voltages;
int i;
int min_uV = INT_MAX;
int max_uV = INT_MIN;
int cmin = constraints->min_uV;
int cmax = constraints->max_uV;
/* it's safe to autoconfigure fixed-voltage supplies
and the constraints are used by list_voltage. */
if (count == 1 && !cmin) {
cmin = 1;
cmax = INT_MAX;
constraints->min_uV = cmin;
constraints->max_uV = cmax;
}
/* voltage constraints are optional */
if ((cmin == 0) && (cmax == 0))
return 0;
/* else require explicit machine-level constraints */
if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
rdev_err(rdev, "invalid voltage constraints\n");
return -EINVAL;
}
/* no need to loop voltages if range is continuous */
if (rdev->desc->continuous_voltage_range)
return 0;
/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
for (i = 0; i < count; i++) {
int value;
value = ops->list_voltage(rdev, i);
if (value <= 0)
continue;
/* maybe adjust [min_uV..max_uV] */
if (value >= cmin && value < min_uV)
min_uV = value;
if (value <= cmax && value > max_uV)
max_uV = value;
}
/* final: [min_uV..max_uV] valid iff constraints valid */
if (max_uV < min_uV) {
rdev_err(rdev,
"unsupportable voltage constraints %u-%uuV\n",
min_uV, max_uV);
return -EINVAL;
}
/* use regulator's subset of machine constraints */
if (constraints->min_uV < min_uV) {
rdev_dbg(rdev, "override min_uV, %d -> %d\n",
constraints->min_uV, min_uV);
constraints->min_uV = min_uV;
}
if (constraints->max_uV > max_uV) {
rdev_dbg(rdev, "override max_uV, %d -> %d\n",
constraints->max_uV, max_uV);
constraints->max_uV = max_uV;
}
}
return 0;
}
static int machine_constraints_current(struct regulator_dev *rdev,
struct regulation_constraints *constraints)
{
const struct regulator_ops *ops = rdev->desc->ops;
int ret;
if (!constraints->min_uA && !constraints->max_uA)
return 0;
if (constraints->min_uA > constraints->max_uA) {
rdev_err(rdev, "Invalid current constraints\n");
return -EINVAL;
}
if (!ops->set_current_limit || !ops->get_current_limit) {
rdev_warn(rdev, "Operation of current configuration missing\n");
return 0;
}
/* Set regulator current in constraints range */
ret = ops->set_current_limit(rdev, constraints->min_uA,
constraints->max_uA);
if (ret < 0) {
rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
return ret;
}
return 0;
}
static int _regulator_do_enable(struct regulator_dev *rdev);
/**
* set_machine_constraints - sets regulator constraints
* @rdev: regulator source
* @constraints: constraints to apply
*
* Allows platform initialisation code to define and constrain
* regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
* Constraints *must* be set by platform code in order for some
* regulator operations to proceed i.e. set_voltage, set_current_limit,
* set_mode.
*/
static int set_machine_constraints(struct regulator_dev *rdev,
const struct regulation_constraints *constraints)
{
int ret = 0;
const struct regulator_ops *ops = rdev->desc->ops;
if (constraints)
rdev->constraints = kmemdup(constraints, sizeof(*constraints),
GFP_KERNEL);
else
rdev->constraints = kzalloc(sizeof(*constraints),
GFP_KERNEL);
if (!rdev->constraints)
return -ENOMEM;
ret = machine_constraints_voltage(rdev, rdev->constraints);
if (ret != 0)
return ret;
ret = machine_constraints_current(rdev, rdev->constraints);
if (ret != 0)
return ret;
if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
ret = ops->set_input_current_limit(rdev,
rdev->constraints->ilim_uA);
if (ret < 0) {
rdev_err(rdev, "failed to set input limit\n");
return ret;
}
}
/* do we need to setup our suspend state */
if (rdev->constraints->initial_state) {
ret = suspend_set_initial_state(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to set suspend state\n");
return ret;
}
}
if (rdev->constraints->initial_mode) {
if (!ops->set_mode) {
rdev_err(rdev, "no set_mode operation\n");
return -EINVAL;
}
ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
if (ret < 0) {
rdev_err(rdev, "failed to set initial mode: %d\n", ret);
return ret;
}
} else if (rdev->constraints->system_load) {
/*
* We'll only apply the initial system load if an
* initial mode wasn't specified.
*/
drms_uA_update(rdev);
}
if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
&& ops->set_ramp_delay) {
ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
if (ret < 0) {
rdev_err(rdev, "failed to set ramp_delay\n");
return ret;
}
}
if (rdev->constraints->pull_down && ops->set_pull_down) {
ret = ops->set_pull_down(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to set pull down\n");
return ret;
}
}
if (rdev->constraints->soft_start && ops->set_soft_start) {
ret = ops->set_soft_start(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to set soft start\n");
return ret;
}
}
if (rdev->constraints->over_current_protection
&& ops->set_over_current_protection) {
ret = ops->set_over_current_protection(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to set over current protection\n");
return ret;
}
}
if (rdev->constraints->active_discharge && ops->set_active_discharge) {
bool ad_state = (rdev->constraints->active_discharge ==
REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
ret = ops->set_active_discharge(rdev, ad_state);
if (ret < 0) {
rdev_err(rdev, "failed to set active discharge\n");
return ret;
}
}
/* If the constraints say the regulator should be on at this point
* and we have control then make sure it is enabled.
*/
if (rdev->constraints->always_on || rdev->constraints->boot_on) {
if (rdev->supply) {
ret = regulator_enable(rdev->supply);
if (ret < 0) {
_regulator_put(rdev->supply);
rdev->supply = NULL;
return ret;
}
}
ret = _regulator_do_enable(rdev);
if (ret < 0 && ret != -EINVAL) {
rdev_err(rdev, "failed to enable\n");
return ret;
}
if (rdev->constraints->always_on)
rdev->use_count++;
}
print_constraints(rdev);
return 0;
}
/**
* set_supply - set regulator supply regulator
* @rdev: regulator name
* @supply_rdev: supply regulator name
*
* Called by platform initialisation code to set the supply regulator for this
* regulator. This ensures that a regulators supply will also be enabled by the
* core if it's child is enabled.
*/
static int set_supply(struct regulator_dev *rdev,
struct regulator_dev *supply_rdev)
{
int err;
rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
if (!try_module_get(supply_rdev->owner))
return -ENODEV;
rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
if (rdev->supply == NULL) {
err = -ENOMEM;
return err;
}
supply_rdev->open_count++;
return 0;
}
/**
* set_consumer_device_supply - Bind a regulator to a symbolic supply
* @rdev: regulator source
* @consumer_dev_name: dev_name() string for device supply applies to
* @supply: symbolic name for supply
*
* Allows platform initialisation code to map physical regulator
* sources to symbolic names for supplies for use by devices. Devices
* should use these symbolic names to request regulators, avoiding the
* need to provide board-specific regulator names as platform data.
*/
static int set_consumer_device_supply(struct regulator_dev *rdev,
const char *consumer_dev_name,
const char *supply)
{
struct regulator_map *node, *new_node;
int has_dev;
if (supply == NULL)
return -EINVAL;
if (consumer_dev_name != NULL)
has_dev = 1;
else
has_dev = 0;
new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
if (new_node == NULL)
return -ENOMEM;
new_node->regulator = rdev;
new_node->supply = supply;
if (has_dev) {
new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
if (new_node->dev_name == NULL) {
kfree(new_node);
return -ENOMEM;
}
}
mutex_lock(&regulator_list_mutex);
list_for_each_entry(node, &regulator_map_list, list) {
if (node->dev_name && consumer_dev_name) {
if (strcmp(node->dev_name, consumer_dev_name) != 0)
continue;
} else if (node->dev_name || consumer_dev_name) {
continue;
}
if (strcmp(node->supply, supply) != 0)
continue;
pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
consumer_dev_name,
dev_name(&node->regulator->dev),
node->regulator->desc->name,
supply,
dev_name(&rdev->dev), rdev_get_name(rdev));
goto fail;
}
list_add(&new_node->list, &regulator_map_list);
mutex_unlock(&regulator_list_mutex);
return 0;
fail:
mutex_unlock(&regulator_list_mutex);
kfree(new_node->dev_name);
kfree(new_node);
return -EBUSY;
}
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
struct regulator_map *node, *n;
list_for_each_entry_safe(node, n, &regulator_map_list, list) {
if (rdev == node->regulator) {
list_del(&node->list);
kfree(node->dev_name);
kfree(node);
}
}
}
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
const struct regulator *regulator = file->private_data;
const struct regulation_constraints *c = regulator->rdev->constraints;
char *buf;
ssize_t ret;
if (!c)
return 0;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = snprintf(buf, PAGE_SIZE,
"always_on: %u\n"
"boot_on: %u\n"
"apply_uV: %u\n"
"ramp_disable: %u\n"
"soft_start: %u\n"
"pull_down: %u\n"
"over_current_protection: %u\n",
c->always_on,
c->boot_on,
c->apply_uV,
c->ramp_disable,
c->soft_start,
c->pull_down,
c->over_current_protection);
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
#endif
static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
.open = simple_open,
.read = constraint_flags_read_file,
.llseek = default_llseek,
#endif
};
#define REG_STR_SIZE 64
static struct regulator *create_regulator(struct regulator_dev *rdev,
struct device *dev,
const char *supply_name)
{
struct regulator *regulator;
int err;
if (dev) {
char buf[REG_STR_SIZE];
int size;
size = snprintf(buf, REG_STR_SIZE, "%s-%s",
dev->kobj.name, supply_name);
if (size >= REG_STR_SIZE)
return NULL;
supply_name = kstrdup(buf, GFP_KERNEL);
if (supply_name == NULL)
return NULL;
} else {
supply_name = kstrdup_const(supply_name, GFP_KERNEL);
if (supply_name == NULL)
return NULL;
}
regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
if (regulator == NULL) {
kfree(supply_name);
return NULL;
}
regulator->rdev = rdev;
regulator->supply_name = supply_name;
regulator_lock(rdev);
list_add(&regulator->list, &rdev->consumer_list);
regulator_unlock(rdev);
if (dev) {
regulator->dev = dev;
/* Add a link to the device sysfs entry */
err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
supply_name);
if (err) {
rdev_dbg(rdev, "could not add device link %s err %d\n",
dev->kobj.name, err);
/* non-fatal */
}
}
regulator->debugfs = debugfs_create_dir(supply_name,
rdev->debugfs);
if (!regulator->debugfs) {
rdev_dbg(rdev, "Failed to create debugfs directory\n");
} else {
debugfs_create_u32("uA_load", 0444, regulator->debugfs,
&regulator->uA_load);
debugfs_create_u32("min_uV", 0444, regulator->debugfs,
&regulator->voltage[PM_SUSPEND_ON].min_uV);
debugfs_create_u32("max_uV", 0444, regulator->debugfs,
&regulator->voltage[PM_SUSPEND_ON].max_uV);
debugfs_create_file("constraint_flags", 0444,
regulator->debugfs, regulator,
&constraint_flags_fops);
}
/*
* Check now if the regulator is an always on regulator - if
* it is then we don't need to do nearly so much work for
* enable/disable calls.
*/
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
_regulator_is_enabled(rdev))
regulator->always_on = true;
return regulator;
}
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
if (rdev->constraints && rdev->constraints->enable_time)
return rdev->constraints->enable_time;
if (rdev->desc->ops->enable_time)
return rdev->desc->ops->enable_time(rdev);
return rdev->desc->enable_time;
}
static struct regulator_supply_alias *regulator_find_supply_alias(
struct device *dev, const char *supply)
{
struct regulator_supply_alias *map;
list_for_each_entry(map, &regulator_supply_alias_list, list)
if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
return map;
return NULL;
}
static void regulator_supply_alias(struct device **dev, const char **supply)
{
struct regulator_supply_alias *map;
map = regulator_find_supply_alias(*dev, *supply);
if (map) {
dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
*supply, map->alias_supply,
dev_name(map->alias_dev));
*dev = map->alias_dev;
*supply = map->alias_supply;
}
}
static int regulator_match(struct device *dev, const void *data)
{
struct regulator_dev *r = dev_to_rdev(dev);
return strcmp(rdev_get_name(r), data) == 0;
}
static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
struct device *dev;
dev = class_find_device(&regulator_class, NULL, name, regulator_match);
return dev ? dev_to_rdev(dev) : NULL;
}
/**
* regulator_dev_lookup - lookup a regulator device.
* @dev: device for regulator "consumer".
* @supply: Supply name or regulator ID.
*
* If successful, returns a struct regulator_dev that corresponds to the name
* @supply and with the embedded struct device refcount incremented by one.
* The refcount must be dropped by calling put_device().
* On failure one of the following ERR-PTR-encoded values is returned:
* -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
* in the future.
*/
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
const char *supply)
{
struct regulator_dev *r = NULL;
struct device_node *node;
struct regulator_map *map;
const char *devname = NULL;
regulator_supply_alias(&dev, &supply);
/* first do a dt based lookup */
if (dev && dev->of_node) {
node = of_get_regulator(dev, supply);
if (node) {
r = of_find_regulator_by_node(node);
if (r)
return r;
/*
* We have a node, but there is no device.
* assume it has not registered yet.
