linux-stable/sound/i2c/l3/uda1341.c
Takashi Iwai 561b220a4d [ALSA] Replace with kzalloc() - others
Documentation,SA11xx UDA1341 driver,Generic drivers,MPU401 UART,OPL3
OPL4,Digigram VX core,I2C cs8427,I2C lib core,I2C tea6330t,L3 drivers
AK4114 receiver,AK4117 receiver,PDAudioCF driver,PPC PMAC driver
SPARC AMD7930 driver,SPARC cs4231 driver,Synth,Common EMU synth
USB generic driver,USB USX2Y
Replace kcalloc(1,..) with kzalloc().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2005-09-12 10:48:22 +02:00

831 lines
25 KiB
C

/*
* Philips UDA1341 mixer device driver
* Copyright (c) 2002 Tomas Kasparek <tomas.kasparek@seznam.cz>
*
* Portions are Copyright (C) 2000 Lernout & Hauspie Speech Products, N.V.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License.
*
* History:
*
* 2002-03-13 Tomas Kasparek initial release - based on uda1341.c from OSS
* 2002-03-28 Tomas Kasparek basic mixer is working (volume, bass, treble)
* 2002-03-30 Tomas Kasparek proc filesystem support, complete mixer and DSP
* features support
* 2002-04-12 Tomas Kasparek proc interface update, code cleanup
* 2002-05-12 Tomas Kasparek another code cleanup
*/
/* $Id: uda1341.c,v 1.16 2005/09/09 13:22:34 tiwai Exp $ */
#include <sound/driver.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/ioctl.h>
#include <asm/uaccess.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <sound/info.h>
#include <linux/l3/l3.h>
#include <sound/uda1341.h>
/* {{{ HW regs definition */
#define STAT0 0x00
#define STAT1 0x80
#define STAT_MASK 0x80
#define DATA0_0 0x00
#define DATA0_1 0x40
#define DATA0_2 0x80
#define DATA_MASK 0xc0
#define IS_DATA0(x) ((x) >= data0_0 && (x) <= data0_2)
#define IS_DATA1(x) ((x) == data1)
#define IS_STATUS(x) ((x) == stat0 || (x) == stat1)
#define IS_EXTEND(x) ((x) >= ext0 && (x) <= ext6)
/* }}} */
enum uda1341_regs_names {
stat0,
stat1,
data0_0,
data0_1,
data0_2,
data1,
ext0,
ext1,
ext2,
empty,
ext4,
ext5,
ext6,
uda1341_reg_last,
};
const char *uda1341_reg_names[] = {
"stat 0 ",
"stat 1 ",
"data 00",
"data 01",
"data 02",
"data 1 ",
"ext 0",
"ext 1",
"ext 2",
"empty",
"ext 4",
"ext 5",
"ext 6",
};
const int uda1341_enum_items[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, //peak - before/after
4, //deemp - none/32/44.1/48
0,
4, //filter - flat/min/min/max
0, 0, 0,
4, //mixer - differ/line/mic/mixer
0, 0, 0, 0, 0,
};
const char ** uda1341_enum_names[] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
peak_names, //peak - before/after
deemp_names, //deemp - none/32/44.1/48
NULL,
filter_names, //filter - flat/min/min/max
NULL, NULL, NULL,
mixer_names, //mixer - differ/line/mic/mixer
NULL, NULL, NULL, NULL, NULL,
};
typedef int uda1341_cfg[CMD_LAST];
typedef struct uda1341 uda1341_t;
struct uda1341 {
int (*write) (struct l3_client *uda1341, unsigned short reg, unsigned short val);
int (*read) (struct l3_client *uda1341, unsigned short reg);
unsigned char regs[uda1341_reg_last];
int active;
spinlock_t reg_lock;
snd_card_t *card;
uda1341_cfg cfg;
#ifdef CONFIG_PM
unsigned char suspend_regs[uda1341_reg_last];
uda1341_cfg suspend_cfg;
#endif
};
//hack for ALSA magic casting
typedef struct l3_client l3_client_t;
/* transfer 8bit integer into string with binary representation */
void int2str_bin8(uint8_t val, char *buf){
const int size = sizeof(val) * 8;
int i;
for (i= 0; i < size; i++){
*(buf++) = (val >> (size - 1)) ? '1' : '0';
val <<= 1;
}
*buf = '\0'; //end the string with zero
}
/* {{{ HW manipulation routines */
int snd_uda1341_codec_write(struct l3_client *clnt, unsigned short reg, unsigned short val)
{
struct uda1341 *uda = clnt->driver_data;
unsigned char buf[2] = { 0xc0, 0xe0 }; // for EXT addressing
int err = 0;
uda->regs[reg] = val;
if (uda->active) {
if (IS_DATA0(reg)) {
err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)&val, 1);
} else if (IS_DATA1(reg)) {
err = l3_write(clnt, UDA1341_DATA1, (const unsigned char *)&val, 1);