*/
return ERR_PTR(-EPROBE_DEFER);
}
}
/* if not found, try doing it non-dt way */
if (dev)
devname = dev_name(dev);
mutex_lock(&regulator_list_mutex);
list_for_each_entry(map, &regulator_map_list, list) {
/* If the mapping has a device set up it must match */
if (map->dev_name &&
(!devname || strcmp(map->dev_name, devname)))
continue;
if (strcmp(map->supply, supply) == 0 &&
get_device(&map->regulator->dev)) {
r = map->regulator;
break;
}
}
mutex_unlock(&regulator_list_mutex);
if (r)
return r;
r = regulator_lookup_by_name(supply);
if (r)
return r;
return ERR_PTR(-ENODEV);
}
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
struct regulator_dev *r;
struct device *dev = rdev->dev.parent;
int ret;
/* No supply to resolve? */
if (!rdev->supply_name)
return 0;
/* Supply already resolved? */
if (rdev->supply)
return 0;
r = regulator_dev_lookup(dev, rdev->supply_name);
if (IS_ERR(r)) {
ret = PTR_ERR(r);
/* Did the lookup explicitly defer for us? */
if (ret == -EPROBE_DEFER)
return ret;
if (have_full_constraints()) {
r = dummy_regulator_rdev;
get_device(&r->dev);
} else {
dev_err(dev, "Failed to resolve %s-supply for %s\n",
rdev->supply_name, rdev->desc->name);
return -EPROBE_DEFER;
}
}
/*
* If the supply's parent device is not the same as the
* regulator's parent device, then ensure the parent device
* is bound before we resolve the supply, in case the parent
* device get probe deferred and unregisters the supply.
*/
if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
if (!device_is_bound(r->dev.parent)) {
put_device(&r->dev);
return -EPROBE_DEFER;
}
}
/* Recursively resolve the supply of the supply */
ret = regulator_resolve_supply(r);
if (ret < 0) {
put_device(&r->dev);
return ret;
}
ret = set_supply(rdev, r);
if (ret < 0) {
put_device(&r->dev);
return ret;
}
/*
* In set_machine_constraints() we may have turned this regulator on
* but we couldn't propagate to the supply if it hadn't been resolved
* yet. Do it now.
*/
if (rdev->use_count) {
ret = regulator_enable(rdev->supply);
if (ret < 0) {
_regulator_put(rdev->supply);
rdev->supply = NULL;
return ret;
}
}
return 0;
}
/* Internal regulator request function */
struct regulator *_regulator_get(struct device *dev, const char *id,
enum regulator_get_type get_type)
{
struct regulator_dev *rdev;
struct regulator *regulator;
struct device_link *link;
int ret;
if (get_type >= MAX_GET_TYPE) {
dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
return ERR_PTR(-EINVAL);
}
if (id == NULL) {
pr_err("get() with no identifier\n");
return ERR_PTR(-EINVAL);
}
rdev = regulator_dev_lookup(dev, id);
if (IS_ERR(rdev)) {
ret = PTR_ERR(rdev);
/*
* If regulator_dev_lookup() fails with error other
* than -ENODEV our job here is done, we simply return it.
*/
if (ret != -ENODEV)
return ERR_PTR(ret);
if (!have_full_constraints()) {
dev_warn(dev,
"incomplete constraints, dummy supplies not allowed\n");
return ERR_PTR(-ENODEV);
}
switch (get_type) {
case NORMAL_GET:
/*
* Assume that a regulator is physically present and
* enabled, even if it isn't hooked up, and just
* provide a dummy.
*/
dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
rdev = dummy_regulator_rdev;
get_device(&rdev->dev);
break;
case EXCLUSIVE_GET:
dev_warn(dev,
"dummy supplies not allowed for exclusive requests\n");
/* fall through */
default:
return ERR_PTR(-ENODEV);
}
}
if (rdev->exclusive) {
regulator = ERR_PTR(-EPERM);
put_device(&rdev->dev);
return regulator;
}
if (get_type == EXCLUSIVE_GET && rdev->open_count) {
regulator = ERR_PTR(-EBUSY);
put_device(&rdev->dev);
return regulator;
}
mutex_lock(&regulator_list_mutex);
ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
mutex_unlock(&regulator_list_mutex);
if (ret != 0) {
regulator = ERR_PTR(-EPROBE_DEFER);
put_device(&rdev->dev);
return regulator;
}
ret = regulator_resolve_supply(rdev);
if (ret < 0) {
regulator = ERR_PTR(ret);
put_device(&rdev->dev);
return regulator;
}
if (!try_module_get(rdev->owner)) {
regulator = ERR_PTR(-EPROBE_DEFER);
put_device(&rdev->dev);
return regulator;
}
regulator = create_regulator(rdev, dev, id);
if (regulator == NULL) {
regulator = ERR_PTR(-ENOMEM);
module_put(rdev->owner);
put_device(&rdev->dev);
return regulator;
}
rdev->open_count++;
if (get_type == EXCLUSIVE_GET) {
rdev->exclusive = 1;
ret = _regulator_is_enabled(rdev);
if (ret > 0)
rdev->use_count = 1;
else
rdev->use_count = 0;
}
link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
if (!IS_ERR_OR_NULL(link))
regulator->device_link = true;
return regulator;
}
/**
* regulator_get - lookup and obtain a reference to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get(struct device *dev, const char *id)
{
return _regulator_get(dev, id, NORMAL_GET);
}
EXPORT_SYMBOL_GPL(regulator_get);
/**
* regulator_get_exclusive - obtain exclusive access to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno. Other consumers will be
* unable to obtain this regulator while this reference is held and the
* use count for the regulator will be initialised to reflect the current
* state of the regulator.
*
* This is intended for use by consumers which cannot tolerate shared
* use of the regulator such as those which need to force the
* regulator off for correct operation of the hardware they are
* controlling.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
return _regulator_get(dev, id, EXCLUSIVE_GET);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
/**
* regulator_get_optional - obtain optional access to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno.
*
* This is intended for use by consumers for devices which can have
* some supplies unconnected in normal use, such as some MMC devices.
* It can allow the regulator core to provide stub supplies for other
* supplies requested using normal regulator_get() calls without
* disrupting the operation of drivers that can handle absent
* supplies.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
return _regulator_get(dev, id, OPTIONAL_GET);
}
EXPORT_SYMBOL_GPL(regulator_get_optional);
static void destroy_regulator(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
debugfs_remove_recursive(regulator->debugfs);
if (regulator->dev) {
if (regulator->device_link)
device_link_remove(regulator->dev, &rdev->dev);
/* remove any sysfs entries */
sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
}
regulator_lock(rdev);
list_del(&regulator->list);
rdev->open_count--;
rdev->exclusive = 0;
regulator_unlock(rdev);
kfree_const(regulator->supply_name);
kfree(regulator);
}
/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
struct regulator_dev *rdev;
if (IS_ERR_OR_NULL(regulator))
return;
lockdep_assert_held_once(&regulator_list_mutex);
/* Docs say you must disable before calling regulator_put() */
WARN_ON(regulator->enable_count);
rdev = regulator->rdev;
destroy_regulator(regulator);
module_put(rdev->owner);
put_device(&rdev->dev);
}
/**
* regulator_put - "free" the regulator source
* @regulator: regulator source
*
* Note: drivers must ensure that all regulator_enable calls made on this
* regulator source are balanced by regulator_disable calls prior to calling
* this function.
*/
void regulator_put(struct regulator *regulator)
{
mutex_lock(&regulator_list_mutex);
_regulator_put(regulator);
mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);
/**
* regulator_register_supply_alias - Provide device alias for supply lookup
*
* @dev: device that will be given as the regulator "consumer"
* @id: Supply name or regulator ID
* @alias_dev: device that should be used to lookup the supply
* @alias_id: Supply name or regulator ID that should be used to lookup the
* supply
*
* All lookups for id on dev will instead be conducted for alias_id on
* alias_dev.
*/
int regulator_register_supply_alias(struct device *dev, const char *id,
struct device *alias_dev,
const char *alias_id)
{
struct regulator_supply_alias *map;
map = regulator_find_supply_alias(dev, id);
if (map)
return -EEXIST;
map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
if (!map)
return -ENOMEM;
map->src_dev = dev;
map->src_supply = id;
map->alias_dev = alias_dev;
map->alias_supply = alias_id;
list_add(&map->list, &regulator_supply_alias_list);
pr_info("Adding alias for supply %s,%s -> %s,%s\n",
id, dev_name(dev), alias_id, dev_name(alias_dev));
return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
/**
* regulator_unregister_supply_alias - Remove device alias
*
* @dev: device that will be given as the regulator "consumer"
* @id: Supply name or regulator ID
*
* Remove a lookup alias if one exists for id on dev.
*/
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
struct regulator_supply_alias *map;
map = regulator_find_supply_alias(dev, id);
if (map) {
list_del(&map->list);
kfree(map);
}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
/**
* regulator_bulk_register_supply_alias - register multiple aliases
*
* @dev: device that will be given as the regulator "consumer"
* @id: List of supply names or regulator IDs
* @alias_dev: device that should be used to lookup the supply
* @alias_id: List of supply names or regulator IDs that should be used to
* lookup the supply
* @num_id: Number of aliases to register
*
* @return 0 on success, an errno on failure.
*
* This helper function allows drivers to register several supply
* aliases in one operation. If any of the aliases cannot be
* registered any aliases that were registered will be removed
* before returning to the caller.
*/
int regulator_bulk_register_supply_alias(struct device *dev,
const char *const *id,
struct device *alias_dev,
const char *const *alias_id,
int num_id)
{
int i;
int ret;
for (i = 0; i < num_id; ++i) {
ret = regulator_register_supply_alias(dev, id[i], alias_dev,
alias_id[i]);
if (ret < 0)
goto err;
}
return 0;
err:
dev_err(dev,
"Failed to create supply alias %s,%s -> %s,%s\n",
id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
while (--i >= 0)
regulator_unregister_supply_alias(dev, id[i]);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
/**
* regulator_bulk_unregister_supply_alias - unregister multiple aliases
*
* @dev: device that will be given as the regulator "consumer"
* @id: List of supply names or regulator IDs
* @num_id: Number of aliases to unregister
*
* This helper function allows drivers to unregister several supply
* aliases in one operation.
*/
void regulator_bulk_unregister_supply_alias(struct device *dev,
const char *const *id,
int num_id)
{
int i;
for (i = 0; i < num_id; ++i)
regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
const struct regulator_config *config)
{
struct regulator_enable_gpio *pin, *new_pin;
struct gpio_desc *gpiod;
gpiod = config->ena_gpiod;
new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
mutex_lock(&regulator_list_mutex);
list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
if (pin->gpiod == gpiod) {
rdev_dbg(rdev, "GPIO is already used\n");
goto update_ena_gpio_to_rdev;
}
}
if (new_pin == NULL) {
mutex_unlock(&regulator_list_mutex);
return -ENOMEM;
}
pin = new_pin;
new_pin = NULL;
pin->gpiod = gpiod;
list_add(&pin->list, &regulator_ena_gpio_list);
update_ena_gpio_to_rdev:
pin->request_count++;
rdev->ena_pin = pin;
mutex_unlock(&regulator_list_mutex);
kfree(new_pin);
return 0;
}
static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
struct regulator_enable_gpio *pin, *n;
if (!rdev->ena_pin)
return;
/* Free the GPIO only in case of no use */
list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
if (pin != rdev->ena_pin)
continue;
if (--pin->request_count)
break;
gpiod_put(pin->gpiod);
list_del(&pin->list);
kfree(pin);
break;
}
rdev->ena_pin = NULL;
}
/**
* regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
* @rdev: regulator_dev structure
* @enable: enable GPIO at initial use?
*
* GPIO is enabled in case of initial use. (enable_count is 0)
* GPIO is disabled when it is not shared any more. (enable_count <= 1)
*/
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
struct regulator_enable_gpio *pin = rdev->ena_pin;
if (!pin)
return -EINVAL;
if (enable) {
/* Enable GPIO at initial use */
if (pin->enable_count == 0)
gpiod_set_value_cansleep(pin->gpiod, 1);
pin->enable_count++;
} else {
if (pin->enable_count > 1) {
pin->enable_count--;
return 0;
}
/* Disable GPIO if not used */
if (pin->enable_count <= 1) {
gpiod_set_value_cansleep(pin->gpiod, 0);
pin->enable_count = 0;
}
}
return 0;
}
/**
* _regulator_enable_delay - a delay helper function
* @delay: time to delay in microseconds
*
* Delay for the requested amount of time as per the guidelines in:
*
* Documentation/timers/timers-howto.rst
*
* The assumption here is that regulators will never be enabled in
* atomic context and therefore sleeping functions can be used.
*/
static void _regulator_enable_delay(unsigned int delay)
{
unsigned int ms = delay / 1000;
unsigned int us = delay % 1000;
if (ms > 0) {
/*
* For small enough values, handle super-millisecond
* delays in the usleep_range() call below.
*/
if (ms < 20)
us += ms * 1000;
else
msleep(ms);
}
/*
* Give the scheduler some room to coalesce with any other
* wakeup sources. For delays shorter than 10 us, don't even
* bother setting up high-resolution timers and just busy-
* loop.
*/
if (us >= 10)
usleep_range(us, us + 100);
else
udelay(us);
}
/**
* _regulator_check_status_enabled
*
* A helper function to check if the regulator status can be interpreted
* as 'regulator is enabled'.
* @rdev: the regulator device to check
*
* Return:
* * 1 - if status shows regulator is in enabled state
* * 0 - if not enabled state
* * Error Value - as received from ops->get_status()
*/
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
int ret = rdev->desc->ops->get_status(rdev);
if (ret < 0) {
rdev_info(rdev, "get_status returned error: %d\n", ret);
return ret;
}
switch (ret) {
case REGULATOR_STATUS_OFF:
case REGULATOR_STATUS_ERROR:
case REGULATOR_STATUS_UNDEFINED:
return 0;
default:
return 1;
}
}
static int _regulator_do_enable(struct regulator_dev *rdev)
{
int ret, delay;
/* Query before enabling in case configuration dependent. */
ret = _regulator_get_enable_time(rdev);
if (ret >= 0) {
delay = ret;
} else {
rdev_warn(rdev, "enable_time() failed: %d\n", ret);
delay = 0;
}
trace_regulator_enable(rdev_get_name(rdev));
if (rdev->desc->off_on_delay) {
/* if needed, keep a distance of off_on_delay from last time
* this regulator was disabled.
*/
unsigned long start_jiffy = jiffies;
unsigned long intended, max_delay, remaining;
max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
intended = rdev->last_off_jiffy + max_delay;
if (time_before(start_jiffy, intended)) {
/* calc remaining jiffies to deal with one-time
* timer wrapping.
* in case of multiple timer wrapping, either it can be
* detected by out-of-range remaining, or it cannot be
* detected and we get a penalty of
* _regulator_enable_delay().
*/
remaining = intended - start_jiffy;
if (remaining <= max_delay)
_regulator_enable_delay(
jiffies_to_usecs(remaining));
}
}
if (rdev->ena_pin) {
if (!rdev->ena_gpio_state) {
ret = regulator_ena_gpio_ctrl(rdev, true);
if (ret < 0)
return ret;
rdev->ena_gpio_state = 1;
}
} else if (rdev->desc->ops->enable) {
ret = rdev->desc->ops->enable(rdev);
if (ret < 0)
return ret;
} else {
return -EINVAL;
}
/* Allow the regulator to ramp; it would be useful to extend
* this for bulk operations so that the regulators can ramp
* together. */
trace_regulator_enable_delay(rdev_get_name(rdev));
/* If poll_enabled_time is set, poll upto the delay calculated
* above, delaying poll_enabled_time uS to check if the regulator
* actually got enabled.
* If the regulator isn't enabled after enable_delay has
* expired, return -ETIMEDOUT.
*/
if (rdev->desc->poll_enabled_time) {
unsigned int time_remaining = delay;
while (time_remaining > 0) {
_regulator_enable_delay(rdev->desc->poll_enabled_time);
if (rdev->desc->ops->get_status) {
ret = _regulator_check_status_enabled(rdev);
if (ret < 0)
return ret;
else if (ret)
break;
} else if (rdev->desc->ops->is_enabled(rdev))
break;
time_remaining -= rdev->desc->poll_enabled_time;
}
if (time_remaining <= 0) {
rdev_err(rdev, "Enabled check timed out\n");
return -ETIMEDOUT;
}
} else {
_regulator_enable_delay(delay);
}
trace_regulator_enable_complete(rdev_get_name(rdev));
return 0;
}
/**
* _regulator_handle_consumer_enable - handle that a consumer enabled
* @regulator: regulator source
*
* Some things on a regulator consumer (like the contribution towards total
* load on the regulator) only have an effect when the consumer wants the
* regulator enabled. Explained in example with two consumers of the same
* regulator:
* consumer A: set_load(100); => total load = 0
* consumer A: regulator_enable(); => total load = 100
* consumer B: set_load(1000); => total load = 100
* consumer B: regulator_enable(); => total load = 1100
* consumer A: regulator_disable(); => total_load = 1000
*
* This function (together with _regulator_handle_consumer_disable) is
* responsible for keeping track of the refcount for a given regulator consumer
* and applying / unapplying these things.
*
* Returns 0 upon no error; -error upon error.
*/
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
lockdep_assert_held_once(&rdev->mutex.base);
regulator->enable_count++;
if (regulator->uA_load && regulator->enable_count == 1)
return drms_uA_update(rdev);
return 0;
}
/**
* _regulator_handle_consumer_disable - handle that a consumer disabled
* @regulator: regulator source
*
* The opposite of _regulator_handle_consumer_enable().
*
* Returns 0 upon no error; -error upon error.
*/
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
lockdep_assert_held_once(&rdev->mutex.base);
if (!regulator->enable_count) {
rdev_err(rdev, "Underflow of regulator enable count\n");
return -EINVAL;
}
regulator->enable_count--;
if (regulator->uA_load && regulator->enable_count == 0)
return drms_uA_update(rdev);
return 0;
}
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
lockdep_assert_held_once(&rdev->mutex.base);
if (rdev->use_count == 0 && rdev->supply) {
ret = _regulator_enable(rdev->supply);
if (ret < 0)
return ret;
}
/* balance only if there are regulators coupled */
if (rdev->coupling_desc.n_coupled > 1) {
ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
if (ret < 0)
goto err_disable_supply;
}
ret = _regulator_handle_consumer_enable(regulator);
if (ret < 0)
goto err_disable_supply;
if (rdev->use_count == 0) {
/* The regulator may on if it's not switchable or left on */
ret = _regulator_is_enabled(rdev);
if (ret == -EINVAL || ret == 0) {
if (!regulator_ops_is_valid(rdev,
REGULATOR_CHANGE_STATUS)) {
ret = -EPERM;
goto err_consumer_disable;
}
ret = _regulator_do_enable(rdev);
if (ret < 0)
goto err_consumer_disable;
_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
NULL);
} else if (ret < 0) {
rdev_err(rdev, "is_enabled() failed: %d\n", ret);
goto err_consumer_disable;
}
/* Fallthrough on positive return values - already enabled */
}
rdev->use_count++;
return 0;
err_consumer_disable:
_regulator_handle_consumer_disable(regulator);
err_disable_supply:
if (rdev->use_count == 0 && rdev->supply)
_regulator_disable(rdev->supply);
return ret;
}
/**
* regulator_enable - enable regulator output
* @regulator: regulator source
*
* Request that the regulator be enabled with the regulator output at
* the predefined voltage or current value. Calls to regulator_enable()
* must be balanced with calls to regulator_disable().
*
* NOTE: the output value can be set by other drivers, boot loader or may be
* hardwired in the regulator.
*/
int regulator_enable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
struct ww_acquire_ctx ww_ctx;
int ret;
regulator_lock_dependent(rdev, &ww_ctx);
ret = _regulator_enable(regulator);
regulator_unlock_dependent(rdev, &ww_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);
static int _regulator_do_disable(struct regulator_dev *rdev)
{
int ret;
trace_regulator_disable(rdev_get_name(rdev));
if (rdev->ena_pin) {
if (rdev->ena_gpio_state) {
ret = regulator_ena_gpio_ctrl(rdev, false);
if (ret < 0)
return ret;
rdev->ena_gpio_state = 0;
}
} else if (rdev->desc->ops->disable) {
ret = rdev->desc->ops->disable(rdev);
if (ret != 0)
return ret;
}
/* cares about last_off_jiffy only if off_on_delay is required by
* device.
*/
if (rdev->desc->off_on_delay)
rdev->last_off_jiffy = jiffies;
trace_regulator_disable_complete(rdev_get_name(rdev));
return 0;
}
/* locks held by regulator_disable() */
static int _regulator_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
lockdep_assert_held_once(&rdev->mutex.base);
if (WARN(rdev->use_count <= 0,
"unbalanced disables for %s\n", rdev_get_name(rdev)))
return -EIO;
/* are we the last user and permitted to disable ? */
if (rdev->use_count == 1 &&
(rdev->constraints && !rdev->constraints->always_on)) {
/* we are last user */
if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
ret = _notifier_call_chain(rdev,
REGULATOR_EVENT_PRE_DISABLE,
NULL);
if (ret & NOTIFY_STOP_MASK)
return -EINVAL;
ret = _regulator_do_disable(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to disable\n");
_notifier_call_chain(rdev,
REGULATOR_EVENT_ABORT_DISABLE,
NULL);
return ret;
}
_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
NULL);
}
rdev->use_count = 0;
} else if (rdev->use_count > 1) {
rdev->use_count--;
}
if (ret == 0)
ret = _regulator_handle_consumer_disable(regulator);
if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
if (ret == 0 && rdev->use_count == 0 && rdev->supply)
ret = _regulator_disable(rdev->supply);
return ret;
}
/**
* regulator_disable - disable regulator output
* @regulator: regulator source
*
* Disable the regulator output voltage or current. Calls to
* regulator_enable() must be balanced with calls to
* regulator_disable().
*
* NOTE: this will only disable the regulator output if no other consumer
* devices have it enabled, the regulator device supports disabling and
* machine constraints permit this operation.
*/
int regulator_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
struct ww_acquire_ctx ww_ctx;
int ret;
regulator_lock_dependent(rdev, &ww_ctx);
ret = _regulator_disable(regulator);
regulator_unlock_dependent(rdev, &ww_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);
/* locks held by regulator_force_disable() */
static int _regulator_force_disable(struct regulator_dev *rdev)
{
int ret = 0;
lockdep_assert_held_once(&rdev->mutex.base);
ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
REGULATOR_EVENT_PRE_DISABLE, NULL);
if (ret & NOTIFY_STOP_MASK)
return -EINVAL;
ret = _regulator_do_disable(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to force disable\n");
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
REGULATOR_EVENT_ABORT_DISABLE, NULL);
return ret;
}
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
REGULATOR_EVENT_DISABLE, NULL);
return 0;
}
/**
* regulator_force_disable - force disable regulator output
* @regulator: regulator source
*
* Forcibly disable the regulator output voltage or current.
* NOTE: this *will* disable the regulator output even if other consumer
* devices have it enabled. This should be used for situations when device
* damage will likely occur if the regulator is not disabled (e.g. over temp).
*/
int regulator_force_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
struct ww_acquire_ctx ww_ctx;
int ret;
regulator_lock_dependent(rdev, &ww_ctx);
ret = _regulator_force_disable(regulator->rdev);
if (rdev->coupling_desc.n_coupled > 1)
regulator_balance_voltage(rdev, PM_SUSPEND_ON);
if (regulator->uA_load) {
regulator->uA_load = 0;
ret = drms_uA_update(rdev);
}
if (rdev->use_count != 0 && rdev->supply)
_regulator_disable(rdev->supply);
regulator_unlock_dependent(rdev, &ww_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);
static void regulator_disable_work(struct work_struct *work)
{
struct regulator_dev *rdev = container_of(work, struct regulator_dev,
disable_work.work);
struct ww_acquire_ctx ww_ctx;
int count, i, ret;
struct regulator *regulator;
int total_count = 0;
regulator_lock_dependent(rdev, &ww_ctx);
/*
* Workqueue functions queue the new work instance while the previous
* work instance is being processed. Cancel the queued work instance
* as the work instance under processing does the job of the queued
* work instance.
*/
cancel_delayed_work(&rdev->disable_work);
list_for_each_entry(regulator, &rdev->consumer_list, list) {
count = regulator->deferred_disables;
if (!count)
continue;
total_count += count;
regulator->deferred_disables = 0;
for (i = 0; i < count; i++) {
ret = _regulator_disable(regulator);
if (ret != 0)
rdev_err(rdev, "Deferred disable failed: %d\n", ret);
}
}
WARN_ON(!total_count);
if (rdev->coupling_desc.n_coupled > 1)
regulator_balance_voltage(rdev, PM_SUSPEND_ON);
regulator_unlock_dependent(rdev, &ww_ctx);
}
/**
* regulator_disable_deferred - disable regulator output with delay
* @regulator: regulator source
* @ms: milliseconds until the regulator is disabled
*
* Execute regulator_disable() on the regulator after a delay. This
* is intended for use with devices that require some time to quiesce.
*
* NOTE: this will only disable the regulator output if no other consumer
* devices have it enabled, the regulator device supports disabling and
* machine constraints permit this operation.
*/
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
struct regulator_dev *rdev = regulator->rdev;
if (!ms)
return regulator_disable(regulator);
regulator_lock(rdev);
regulator->deferred_disables++;
mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
msecs_to_jiffies(ms));
regulator_unlock(rdev);
return 0;
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
/* A GPIO control always takes precedence */
if (rdev->ena_pin)
return rdev->ena_gpio_state;
/* If we don't know then assume that the regulator is always on */
if (!rdev->desc->ops->is_enabled)
return 1;
return rdev->desc->ops->is_enabled(rdev);
}
static int _regulator_list_voltage(struct regulator_dev *rdev,
unsigned selector, int lock)
{
const struct regulator_ops *ops = rdev->desc->ops;
int ret;
if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
return rdev->desc->fixed_uV;
if (ops->list_voltage) {
if (selector >= rdev->desc->n_voltages)
return -EINVAL;
if (lock)
regulator_lock(rdev);
ret = ops->list_voltage(rdev, selector);
if (lock)
regulator_unlock(rdev);
} else if (rdev->is_switch && rdev->supply) {
ret = _regulator_list_voltage(rdev->supply->rdev,
selector, lock);
} else {
return -EINVAL;
}
if (ret > 0) {
if (ret < rdev->constraints->min_uV)
ret = 0;
else if (ret > rdev->constraints->max_uV)
ret = 0;
}
return ret;
}
/**
* regulator_is_enabled - is the regulator output enabled
* @regulator: regulator source
*
* Returns positive if the regulator driver backing the source/client
* has requested that the device be enabled, zero if it hasn't, else a
* negative errno code.
*
* Note that the device backing this regulator handle can have multiple
* users, so it might be enabled even if regulator_enable() was never
* called for this particular source.
*/
int regulator_is_enabled(struct regulator *regulator)
{
int ret;
if (regulator->always_on)
return 1;
regulator_lock(regulator->rdev);
ret = _regulator_is_enabled(regulator->rdev);
regulator_unlock(regulator->rdev);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);
/**
* regulator_count_voltages - count regulator_list_voltage() selectors
* @regulator: regulator source
*
* Returns number of selectors, or negative errno. Selectors are
* numbered starting at zero, and typically correspond to bitfields
* in hardware registers.
*/
int regulator_count_voltages(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
if (rdev->desc->n_voltages)
return rdev->desc->n_voltages;
if (!rdev->is_switch || !rdev->supply)
return -EINVAL;
return regulator_count_voltages(rdev->supply);
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);
/**
* regulator_list_voltage - enumerate supported voltages
* @regulator: regulator source
* @selector: identify voltage to list
* Context: can sleep
*
* Returns a voltage that can be passed to @regulator_set_voltage(),
* zero if this selector code can't be used on this system, or a
* negative errno.
*/
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
return _regulator_list_voltage(regulator->rdev, selector, 1);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);
/**
* regulator_get_regmap - get the regulator's register map
* @regulator: regulator source
*
* Returns the register map for the given regulator, or an ERR_PTR value
* if the regulator doesn't use regmap.
*/
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
struct regmap *map = regulator->rdev->regmap;
return map ? map : ERR_PTR(-EOPNOTSUPP);
}
/**
* regulator_get_hardware_vsel_register - get the HW voltage selector register
* @regulator: regulator source
* @vsel_reg: voltage selector register, output parameter
* @vsel_mask: mask for voltage selector bitfield, output parameter
*
* Returns the hardware register offset and bitmask used for setting the
* regulator voltage. This might be useful when configuring voltage-scaling
* hardware or firmware that can make I2C requests behind the kernel's back,
* for example.
*
* On success, the output parameters @vsel_reg and @vsel_mask are filled in
* and 0 is returned, otherwise a negative errno is returned.
*/
int regulator_get_hardware_vsel_register(struct regulator *regulator,
unsigned *vsel_reg,
unsigned *vsel_mask)
{
struct regulator_dev *rdev = regulator->rdev;
const struct regulator_ops *ops = rdev->desc->ops;
if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
return -EOPNOTSUPP;
*vsel_reg = rdev->desc->vsel_reg;
*vsel_mask = rdev->desc->vsel_mask;
return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
/**
* regulator_list_hardware_vsel - get the HW-specific register value for a selector
* @regulator: regulator source
* @selector: identify voltage to list
*
* Converts the selector to a hardware-specific voltage selector that can be
* directly written to the regulator registers. The address of the voltage
* register can be determined by calling @regulator_get_hardware_vsel_register.
*
* On error a negative errno is returned.
*/
int regulator_list_hardware_vsel(struct regulator *regulator,
unsigned selector)
{
struct regulator_dev *rdev = regulator->rdev;
const struct regulator_ops *ops = rdev->desc->ops;
if (selector >= rdev->desc->n_voltages)
return -EINVAL;
if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
return -EOPNOTSUPP;
return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
/**
* regulator_get_linear_step - return the voltage step size between VSEL values
* @regulator: regulator source
*
* Returns the voltage step size between VSEL values for linear
* regulators, or return 0 if the regulator isn't a linear regulator.
*/
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);
/**
* regulator_is_supported_voltage - check if a voltage range can be supported
*
* @regulator: Regulator to check.
* @min_uV: Minimum required voltage in uV.
* @max_uV: Maximum required voltage in uV.
*
* Returns a boolean.
*/
int regulator_is_supported_voltage(struct regulator *regulator,
int min_uV, int max_uV)
{
struct regulator_dev *rdev = regulator->rdev;
int i, voltages, ret;
/* If we can't change voltage check the current voltage */
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
ret = regulator_get_voltage(regulator);
if (ret >= 0)
return min_uV <= ret && ret <= max_uV;
else
return ret;
}
/* Any voltage within constrains range is fine? */
if (rdev->desc->continuous_voltage_range)
return min_uV >= rdev->constraints->min_uV &&
max_uV <= rdev->constraints->max_uV;
ret = regulator_count_voltages(regulator);
if (ret < 0)
return 0;
voltages = ret;
for (i = 0; i < voltages; i++) {
ret = regulator_list_voltage(regulator, i);
if (ret >= min_uV && ret <= max_uV)
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV)
{
const struct regulator_desc *desc = rdev->desc;
if (desc->ops->map_voltage)
return desc->ops->map_voltage(rdev, min_uV, max_uV);
if (desc->ops->list_voltage == regulator_list_voltage_linear)
return regulator_map_voltage_linear(rdev, min_uV, max_uV);
if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
if (desc->ops->list_voltage ==
regulator_list_voltage_pickable_linear_range)
return regulator_map_voltage_pickable_linear_range(rdev,
min_uV, max_uV);
return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV,
unsigned *selector)
{
struct pre_voltage_change_data data;
int ret;
data.old_uV = regulator_get_voltage_rdev(rdev);
data.min_uV = min_uV;
data.max_uV = max_uV;
ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
&data);
if (ret & NOTIFY_STOP_MASK)
return -EINVAL;
ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
if (ret >= 0)
return ret;
_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
(void *)data.old_uV);
return ret;
}
static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
int uV, unsigned selector)
{
struct pre_voltage_change_data data;
int ret;
data.old_uV = regulator_get_voltage_rdev(rdev);
data.min_uV = uV;
data.max_uV = uV;
ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
&data);
if (ret & NOTIFY_STOP_MASK)
return -EINVAL;
ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
if (ret >= 0)
return ret;
_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
(void *)data.old_uV);
return ret;
}
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
int uV, int new_selector)
{
const struct regulator_ops *ops = rdev->desc->ops;
int diff, old_sel, curr_sel, ret;
/* Stepping is only needed if the regulator is enabled. */
if (!_regulator_is_enabled(rdev))
goto final_set;
if (!ops->get_voltage_sel)
return -EINVAL;
old_sel = ops->get_voltage_sel(rdev);
if (old_sel < 0)
return old_sel;
diff = new_selector - old_sel;
if (diff == 0)
return 0; /* No change needed. */
if (diff > 0) {
/* Stepping up. */
for (curr_sel = old_sel + rdev->desc->vsel_step;
curr_sel < new_selector;
curr_sel += rdev->desc->vsel_step) {
/*
* Call the callback directly instead of using
* _regulator_call_set_voltage_sel() as we don't
* want to notify anyone yet. Same in the branch
* below.
*/
ret = ops->set_voltage_sel(rdev, curr_sel);
if (ret)
goto try_revert;
}
} else {
/* Stepping down. */
for (curr_sel = old_sel - rdev->desc->vsel_step;
curr_sel > new_selector;
curr_sel -= rdev->desc->vsel_step) {
ret = ops->set_voltage_sel(rdev, curr_sel);
if (ret)
goto try_revert;
}
}
final_set:
/* The final selector will trigger the notifiers. */
return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
try_revert:
/*
* At least try to return to the previous voltage if setting a new
* one failed.
*/
(void)ops->set_voltage_sel(rdev, old_sel);
return ret;
}
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
int old_uV, int new_uV)
{
unsigned int ramp_delay = 0;
if (rdev->constraints->ramp_delay)
ramp_delay = rdev->constraints->ramp_delay;
else if (rdev->desc->ramp_delay)
ramp_delay = rdev->desc->ramp_delay;
else if (rdev->constraints->settling_time)
return rdev->constraints->settling_time;
else if (rdev->constraints->settling_time_up &&
(new_uV > old_uV))
return rdev->constraints->settling_time_up;
else if (rdev->constraints->settling_time_down &&
(new_uV < old_uV))
return rdev->constraints->settling_time_down;
if (ramp_delay == 0) {
rdev_dbg(rdev, "ramp_delay not set\n");
return 0;
}
return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int ret;
int delay = 0;
int best_val = 0;
unsigned int selector;
int old_selector = -1;
const struct regulator_ops *ops = rdev->desc->ops;
int old_uV = regulator_get_voltage_rdev(rdev);
trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
min_uV += rdev->constraints->uV_offset;
max_uV += rdev->constraints->uV_offset;
/*
* If we can't obtain the old selector there is not enough
* info to call set_voltage_time_sel().
*/
if (_regulator_is_enabled(rdev) &&
ops->set_voltage_time_sel && ops->get_voltage_sel) {
old_selector = ops->get_voltage_sel(rdev);
if (old_selector < 0)
return old_selector;
}
if (ops->set_voltage) {
ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
&selector);
if (ret >= 0) {
if (ops->list_voltage)
best_val = ops->list_voltage(rdev,
selector);
else
best_val = regulator_get_voltage_rdev(rdev);
}
} else if (ops->set_voltage_sel) {
ret = regulator_map_voltage(rdev, min_uV, max_uV);
if (ret >= 0) {
best_val = ops->list_voltage(rdev, ret);
if (min_uV <= best_val && max_uV >= best_val) {
selector = ret;
if (old_selector == selector)
ret = 0;
else if (rdev->desc->vsel_step)
ret = _regulator_set_voltage_sel_step(
rdev, best_val, selector);
else
ret = _regulator_call_set_voltage_sel(
rdev, best_val, selector);
} else {
ret = -EINVAL;
}
}
} else {
ret = -EINVAL;
}
if (ret)
goto out;
if (ops->set_voltage_time_sel) {
/*
* Call set_voltage_time_sel if successfully obtained
* old_selector
*/
if (old_selector >= 0 && old_selector != selector)
delay = ops->set_voltage_time_sel(rdev, old_selector,
selector);
} else {
if (old_uV != best_val) {
if (ops->set_voltage_time)
delay = ops->set_voltage_time(rdev, old_uV,
best_val);
else
delay = _regulator_set_voltage_time(rdev,
old_uV,
best_val);
}
}
if (delay < 0) {
rdev_warn(rdev, "failed to get delay: %d\n", delay);
delay = 0;
}
/* Insert any necessary delays */
if (delay >= 1000) {
mdelay(delay / 1000);
udelay(delay % 1000);
} else if (delay) {
udelay(delay);
}
if (best_val >= 0) {
unsigned long data = best_val;
_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
(void *)data);
}
out:
trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
return ret;
}
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, suspend_state_t state)
{
struct regulator_state *rstate;
int uV, sel;
rstate = regulator_get_suspend_state(rdev, state);
if (rstate == NULL)
return -EINVAL;
if (min_uV < rstate->min_uV)
min_uV = rstate->min_uV;
if (max_uV > rstate->max_uV)
max_uV = rstate->max_uV;
sel = regulator_map_voltage(rdev, min_uV, max_uV);
if (sel < 0)
return sel;
uV = rdev->desc->ops->list_voltage(rdev, sel);
if (uV >= min_uV && uV <= max_uV)
rstate->uV = uV;
return 0;
}
static int regulator_set_voltage_unlocked(struct regulator *regulator,
int min_uV, int max_uV,
suspend_state_t state)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator_voltage *voltage = &regulator->voltage[state];
int ret = 0;
int old_min_uV, old_max_uV;
int current_uV;
/* If we're setting the same range as last time the change
* should be a noop (some cpufreq implementations use the same
* voltage for multiple frequencies, for example).
*/
if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
goto out;
/* If we're trying to set a range that overlaps the current voltage,
* return successfully even though the regulator does not support
* changing the voltage.
*/
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
current_uV = regulator_get_voltage_rdev(rdev);
if (min_uV <= current_uV && current_uV <= max_uV) {
voltage->min_uV = min_uV;
voltage->max_uV = max_uV;
goto out;
}
}
/* sanity check */
if (!rdev->desc->ops->set_voltage &&
!rdev->desc->ops->set_voltage_sel) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
/* restore original values in case of error */
old_min_uV = voltage->min_uV;
old_max_uV = voltage->max_uV;
voltage->min_uV = min_uV;
voltage->max_uV = max_uV;
/* for not coupled regulators this will just set the voltage */
ret = regulator_balance_voltage(rdev, state);
if (ret < 0) {
voltage->min_uV = old_min_uV;
voltage->max_uV = old_max_uV;
}
out:
return ret;
}
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
int max_uV, suspend_state_t state)
{
int best_supply_uV = 0;
int supply_change_uV = 0;
int ret;
if (rdev->supply &&
regulator_ops_is_valid(rdev->supply->rdev,
REGULATOR_CHANGE_VOLTAGE) &&
(rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
rdev->desc->ops->get_voltage_sel))) {
int current_supply_uV;
int selector;
selector = regulator_map_voltage(rdev, min_uV, max_uV);
if (selector < 0) {
ret = selector;
goto out;
}
best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
if (best_supply_uV < 0) {
ret = best_supply_uV;
goto out;
}
best_supply_uV += rdev->desc->min_dropout_uV;
current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
if (current_supply_uV < 0) {
ret = current_supply_uV;
goto out;
}
supply_change_uV = best_supply_uV - current_supply_uV;
}
if (supply_change_uV > 0) {
ret = regulator_set_voltage_unlocked(rdev->supply,
best_supply_uV, INT_MAX, state);
if (ret) {
dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
ret);
goto out;
}
}
if (state == PM_SUSPEND_ON)
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
else
ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
max_uV, state);
if (ret < 0)
goto out;
if (supply_change_uV < 0) {
ret = regulator_set_voltage_unlocked(rdev->supply,
best_supply_uV, INT_MAX, state);
if (ret)
dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
ret);
/* No need to fail here */
ret = 0;
}
out:
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
int *current_uV, int *min_uV)
{
struct regulation_constraints *constraints = rdev->constraints;
/* Limit voltage change only if necessary */
if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
return 1;
if (*current_uV < 0) {
*current_uV = regulator_get_voltage_rdev(rdev);
if (*current_uV < 0)
return *current_uV;
}
if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
return 1;
/* Clamp target voltage within the given step */
if (*current_uV < *min_uV)
*min_uV = min(*current_uV + constraints->max_uV_step,
*min_uV);
else
*min_uV = max(*current_uV - constraints->max_uV_step,
*min_uV);
return 0;
}
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
int *current_uV,
int *min_uV, int *max_uV,
suspend_state_t state,
int n_coupled)
{
struct coupling_desc *c_desc = &rdev->coupling_desc;
struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
struct regulation_constraints *constraints = rdev->constraints;
int desired_min_uV = 0, desired_max_uV = INT_MAX;
int max_current_uV = 0, min_current_uV = INT_MAX;
int highest_min_uV = 0, target_uV, possible_uV;
int i, ret, max_spread;
bool done;
*current_uV = -1;
/*
* If there are no coupled regulators, simply set the voltage
* demanded by consumers.
*/
if (n_coupled == 1) {
/*
* If consumers don't provide any demands, set voltage
* to min_uV
*/
desired_min_uV = constraints->min_uV;
desired_max_uV = constraints->max_uV;
ret = regulator_check_consumers(rdev,
&desired_min_uV,
&desired_max_uV, state);
if (ret < 0)
return ret;
possible_uV = desired_min_uV;
done = true;
goto finish;
}
/* Find highest min desired voltage */
for (i = 0; i < n_coupled; i++) {
int tmp_min = 0;
int tmp_max = INT_MAX;
lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
ret = regulator_check_consumers(c_rdevs[i],
&tmp_min,
&tmp_max, state);
if (ret < 0)
return ret;
ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
if (ret < 0)
return ret;
highest_min_uV = max(highest_min_uV, tmp_min);
if (i == 0) {
desired_min_uV = tmp_min;
desired_max_uV = tmp_max;
}
}
max_spread = constraints->max_spread[0];
/*
* Let target_uV be equal to the desired one if possible.
* If not, set it to minimum voltage, allowed by other coupled
* regulators.
*/
target_uV = max(desired_min_uV, highest_min_uV - max_spread);
/*
* Find min and max voltages, which currently aren't violating
* max_spread.
*/
for (i = 1; i < n_coupled; i++) {
int tmp_act;
if (!_regulator_is_enabled(c_rdevs[i]))
continue;
tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
if (tmp_act < 0)
return tmp_act;
min_current_uV = min(tmp_act, min_current_uV);
max_current_uV = max(tmp_act, max_current_uV);
}
/* There aren't any other regulators enabled */
if (max_current_uV == 0) {
possible_uV = target_uV;
} else {
/*
* Correct target voltage, so as it currently isn't
* violating max_spread
*/
possible_uV = max(target_uV, max_current_uV - max_spread);
possible_uV = min(possible_uV, min_current_uV + max_spread);
}
if (possible_uV > desired_max_uV)
return -EINVAL;
done = (possible_uV == target_uV);
desired_min_uV = possible_uV;
finish:
/* Apply max_uV_step constraint if necessary */
if (state == PM_SUSPEND_ON) {
ret = regulator_limit_voltage_step(rdev, current_uV,
&desired_min_uV);
if (ret < 0)
return ret;
if (ret == 0)
done = false;
}
/* Set current_uV if wasn't done earlier in the code and if necessary */
if (n_coupled > 1 && *current_uV == -1) {
if (_regulator_is_enabled(rdev)) {
ret = regulator_get_voltage_rdev(rdev);
if (ret < 0)
return ret;
*current_uV = ret;
} else {
*current_uV = desired_min_uV;
}
}
*min_uV = desired_min_uV;
*max_uV = desired_max_uV;
return done;
}
int regulator_do_balance_voltage(struct regulator_dev *rdev,
suspend_state_t state, bool skip_coupled)
{
struct regulator_dev **c_rdevs;
struct regulator_dev *best_rdev;
struct coupling_desc *c_desc = &rdev->coupling_desc;
int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
unsigned int delta, best_delta;
unsigned long c_rdev_done = 0;
bool best_c_rdev_done;
c_rdevs = c_desc->coupled_rdevs;
n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
/*
* Find the best possible voltage change on each loop. Leave the loop
* if there isn't any possible change.
*/
do {
best_c_rdev_done = false;
best_delta = 0;
best_min_uV = 0;
best_max_uV = 0;
best_c_rdev = 0;
best_rdev = NULL;
/*
* Find highest difference between optimal voltage
* and current voltage.
*/
for (i = 0; i < n_coupled; i++) {
/*
* optimal_uV is the best voltage that can be set for
* i-th regulator at the moment without violating
* max_spread constraint in order to balance
* the coupled voltages.
*/
int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
if (test_bit(i, &c_rdev_done))
continue;
ret = regulator_get_optimal_voltage(c_rdevs[i],
&current_uV,
&optimal_uV,
&optimal_max_uV,
state, n_coupled);
if (ret < 0)
goto out;
delta = abs(optimal_uV - current_uV);
if (delta && best_delta <= delta) {
best_c_rdev_done = ret;
best_delta = delta;
best_rdev = c_rdevs[i];
best_min_uV = optimal_uV;
best_max_uV = optimal_max_uV;
best_c_rdev = i;
}
}
/* Nothing to change, return successfully */
if (!best_rdev) {
ret = 0;
goto out;
}
ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
best_max_uV, state);
if (ret < 0)
goto out;
if (best_c_rdev_done)
set_bit(best_c_rdev, &c_rdev_done);
} while (n_coupled > 1);
out:
return ret;
}
static int regulator_balance_voltage(struct regulator_dev *rdev,
suspend_state_t state)
{
struct coupling_desc *c_desc = &rdev->coupling_desc;
struct regulator_coupler *coupler = c_desc->coupler;
bool skip_coupled = false;
/*
* If system is in a state other than PM_SUSPEND_ON, don't check
* other coupled regulators.
*/
if (state != PM_SUSPEND_ON)
skip_coupled = true;
if (c_desc->n_resolved < c_desc->n_coupled) {
rdev_err(rdev, "Not all coupled regulators registered\n");
return -EPERM;
}
/* Invoke custom balancer for customized couplers */
if (coupler && coupler->balance_voltage)
return coupler->balance_voltage(coupler, rdev, state);
return regulator_do_balance_voltage(rdev, state, skip_coupled);
}
/**
* regulator_set_voltage - set regulator output voltage
* @regulator: regulator source
* @min_uV: Minimum required voltage in uV
* @max_uV: Maximum acceptable voltage in uV
*
* Sets a voltage regulator to the desired output voltage. This can be set
* during any regulator state. IOW, regulator can be disabled or enabled.
*
* If the regulator is enabled then the voltage will change to the new value
* immediately otherwise if the regulator is disabled the regulator will
* output at the new voltage when enabled.
*
* NOTE: If the regulator is shared between several devices then the lowest
* request voltage that meets the system constraints will be used.
* Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
struct ww_acquire_ctx ww_ctx;
int ret;
regulator_lock_dependent(regulator->rdev, &ww_ctx);
ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
PM_SUSPEND_ON);
regulator_unlock_dependent(regulator->rdev, &ww_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
suspend_state_t state, bool en)
{
struct regulator_state *rstate;
rstate = regulator_get_suspend_state(rdev, state);
if (rstate == NULL)
return -EINVAL;
if (!rstate->changeable)
return -EPERM;
rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
return 0;
}
int regulator_suspend_enable(struct regulator_dev *rdev,
suspend_state_t state)
{
return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);
int regulator_suspend_disable(struct regulator_dev *rdev,
suspend_state_t state)
{
struct regulator *regulator;
struct regulator_voltage *voltage;
/*
* if any consumer wants this regulator device keeping on in
* suspend states, don't set it as disabled.
*/
list_for_each_entry(regulator, &rdev->consumer_list, list) {
voltage = &regulator->voltage[state];
if (voltage->min_uV || voltage->max_uV)
return 0;
}
return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);
static int _regulator_set_suspend_voltage(struct regulator *regulator,
int min_uV, int max_uV,
suspend_state_t state)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator_state *rstate;
rstate = regulator_get_suspend_state(rdev, state);
if (rstate == NULL)
return -EINVAL;
if (rstate->min_uV == rstate->max_uV) {
rdev_err(rdev, "The suspend voltage can't be changed!\n");
return -EPERM;
}
return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}
int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
int max_uV, suspend_state_t state)
{
struct ww_acquire_ctx ww_ctx;
int ret;
/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
if (regulator_check_states(state) || state == PM_SUSPEND_ON)
return -EINVAL;
regulator_lock_dependent(regulator->rdev, &ww_ctx);
ret = _regulator_set_suspend_voltage(regulator, min_uV,
max_uV, state);
regulator_unlock_dependent(regulator->rdev, &ww_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
/**
* regulator_set_voltage_time - get raise/fall time
* @regulator: regulator source
* @old_uV: starting voltage in microvolts
* @new_uV: target voltage in microvolts
*
* Provided with the starting and ending voltage, this function attempts to
* calculate the time in microseconds required to rise or fall to this new
* voltage.
*/
int regulator_set_voltage_time(struct regulator *regulator,
int old_uV, int new_uV)
{
struct regulator_dev *rdev = regulator->rdev;
const struct regulator_ops *ops = rdev->desc->ops;
int old_sel = -1;
int new_sel = -1;
int voltage;
int i;
if (ops->set_voltage_time)
return ops->set_voltage_time(rdev, old_uV, new_uV);
else if (!ops->set_voltage_time_sel)
return _regulator_set_voltage_time(rdev, old_uV, new_uV);
/* Currently requires operations to do this */
if (!ops->list_voltage || !rdev->desc->n_voltages)
return -EINVAL;
for (i = 0; i < rdev->desc->n_voltages; i++) {
/* We only look for exact voltage matches here */
voltage = regulator_list_voltage(regulator, i);
if (voltage < 0)
return -EINVAL;
if (voltage == 0)
continue;
if (voltage == old_uV)
old_sel = i;
if (voltage == new_uV)
new_sel = i;
}
if (old_sel < 0 || new_sel < 0)
return -EINVAL;
return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
/**
* regulator_set_voltage_time_sel - get raise/fall time
* @rdev: regulator source device
* @old_selector: selector for starting voltage
* @new_selector: selector for target voltage
*
* Provided with the starting and target voltage selectors, this function
* returns time in microseconds required to rise or fall to this new voltage
*
* Drivers providing ramp_delay in regulation_constraints can use this as their
* set_voltage_time_sel() operation.
*/
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
unsigned int old_selector,
unsigned int new_selector)
{
int old_volt, new_volt;
/* sanity check */
if (!rdev->desc->ops->list_voltage)
return -EINVAL;
old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
if (rdev->desc->ops->set_voltage_time)
return rdev->desc->ops->set_voltage_time(rdev, old_volt,
new_volt);
else
return _regulator_set_voltage_time(rdev, old_volt, new_volt);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
/**
* regulator_sync_voltage - re-apply last regulator output voltage
* @regulator: regulator source
*
* Re-apply the last configured voltage. This is intended to be used
* where some external control source the consumer is cooperating with
* has caused the configured voltage to change.
*/
int regulator_sync_voltage(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
int ret, min_uV, max_uV;
regulator_lock(rdev);
if (!rdev->desc->ops->set_voltage &&
!rdev->desc->ops->set_voltage_sel) {
ret = -EINVAL;
goto out;
}
/* This is only going to work if we've had a voltage configured. */
if (!voltage->min_uV && !voltage->max_uV) {
ret = -EINVAL;
goto out;
}
min_uV = voltage->min_uV;
max_uV = voltage->max_uV;
/* This should be a paranoia check... */
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
if (ret < 0)
goto out;
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
out:
regulator_unlock(rdev);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
{
int sel, ret;
bool bypassed;
if (rdev->desc->ops->get_bypass) {
ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
if (ret < 0)
return ret;
if (bypassed) {
/* if bypassed the regulator must have a supply */
if (!rdev->supply) {
rdev_err(rdev,
"bypassed regulator has no supply!\n");
return -EPROBE_DEFER;
}
return regulator_get_voltage_rdev(rdev->supply->rdev);
}
}
if (rdev->desc->ops->get_voltage_sel) {
sel = rdev->desc->ops->get_voltage_sel(rdev);
if (sel < 0)
return sel;
ret = rdev->desc->ops->list_voltage(rdev, sel);
} else if (rdev->desc->ops->get_voltage) {
ret = rdev->desc->ops->get_voltage(rdev);
} else if (rdev->desc->ops->list_voltage) {
ret = rdev->desc->ops->list_voltage(rdev, 0);
} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
ret = rdev->desc->fixed_uV;
} else if (rdev->supply) {
ret = regulator_get_voltage_rdev(rdev->supply->rdev);
} else {
return -EINVAL;
}
if (ret < 0)
return ret;
return ret - rdev->constraints->uV_offset;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
/**
* regulator_get_voltage - get regulator output voltage
* @regulator: regulator source
*
* This returns the current regulator voltage in uV.
*
* NOTE: If the regulator is disabled it will return the voltage value. This
* function should not be used to determine regulator state.
*/
int regulator_get_voltage(struct regulator *regulator)
{
struct ww_acquire_ctx ww_ctx;
int ret;
regulator_lock_dependent(regulator->rdev, &ww_ctx);
ret = regulator_get_voltage_rdev(regulator->rdev);
regulator_unlock_dependent(regulator->rdev, &ww_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);
/**
* regulator_set_current_limit - set regulator output current limit
* @regulator: regulator source
* @min_uA: Minimum supported current in uA
* @max_uA: Maximum supported current in uA
*
* Sets current sink to the desired output current. This can be set during
* any regulator state. IOW, regulator can be disabled or enabled.
*
* If the regulator is enabled then the current will change to the new value
* immediately otherwise if the regulator is disabled the regulator will
* output at the new current when enabled.
*
* NOTE: Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_current_limit(struct regulator *regulator,
int min_uA, int max_uA)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
regulator_lock(rdev);
/* sanity check */
if (!rdev->desc->ops->set_current_limit) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
if (ret < 0)
goto out;
ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
regulator_unlock(rdev);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
/* sanity check */
if (!rdev->desc->ops->get_current_limit)
return -EINVAL;
return rdev->desc->ops->get_current_limit(rdev);
}
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
int ret;
regulator_lock(rdev);
ret = _regulator_get_current_limit_unlocked(rdev);
regulator_unlock(rdev);
return ret;
}
/**
* regulator_get_current_limit - get regulator output current
* @regulator: regulator source
*
* This returns the current supplied by the specified current sink in uA.
*
* NOTE: If the regulator is disabled it will return the current value. This
* function should not be used to determine regulator state.
*/
int regulator_get_current_limit(struct regulator *regulator)
{
return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
/**
* regulator_set_mode - set regulator operating mode
* @regulator: regulator source
* @mode: operating mode - one of the REGULATOR_MODE constants
*
* Set regulator operating mode to increase regulator efficiency or improve
* regulation performance.
*
* NOTE: Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
int regulator_curr_mode;
regulator_lock(rdev);
/* sanity check */
if (!rdev->desc->ops->set_mode) {
ret = -EINVAL;
goto out;
}
/* return if the same mode is requested */
if (rdev->desc->ops->get_mode) {
regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
if (regulator_curr_mode == mode) {
ret = 0;
goto out;
}
}
/* constraints check */
ret = regulator_mode_constrain(rdev, &mode);
if (ret < 0)
goto out;
ret = rdev->desc->ops->set_mode(rdev, mode);
out:
regulator_unlock(rdev);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
/* sanity check */
if (!rdev->desc->ops->get_mode)
return -EINVAL;
return rdev->desc->ops->get_mode(rdev);
}
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
int ret;
regulator_lock(rdev);
ret = _regulator_get_mode_unlocked(rdev);
regulator_unlock(rdev);
return ret;
}
/**
* regulator_get_mode - get regulator operating mode
* @regulator: regulator source
*
* Get the current regulator operating mode.
*/
unsigned int regulator_get_mode(struct regulator *regulator)
{
return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);
static int _regulator_get_error_flags(struct regulator_dev *rdev,
unsigned int *flags)
{
int ret;
regulator_lock(rdev);
/* sanity check */
if (!rdev->desc->ops->get_error_flags) {
ret = -EINVAL;
goto out;
}
ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
regulator_unlock(rdev);
return ret;
}
/**
* regulator_get_error_flags - get regulator error information
* @regulator: regulator source
* @flags: pointer to store error flags
*
* Get the current regulator error information.
*/
int regulator_get_error_flags(struct regulator *regulator,
unsigned int *flags)
{
return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);
/**
* regulator_set_load - set regulator load
* @regulator: regulator source
* @uA_load: load current
*
* Notifies the regulator core of a new device load. This is then used by
* DRMS (if enabled by constraints) to set the most efficient regulator
* operating mode for the new regulator loading.
*
* Consumer devices notify their supply regulator of the maximum power
* they will require (can be taken from device datasheet in the power
* consumption tables) when they change operational status and hence power
* state. Examples of operational state changes that can affect power
* consumption are :-
*
* o Device is opened / closed.
* o Device I/O is about to begin or has just finished.
* o Device is idling in between work.
*
* This information is also exported via sysfs to userspace.
*
* DRMS will sum the total requested load on the regulator and change
* to the most efficient operating mode if platform constraints allow.
*
* NOTE: when a regulator consumer requests to have a regulator
* disabled then any load that consumer requested no longer counts
* toward the total requested load. If the regulator is re-enabled
* then the previously requested load will start counting again.
*
* If a regulator is an always-on regulator then an individual consumer's
* load will still be removed if that consumer is fully disabled.
*
* On error a negative errno is returned.
*/
int regulator_set_load(struct regulator *regulator, int uA_load)
{
struct regulator_dev *rdev = regulator->rdev;
int old_uA_load;
int ret = 0;
regulator_lock(rdev);
old_uA_load = regulator->uA_load;
regulator->uA_load = uA_load;
if (regulator->enable_count && old_uA_load != uA_load) {
ret = drms_uA_update(rdev);
if (ret < 0)
regulator->uA_load = old_uA_load;
}
regulator_unlock(rdev);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_load);
/**
* regulator_allow_bypass - allow the regulator to go into bypass mode
*
* @regulator: Regulator to configure
* @enable: enable or disable bypass mode
*
* Allow the regulator to go into bypass mode if all other consumers
* for the regulator also enable bypass mode and the machine
* constraints allow this. Bypass mode means that the regulator is
* simply passing the input directly to the output with no regulation.
*/
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
struct regulator_dev *rdev = regulator->rdev;
const char *name = rdev_get_name(rdev);
int ret = 0;
if (!rdev->desc->ops->set_bypass)
return 0;
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
return 0;
regulator_lock(rdev);
if (enable && !regulator->bypass) {
rdev->bypass_count++;
if (rdev->bypass_count == rdev->open_count) {
trace_regulator_bypass_enable(name);
ret = rdev->desc->ops->set_bypass(rdev, enable);
if (ret != 0)
rdev->bypass_count--;
else
trace_regulator_bypass_enable_complete(name);
}
} else if (!enable && regulator->bypass) {
rdev->bypass_count--;
if (rdev->bypass_count != rdev->open_count) {
trace_regulator_bypass_disable(name);
ret = rdev->desc->ops->set_bypass(rdev, enable);
if (ret != 0)
rdev->bypass_count++;
else
trace_regulator_bypass_disable_complete(name);
}
}
if (ret == 0)
regulator->bypass = enable;
regulator_unlock(rdev);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);
/**
* regulator_register_notifier - register regulator event notifier
* @regulator: regulator source
* @nb: notifier block
*
* Register notifier block to receive regulator events.
*/
int regulator_register_notifier(struct regulator *regulator,
struct notifier_block *nb)
{
return blocking_notifier_chain_register(&regulator->rdev->notifier,
nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);
/**
* regulator_unregister_notifier - unregister regulator event notifier
* @regulator: regulator source
* @nb: notifier block
*
* Unregister regulator event notifier block.
*/
int regulator_unregister_notifier(struct regulator *regulator,
struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
/* notify regulator consumers and downstream regulator consumers.
* Note mutex must be held by caller.
*/
static int _notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data)
{
/* call rdev chain first */
return blocking_notifier_call_chain(&rdev->notifier, event, data);
}
/**
* regulator_bulk_get - get multiple regulator consumers
*
* @dev: Device to supply
* @num_consumers: Number of consumers to register
* @consumers: Configuration of consumers; clients are stored here.
*
* @return 0 on success, an errno on failure.
*
* This helper function allows drivers to get several regulator
* consumers in one operation. If any of the regulators cannot be
* acquired then any regulators that were allocated will be freed
* before returning to the caller.
*/
int regulator_bulk_get(struct device *dev, int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++)
consumers[i].consumer = NULL;
for (i = 0; i < num_consumers; i++) {
consumers[i].consumer = regulator_get(dev,
consumers[i].supply);
if (IS_ERR(consumers[i].consumer)) {
ret = PTR_ERR(consumers[i].consumer);
consumers[i].consumer = NULL;
goto err;
}
}
return 0;
err:
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get supply '%s': %d\n",
consumers[i].supply, ret);
else
dev_dbg(dev, "Failed to get supply '%s', deferring\n",
consumers[i].supply);
while (--i >= 0)
regulator_put(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
struct regulator_bulk_data *bulk = data;
bulk->ret = regulator_enable(bulk->consumer);
}
/**
* regulator_bulk_enable - enable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to enable multiple regulator
* clients in a single API call. If any consumers cannot be enabled
* then any others that were enabled will be disabled again prior to
* return.
*/
int regulator_bulk_enable(int num_consumers,
struct regulator_bulk_data *consumers)
{
ASYNC_DOMAIN_EXCLUSIVE(async_domain);
int i;
int ret = 0;
for (i = 0; i < num_consumers; i++) {
async_schedule_domain(regulator_bulk_enable_async,
&consumers[i], &async_domain);
}
async_synchronize_full_domain(&async_domain);
/* If any consumer failed we need to unwind any that succeeded */
for (i = 0; i < num_consumers; i++) {
if (consumers[i].ret != 0) {
ret = consumers[i].ret;
goto err;
}
}
return 0;
err:
for (i = 0; i < num_consumers; i++) {
if (consumers[i].ret < 0)
pr_err("Failed to enable %s: %d\n", consumers[i].supply,
consumers[i].ret);
else
regulator_disable(consumers[i].consumer);
}
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
/**
* regulator_bulk_disable - disable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to disable multiple regulator
* clients in a single API call. If any consumers cannot be disabled
* then any others that were disabled will be enabled again prior to
* return.
*/
int regulator_bulk_disable(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret, r;
for (i = num_consumers - 1; i >= 0; --i) {
ret = regulator_disable(consumers[i].consumer);
if (ret != 0)
goto err;
}
return 0;
err:
pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
for (++i; i < num_consumers; ++i) {
r = regulator_enable(consumers[i].consumer);
if (r != 0)
pr_err("Failed to re-enable %s: %d\n",
consumers[i].supply, r);
}
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
/**
* regulator_bulk_force_disable - force disable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to forcibly disable multiple regulator
* clients in a single API call.
* NOTE: This should be used for situations when device damage will
* likely occur if the regulators are not disabled (e.g. over temp).
* Although regulator_force_disable function call for some consumers can
* return error numbers, the function is called for all consumers.
*/
int regulator_bulk_force_disable(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret = 0;
for (i = 0; i < num_consumers; i++) {
consumers[i].ret =
regulator_force_disable(consumers[i].consumer);
/* Store first error for reporting */
if (consumers[i].ret && !ret)
ret = consumers[i].ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
/**
* regulator_bulk_free - free multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
*
* This convenience API allows consumers to free multiple regulator
* clients in a single API call.
*/
void regulator_bulk_free(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
for (i = 0; i < num_consumers; i++) {
regulator_put(consumers[i].consumer);
consumers[i].consumer = NULL;
}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);
/**
* regulator_notifier_call_chain - call regulator event notifier
* @rdev: regulator source
* @event: notifier block
* @data: callback-specific data.
*
* Called by regulator drivers to notify clients a regulator event has
* occurred. We also notify regulator clients downstream.
* Note lock must be held by caller.
*/
int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data)
{
lockdep_assert_held_once(&rdev->mutex.base);
_notifier_call_chain(rdev, event, data);
return NOTIFY_DONE;
}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
/**
* regulator_mode_to_status - convert a regulator mode into a status
*
* @mode: Mode to convert
*
* Convert a regulator mode into a status.
*/
int regulator_mode_to_status(unsigned int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
return REGULATOR_STATUS_FAST;
case REGULATOR_MODE_NORMAL:
return REGULATOR_STATUS_NORMAL;
case REGULATOR_MODE_IDLE:
return REGULATOR_STATUS_IDLE;
case REGULATOR_MODE_STANDBY:
return REGULATOR_STATUS_STANDBY;
default:
return REGULATOR_STATUS_UNDEFINED;
}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
static struct attribute *regulator_dev_attrs[] = {
&dev_attr_name.attr,
&dev_attr_num_users.attr,
&dev_attr_type.attr,
&dev_attr_microvolts.attr,
&dev_attr_microamps.attr,
&dev_attr_opmode.attr,
&dev_attr_state.attr,
&dev_attr_status.attr,
&dev_attr_bypass.attr,
&dev_attr_requested_microamps.attr,
&dev_attr_min_microvolts.attr,
&dev_attr_max_microvolts.attr,
&dev_attr_min_microamps.attr,
&dev_attr_max_microamps.attr,
&dev_attr_suspend_standby_state.attr,
&dev_attr_suspend_mem_state.attr,
&dev_attr_suspend_disk_state.attr,
&dev_attr_suspend_standby_microvolts.attr,
&dev_attr_suspend_mem_microvolts.attr,
&dev_attr_suspend_disk_microvolts.attr,
&dev_attr_suspend_standby_mode.attr,
&dev_attr_suspend_mem_mode.attr,
&dev_attr_suspend_disk_mode.attr,
NULL
};
/*
* To avoid cluttering sysfs (and memory) with useless state, only
* create attributes that can be meaningfully displayed.
*/
static umode_t regulator_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct regulator_dev *rdev = dev_to_rdev(dev);
const struct regulator_ops *ops = rdev->desc->ops;
umode_t mode = attr->mode;
/* these three are always present */
if (attr == &dev_attr_name.attr ||
attr == &dev_attr_num_users.attr ||
attr == &dev_attr_type.attr)
return mode;
/* some attributes need specific methods to be displayed */
if (attr == &dev_attr_microvolts.attr) {
if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
(ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
(ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
(rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
return mode;
return 0;
}
if (attr == &dev_attr_microamps.attr)
return ops->get_current_limit ? mode : 0;
if (attr == &dev_attr_opmode.attr)
return ops->get_mode ? mode : 0;
if (attr == &dev_attr_state.attr)
return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
if (attr == &dev_attr_status.attr)
return ops->get_status ? mode : 0;
if (attr == &dev_attr_bypass.attr)
return ops->get_bypass ? mode : 0;
/* constraints need specific supporting methods */
if (attr == &dev_attr_min_microvolts.attr ||
attr == &dev_attr_max_microvolts.attr)
return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
if (attr == &dev_attr_min_microamps.attr ||
attr == &dev_attr_max_microamps.attr)
return ops->set_current_limit ? mode : 0;
if (attr == &dev_attr_suspend_standby_state.attr ||
attr == &dev_attr_suspend_mem_state.attr ||
attr == &dev_attr_suspend_disk_state.attr)
return mode;
if (attr == &dev_attr_suspend_standby_microvolts.attr ||
attr == &dev_attr_suspend_mem_microvolts.attr ||
attr == &dev_attr_suspend_disk_microvolts.attr)
return ops->set_suspend_voltage ? mode : 0;
if (attr == &dev_attr_suspend_standby_mode.attr ||
attr == &dev_attr_suspend_mem_mode.attr ||
attr == &dev_attr_suspend_disk_mode.attr)
return ops->set_suspend_mode ? mode : 0;
return mode;
}
static const struct attribute_group regulator_dev_group = {
.attrs = regulator_dev_attrs,
.is_visible = regulator_attr_is_visible,
};
static const struct attribute_group *regulator_dev_groups[] = {
&regulator_dev_group,
NULL
};
static void regulator_dev_release(struct device *dev)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
kfree(rdev->constraints);
of_node_put(rdev->dev.of_node);
kfree(rdev);
}
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
struct device *parent = rdev->dev.parent;
const char *rname = rdev_get_name(rdev);
char name[NAME_MAX];
/* Avoid duplicate debugfs directory names */
if (parent && rname == rdev->desc->name) {
snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
rname);
rname = name;
}
rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
if (!rdev->debugfs) {
rdev_warn(rdev, "Failed to create debugfs directory\n");
return;
}
debugfs_create_u32("use_count", 0444, rdev->debugfs,
&rdev->use_count);
debugfs_create_u32("open_count", 0444, rdev->debugfs,
&rdev->open_count);
debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
&rdev->bypass_count);
}
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
if (regulator_resolve_supply(rdev))
rdev_dbg(rdev, "unable to resolve supply\n");
return 0;
}
int regulator_coupler_register(struct regulator_coupler *coupler)
{
mutex_lock(&regulator_list_mutex);
list_add_tail(&coupler->list, &regulator_coupler_list);
mutex_unlock(&regulator_list_mutex);
return 0;
}
static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
struct regulator_coupler *coupler;
int err;
/*
* Note that regulators are appended to the list and the generic
* coupler is registered first, hence it will be attached at last
* if nobody cared.
*/
list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
err = coupler->attach_regulator(coupler, rdev);
if (!err) {
if (!coupler->balance_voltage &&
rdev->coupling_desc.n_coupled > 2)
goto err_unsupported;
return coupler;
}
if (err < 0)
return ERR_PTR(err);
if (err == 1)
continue;
break;
}
return ERR_PTR(-EINVAL);
err_unsupported:
if (coupler->detach_regulator)
coupler->detach_regulator(coupler, rdev);
rdev_err(rdev,
"Voltage balancing for multiple regulator couples is unimplemented\n");
return ERR_PTR(-EPERM);
}
static void regulator_resolve_coupling(struct regulator_dev *rdev)
{
struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
struct coupling_desc *c_desc = &rdev->coupling_desc;
int n_coupled = c_desc->n_coupled;
struct regulator_dev *c_rdev;
int i;
for (i = 1; i < n_coupled; i++) {
/* already resolved */
if (c_desc->coupled_rdevs[i])
continue;
c_rdev = of_parse_coupled_regulator(rdev, i - 1);
if (!c_rdev)
continue;
if (c_rdev->coupling_desc.coupler != coupler) {
rdev_err(rdev, "coupler mismatch with %s\n",
rdev_get_name(c_rdev));
return;
}
regulator_lock(c_rdev);
c_desc->coupled_rdevs[i] = c_rdev;
c_desc->n_resolved++;
regulator_unlock(c_rdev);
regulator_resolve_coupling(c_rdev);
}
}
static void regulator_remove_coupling(struct regulator_dev *rdev)
{
struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
struct regulator_dev *__c_rdev, *c_rdev;
unsigned int __n_coupled, n_coupled;
int i, k;
int err;
n_coupled = c_desc->n_coupled;
for (i = 1; i < n_coupled; i++) {
c_rdev = c_desc->coupled_rdevs[i];
if (!c_rdev)
continue;
regulator_lock(c_rdev);
__c_desc = &c_rdev->coupling_desc;
__n_coupled = __c_desc->n_coupled;
for (k = 1; k < __n_coupled; k++) {
__c_rdev = __c_desc->coupled_rdevs[k];
if (__c_rdev == rdev) {
__c_desc->coupled_rdevs[k] = NULL;
__c_desc->n_resolved--;
break;
}
}
regulator_unlock(c_rdev);
c_desc->coupled_rdevs[i] = NULL;
c_desc->n_resolved--;
}
if (coupler && coupler->detach_regulator) {
err = coupler->detach_regulator(coupler, rdev);
if (err)
rdev_err(rdev, "failed to detach from coupler: %d\n",
err);
}
kfree(rdev->coupling_desc.coupled_rdevs);
rdev->coupling_desc.coupled_rdevs = NULL;
}
static int regulator_init_coupling(struct regulator_dev *rdev)
{
struct regulator_dev **coupled;
int err, n_phandles;
if (!IS_ENABLED(CONFIG_OF))
n_phandles = 0;
else
n_phandles = of_get_n_coupled(rdev);
coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
if (!coupled)
return -ENOMEM;
rdev->coupling_desc.coupled_rdevs = coupled;
/*
* Every regulator should always have coupling descriptor filled with
* at least pointer to itself.
*/
rdev->coupling_desc.coupled_rdevs[0] = rdev;
rdev->coupling_desc.n_coupled = n_phandles + 1;
rdev->coupling_desc.n_resolved++;
/* regulator isn't coupled */
if (n_phandles == 0)
return 0;
if (!of_check_coupling_data(rdev))
return -EPERM;
mutex_lock(&regulator_list_mutex);
rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
mutex_unlock(&regulator_list_mutex);
if (IS_ERR(rdev->coupling_desc.coupler)) {
err = PTR_ERR(rdev->coupling_desc.coupler);
rdev_err(rdev, "failed to get coupler: %d\n", err);
return err;
}
return 0;
}
static int generic_coupler_attach(struct regulator_coupler *coupler,
struct regulator_dev *rdev)
{
if (rdev->coupling_desc.n_coupled > 2) {
rdev_err(rdev,
"Voltage balancing for multiple regulator couples is unimplemented\n");
return -EPERM;
}
if (!rdev->constraints->always_on) {
rdev_err(rdev,
"Coupling of a non always-on regulator is unimplemented\n");
return -ENOTSUPP;
}
return 0;
}
static struct regulator_coupler generic_regulator_coupler = {
.attach_regulator = generic_coupler_attach,
};
/**
* regulator_register - register regulator
* @regulator_desc: regulator to register
* @cfg: runtime configuration for regulator
*
* Called by regulator drivers to register a regulator.
* Returns a valid pointer to struct regulator_dev on success
* or an ERR_PTR() on error.
*/
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
const struct regulator_config *cfg)
{
const struct regulation_constraints *constraints = NULL;
const struct regulator_init_data *init_data;
struct regulator_config *config = NULL;
static atomic_t regulator_no = ATOMIC_INIT(-1);
struct regulator_dev *rdev;
bool dangling_cfg_gpiod = false;
bool dangling_of_gpiod = false;
struct device *dev;
int ret, i;
if (cfg == NULL)
return ERR_PTR(-EINVAL);
if (cfg->ena_gpiod)
dangling_cfg_gpiod = true;
if (regulator_desc == NULL) {
ret = -EINVAL;
goto rinse;
}
dev = cfg->dev;
WARN_ON(!dev);
if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
ret = -EINVAL;
goto rinse;
}
if (regulator_desc->type != REGULATOR_VOLTAGE &&
regulator_desc->type != REGULATOR_CURRENT) {
ret = -EINVAL;
goto rinse;
}
/* Only one of each should be implemented */
WARN_ON(regulator_desc->ops->get_voltage &&
regulator_desc->ops->get_voltage_sel);
WARN_ON(regulator_desc->ops->set_voltage &&
regulator_desc->ops->set_voltage_sel);
/* If we're using selectors we must implement list_voltage. */
if (regulator_desc->ops->get_voltage_sel &&
!regulator_desc->ops->list_voltage) {
ret = -EINVAL;
goto rinse;
}
if (regulator_desc->ops->set_voltage_sel &&
!regulator_desc->ops->list_voltage) {
ret = -EINVAL;
goto rinse;
}
rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
if (rdev == NULL) {
ret = -ENOMEM;
goto rinse;
}
device_initialize(&rdev->dev);
/*
* Duplicate the config so the driver could override it after
* parsing init data.
*/
config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
if (config == NULL) {
ret = -ENOMEM;
goto clean;
}
init_data = regulator_of_get_init_data(dev, regulator_desc, config,
&rdev->dev.of_node);
/*
* Sometimes not all resources are probed already so we need to take
* that into account. This happens most the time if the ena_gpiod comes
* from a gpio extender or something else.
*/
if (PTR_ERR(init_data) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto clean;
}
/*
* We need to keep track of any GPIO descriptor coming from the
* device tree until we have handled it over to the core. If the
* config that was passed in to this function DOES NOT contain
* a descriptor, and the config after this call DOES contain
* a descriptor, we definitely got one from parsing the device
* tree.
*/
if (!cfg->ena_gpiod && config->ena_gpiod)
dangling_of_gpiod = true;
if (!init_data) {
init_data = config->init_data;
rdev->dev.of_node = of_node_get(config->of_node);
}
ww_mutex_init(&rdev->mutex, &regulator_ww_class);
rdev->reg_data = config->driver_data;
rdev->owner = regulator_desc->owner;
rdev->desc = regulator_desc;
if (config->regmap)
rdev->regmap = config->regmap;
else if (dev_get_regmap(dev, NULL))
rdev->regmap = dev_get_regmap(dev, NULL);
else if (dev->parent)
rdev->regmap = dev_get_regmap(dev->parent, NULL);
INIT_LIST_HEAD(&rdev->consumer_list);
INIT_LIST_HEAD(&rdev->list);
BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
/* preform any regulator specific init */
if (init_data && init_data->regulator_init) {
ret = init_data->regulator_init(rdev->reg_data);
if (ret < 0)
goto clean;
}
if (config->ena_gpiod) {
ret = regulator_ena_gpio_request(rdev, config);
if (ret != 0) {
rdev_err(rdev, "Failed to request enable GPIO: %d\n",
ret);
goto clean;
}
/* The regulator core took over the GPIO descriptor */
dangling_cfg_gpiod = false;
dangling_of_gpiod = false;
}
/* register with sysfs */
rdev->dev.class = &regulator_class;
rdev->dev.parent = dev;
dev_set_name(&rdev->dev, "regulator.%lu",
(unsigned long) atomic_inc_return(&regulator_no));
dev_set_drvdata(&rdev->dev, rdev);
/* set regulator constraints */
if (init_data)
constraints = &init_data->constraints;
if (init_data && init_data->supply_regulator)
rdev->supply_name = init_data->supply_regulator;
else if (regulator_desc->supply_name)
rdev->supply_name = regulator_desc->supply_name;
/*
* Attempt to resolve the regulator supply, if specified,
* but don't return an error if we fail because we will try
* to resolve it again later as more regulators are added.
*/
if (regulator_resolve_supply(rdev))
rdev_dbg(rdev, "unable to resolve supply\n");
ret = set_machine_constraints(rdev, constraints);
if (ret < 0)
goto wash;
ret = regulator_init_coupling(rdev);
if (ret < 0)
goto wash;
/* add consumers devices */
if (init_data) {
for (i = 0; i < init_data->num_consumer_supplies; i++) {
ret = set_consumer_device_supply(rdev,
init_data->consumer_supplies[i].dev_name,
init_data->consumer_supplies[i].supply);
if (ret < 0) {
dev_err(dev, "Failed to set supply %s\n",
init_data->consumer_supplies[i].supply);
goto unset_supplies;
}
}
}
if (!rdev->desc->ops->get_voltage &&
!rdev->desc->ops->list_voltage &&
!rdev->desc->fixed_uV)
rdev->is_switch = true;
ret = device_add(&rdev->dev);
if (ret != 0)
goto unset_supplies;
rdev_init_debugfs(rdev);
/* try to resolve regulators coupling since a new one was registered */
mutex_lock(&regulator_list_mutex);
regulator_resolve_coupling(rdev);
mutex_unlock(&regulator_list_mutex);
/* try to resolve regulators supply since a new one was registered */
class_for_each_device(&regulator_class, NULL, NULL,
regulator_register_resolve_supply);
kfree(config);
return rdev;
unset_supplies:
mutex_lock(&regulator_list_mutex);
unset_regulator_supplies(rdev);
regulator_remove_coupling(rdev);
mutex_unlock(&regulator_list_mutex);
wash:
kfree(rdev->coupling_desc.coupled_rdevs);
mutex_lock(&regulator_list_mutex);
regulator_ena_gpio_free(rdev);
mutex_unlock(&regulator_list_mutex);
clean:
if (dangling_of_gpiod)
gpiod_put(config->ena_gpiod);
kfree(config);
put_device(&rdev->dev);
rinse:
if (dangling_cfg_gpiod)
gpiod_put(cfg->ena_gpiod);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regulator_register);
/**
* regulator_unregister - unregister regulator
* @rdev: regulator to unregister
*
* Called by regulator drivers to unregister a regulator.
*/
void regulator_unregister(struct regulator_dev *rdev)
{
if (rdev == NULL)
return;
if (rdev->supply) {
while (rdev->use_count--)
regulator_disable(rdev->supply);
regulator_put(rdev->supply);
}
flush_work(&rdev->disable_work.work);
mutex_lock(&regulator_list_mutex);
debugfs_remove_recursive(rdev->debugfs);
WARN_ON(rdev->open_count);
regulator_remove_coupling(rdev);
unset_regulator_supplies(rdev);
list_del(&rdev->list);
regulator_ena_gpio_free(rdev);
device_unregister(&rdev->dev);
mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);
#ifdef CONFIG_SUSPEND
/**
* regulator_suspend - prepare regulators for system wide suspend
* @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
*
* Configure each regulator with it's suspend operating parameters for state.
*/
static int regulator_suspend(struct device *dev)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
suspend_state_t state = pm_suspend_target_state;
int ret;
const struct regulator_state *rstate;
rstate = regulator_get_suspend_state_check(rdev, state);
if (!rstate)
return 0;
regulator_lock(rdev);
ret = __suspend_set_state(rdev, rstate);
regulator_unlock(rdev);
return ret;
}
static int regulator_resume(struct device *dev)
{
suspend_state_t state = pm_suspend_target_state;
struct regulator_dev *rdev = dev_to_rdev(dev);
struct regulator_state *rstate;
int ret = 0;
rstate = regulator_get_suspend_state(rdev, state);
if (rstate == NULL)
return 0;
/* Avoid grabbing the lock if we don't need to */
if (!rdev->desc->ops->resume)
return 0;
regulator_lock(rdev);
if (rstate->enabled == ENABLE_IN_SUSPEND ||
rstate->enabled == DISABLE_IN_SUSPEND)
ret = rdev->desc->ops->resume(rdev);
regulator_unlock(rdev);
return ret;
}
#else /* !CONFIG_SUSPEND */
#define regulator_suspend NULL
#define regulator_resume NULL
#endif /* !CONFIG_SUSPEND */
#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
.suspend = regulator_suspend,
.resume = regulator_resume,
};
#endif
struct class regulator_class = {
.name = "regulator",
.dev_release = regulator_dev_release,
.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
.pm = &regulator_pm_ops,
#endif
};
/**
* regulator_has_full_constraints - the system has fully specified constraints
*
* Calling this function will cause the regulator API to disable all
* regulators which have a zero use count and don't have an always_on
* constraint in a late_initcall.
*
* The intention is that this will become the default behaviour in a
* future kernel release so users are encouraged to use this facility
* now.
*/
void regulator_has_full_constraints(void)
{
has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
/**
* rdev_get_drvdata - get rdev regulator driver data
* @rdev: regulator
*
* Get rdev regulator driver private data. This call can be used in the
* regulator driver context.
*/
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
/**
* regulator_get_drvdata - get regulator driver data
* @regulator: regulator
*
* Get regulator driver private data. This call can be used in the consumer
* driver context when non API regulator specific functions need to be called.
*/
void *regulator_get_drvdata(struct regulator *regulator)
{
return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
/**
* regulator_set_drvdata - set regulator driver data
* @regulator: regulator
* @data: data
*/
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
/**
* regulator_get_id - get regulator ID
* @rdev: regulator
*/
int rdev_get_id(struct regulator_dev *rdev)
{
return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
#ifdef CONFIG_DEBUG_FS
static int supply_map_show(struct seq_file *sf, void *data)
{
struct regulator_map *map;
list_for_each_entry(map, &regulator_map_list, list) {
seq_printf(sf, "%s -> %s.%s\n",
rdev_get_name(map->regulator), map->dev_name,
map->supply);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(supply_map);
struct summary_data {
struct seq_file *s;
struct regulator_dev *parent;
int level;
};
static void regulator_summary_show_subtree(struct seq_file *s,
struct regulator_dev *rdev,
int level);
static int regulator_summary_show_children(struct device *dev, void *data)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
struct summary_data *summary_data = data;
if (rdev->supply && rdev->supply->rdev == summary_data->parent)
regulator_summary_show_subtree(summary_data->s, rdev,
summary_data->level + 1);
return 0;
}
static void regulator_summary_show_subtree(struct seq_file *s,
struct regulator_dev *rdev,
int level)
{
struct regulation_constraints *c;
struct regulator *consumer;
struct summary_data summary_data;
unsigned int opmode;
if (!rdev)
return;
opmode = _regulator_get_mode_unlocked(rdev);
seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
level * 3 + 1, "",
30 - level * 3, rdev_get_name(rdev),
rdev->use_count, rdev->open_count, rdev->bypass_count,
regulator_opmode_to_str(opmode));
seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
seq_printf(s, "%5dmA ",
_regulator_get_current_limit_unlocked(rdev) / 1000);
c = rdev->constraints;
if (c) {
switch (rdev->desc->type) {
case REGULATOR_VOLTAGE:
seq_printf(s, "%5dmV %5dmV ",
c->min_uV / 1000, c->max_uV / 1000);
break;
case REGULATOR_CURRENT:
seq_printf(s, "%5dmA %5dmA ",
c->min_uA / 1000, c->max_uA / 1000);
break;
}
}
seq_puts(s, "\n");
list_for_each_entry(consumer, &rdev->consumer_list, list) {
if (consumer->dev && consumer->dev->class == &regulator_class)
continue;
seq_printf(s, "%*s%-*s ",
(level + 1) * 3 + 1, "",
30 - (level + 1) * 3,
consumer->supply_name ? consumer->supply_name :
consumer->dev ? dev_name(consumer->dev) : "deviceless");
switch (rdev->desc->type) {
case REGULATOR_VOLTAGE:
seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
consumer->enable_count,
consumer->uA_load / 1000,
consumer->uA_load && !consumer->enable_count ?
'*' : ' ',
consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
break;
case REGULATOR_CURRENT:
break;
}
seq_puts(s, "\n");
}
summary_data.s = s;
summary_data.level = level;
summary_data.parent = rdev;
class_for_each_device(&regulator_class, NULL, &summary_data,
regulator_summary_show_children);
}
struct summary_lock_data {
struct ww_acquire_ctx *ww_ctx;
struct regulator_dev **new_contended_rdev;
struct regulator_dev **old_contended_rdev;
};
static int regulator_summary_lock_one(struct device *dev, void *data)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
struct summary_lock_data *lock_data = data;
int ret = 0;
if (rdev != *lock_data->old_contended_rdev) {
ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
if (ret == -EDEADLK)
*lock_data->new_contended_rdev = rdev;
else
WARN_ON_ONCE(ret);
} else {
*lock_data->old_contended_rdev = NULL;
}
return ret;
}
static int regulator_summary_unlock_one(struct device *dev, void *data)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
struct summary_lock_data *lock_data = data;
if (lock_data) {
if (rdev == *lock_data->new_contended_rdev)
return -EDEADLK;
}
regulator_unlock(rdev);
return 0;
}
static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
struct regulator_dev **new_contended_rdev,
struct regulator_dev **old_contended_rdev)
{
struct summary_lock_data lock_data;
int ret;
lock_data.ww_ctx = ww_ctx;
lock_data.new_contended_rdev = new_contended_rdev;
lock_data.old_contended_rdev = old_contended_rdev;
ret = class_for_each_device(&regulator_class, NULL, &lock_data,
regulator_summary_lock_one);
if (ret)
class_for_each_device(&regulator_class, NULL, &lock_data,
regulator_summary_unlock_one);
return ret;
}
static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
struct regulator_dev *new_contended_rdev = NULL;
struct regulator_dev *old_contended_rdev = NULL;
int err;
mutex_lock(&regulator_list_mutex);
ww_acquire_init(ww_ctx, &regulator_ww_class);
do {
if (new_contended_rdev) {
ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
old_contended_rdev = new_contended_rdev;
old_contended_rdev->ref_cnt++;
}
err = regulator_summary_lock_all(ww_ctx,
&new_contended_rdev,
&old_contended_rdev);
if (old_contended_rdev)
regulator_unlock(old_contended_rdev);
} while (err == -EDEADLK);
ww_acquire_done(ww_ctx);
}
static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
class_for_each_device(&regulator_class, NULL, NULL,
regulator_summary_unlock_one);
ww_acquire_fini(ww_ctx);
mutex_unlock(&regulator_list_mutex);
}
static int regulator_summary_show_roots(struct device *dev, void *data)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
struct seq_file *s = data;
if (!rdev->supply)
regulator_summary_show_subtree(s, rdev, 0);
return 0;
}
static int regulator_summary_show(struct seq_file *s, void *data)
{
struct ww_acquire_ctx ww_ctx;
seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
seq_puts(s, "---------------------------------------------------------------------------------------\n");
regulator_summary_lock(&ww_ctx);
class_for_each_device(&regulator_class, NULL, s,
regulator_summary_show_roots);
regulator_summary_unlock(&ww_ctx);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
static int __init regulator_init(void)
{
int ret;
ret = class_register(&regulator_class);
debugfs_root = debugfs_create_dir("regulator", NULL);
if (!debugfs_root)
pr_warn("regulator: Failed to create debugfs directory\n");
#ifdef CONFIG_DEBUG_FS
debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
&supply_map_fops);
debugfs_create_file("regulator_summary", 0444, debugfs_root,
NULL, &regulator_summary_fops);
#endif
regulator_dummy_init();
regulator_coupler_register(&generic_regulator_coupler);
return ret;
}
/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
static int regulator_late_cleanup(struct device *dev, void *data)
{
struct regulator_dev *rdev = dev_to_rdev(dev);
const struct regulator_ops *ops = rdev->desc->ops;
struct regulation_constraints *c = rdev->constraints;
int enabled, ret;
if (c && c->always_on)
return 0;
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
return 0;
regulator_lock(rdev);
if (rdev->use_count)
goto unlock;
/* If we can't read the status assume it's on. */
if (ops->is_enabled)
enabled = ops->is_enabled(rdev);
else
enabled = 1;
if (!enabled)
goto unlock;
if (have_full_constraints()) {
/* We log since this may kill the system if it goes
* wrong. */
rdev_info(rdev, "disabling\n");
ret = _regulator_do_disable(rdev);
if (ret != 0)
rdev_err(rdev, "couldn't disable: %d\n", ret);
} else {
/* The intention is that in future we will
* assume that full constraints are provided
* so warn even if we aren't going to do
* anything here.
*/
rdev_warn(rdev, "incomplete constraints, leaving on\n");
}
unlock:
regulator_unlock(rdev);
return 0;
}
static void regulator_init_complete_work_function(struct work_struct *work)
{
/*
* Regulators may had failed to resolve their input supplies
* when were registered, either because the input supply was
* not registered yet or because its parent device was not
* bound yet. So attempt to resolve the input supplies for
* pending regulators before trying to disable unused ones.
*/
class_for_each_device(&regulator_class, NULL, NULL,
regulator_register_resolve_supply);
/* If we have a full configuration then disable any regulators
* we have permission to change the status for and which are
* not in use or always_on. This is effectively the default
* for DT and ACPI as they have full constraints.
*/
class_for_each_device(&regulator_class, NULL, NULL,
regulator_late_cleanup);
}
static DECLARE_DELAYED_WORK(regulator_init_complete_work,
regulator_init_complete_work_function);
static int __init regulator_init_complete(void)
{
/*
* Since DT doesn't provide an idiomatic mechanism for
* enabling full constraints and since it's much more natural
* with DT to provide them just assume that a DT enabled
* system has full constraints.
*/
if (of_have_populated_dt())
has_full_constraints = true;
/*
* We punt completion for an arbitrary amount of time since
* systems like distros will load many drivers from userspace
* so consumers might not always be ready yet, this is
* particularly an issue with laptops where this might bounce
* the display off then on. Ideally we'd get a notification
* from userspace when this happens but we don't so just wait
* a bit and hope we waited long enough. It'd be better if
* we'd only do this on systems that need it, and a kernel
* command line option might be useful.
*/
schedule_delayed_work(&regulator_init_complete_work,
msecs_to_jiffies(30000));
return 0;
}
late_initcall_sync(regulator_init_complete);