} else if (IS_STATUS(reg)) {
err = l3_write(clnt, UDA1341_STATUS, (const unsigned char *)&val, 1);
} else if (IS_EXTEND(reg)) {
buf[0] |= (reg - ext0) & 0x7; //EXT address
buf[1] |= val; //EXT data
err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)buf, 2);
}
} else
printk(KERN_ERR "UDA1341 codec not active!\n");
return err;
}
int snd_uda1341_codec_read(struct l3_client *clnt, unsigned short reg)
{
unsigned char val;
int err;
err = l3_read(clnt, reg, &val, 1);
if (err == 1)
// use just 6bits - the rest is address of the reg
return val & 63;
return err < 0 ? err : -EIO;
}
static inline int snd_uda1341_valid_reg(struct l3_client *clnt, unsigned short reg)
{
return reg < uda1341_reg_last;
}
int snd_uda1341_update_bits(struct l3_client *clnt, unsigned short reg, unsigned short mask,
unsigned short shift, unsigned short value, int flush)
{
int change;
unsigned short old, new;
struct uda1341 *uda = clnt->driver_data;
#if 0
printk(KERN_DEBUG "update_bits: reg: %s mask: %d shift: %d val: %d\n",
uda1341_reg_names[reg], mask, shift, value);
#endif
if (!snd_uda1341_valid_reg(clnt, reg))
return -EINVAL;
spin_lock(&uda->reg_lock);
old = uda->regs[reg];
new = (old & ~(mask << shift)) | (value << shift);
change = old != new;
if (change) {
if (flush) uda->write(clnt, reg, new);
uda->regs[reg] = new;
}
spin_unlock(&uda->reg_lock);
return change;
}
int snd_uda1341_cfg_write(struct l3_client *clnt, unsigned short what,
unsigned short value, int flush)
{
struct uda1341 *uda = clnt->driver_data;
int ret = 0;
#ifdef CONFIG_PM
int reg;
#endif
#if 0
printk(KERN_DEBUG "cfg_write what: %d value: %d\n", what, value);
#endif
uda->cfg[what] = value;
switch(what) {
case CMD_RESET:
ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, 1, flush); // MUTE
ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 1, flush); // RESET
ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 0, flush); // RESTORE
uda->cfg[CMD_RESET]=0;
break;
case CMD_FS:
ret = snd_uda1341_update_bits(clnt, stat0, 3, 4, value, flush);
break;
case CMD_FORMAT:
ret = snd_uda1341_update_bits(clnt, stat0, 7, 1, value, flush);
break;
case CMD_OGAIN:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 6, value, flush);
break;
case CMD_IGAIN:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 5, value, flush);
break;
case CMD_DAC:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 0, value, flush);
break;
case CMD_ADC:
ret = snd_uda1341_update_bits(clnt, stat1, 1, 1, value, flush);
break;
case CMD_VOLUME:
ret = snd_uda1341_update_bits(clnt, data0_0, 63, 0, value, flush);
break;
case CMD_BASS:
ret = snd_uda1341_update_bits(clnt, data0_1, 15, 2, value, flush);
break;
case CMD_TREBBLE:
ret = snd_uda1341_update_bits(clnt, data0_1, 3, 0, value, flush);
break;
case CMD_PEAK:
ret = snd_uda1341_update_bits(clnt, data0_2, 1, 5, value, flush);
break;
case CMD_DEEMP:
ret = snd_uda1341_update_bits(clnt, data0_2, 3, 3, value, flush);
break;
case CMD_MUTE:
ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, value, flush);
break;
case CMD_FILTER:
ret = snd_uda1341_update_bits(clnt, data0_2, 3, 0, value, flush);
break;
case CMD_CH1:
ret = snd_uda1341_update_bits(clnt, ext0, 31, 0, value, flush);
break;
case CMD_CH2:
ret = snd_uda1341_update_bits(clnt, ext1, 31, 0, value, flush);
break;
case CMD_MIC:
ret = snd_uda1341_update_bits(clnt, ext2, 7, 2, value, flush);
break;
case CMD_MIXER:
ret = snd_uda1341_update_bits(clnt, ext2, 3, 0, value, flush);
break;
case CMD_AGC:
ret = snd_uda1341_update_bits(clnt, ext4, 1, 4, value, flush);
break;
case CMD_IG:
ret = snd_uda1341_update_bits(clnt, ext4, 3, 0, value & 0x3, flush);
ret = snd_uda1341_update_bits(clnt, ext5, 31, 0, value >> 2, flush);
break;
case CMD_AGC_TIME:
ret = snd_uda1341_update_bits(clnt, ext6, 7, 2, value, flush);
break;
case CMD_AGC_LEVEL:
ret = snd_uda1341_update_bits(clnt, ext6, 3, 0, value, flush);
break;
#ifdef CONFIG_PM
case CMD_SUSPEND:
for (reg = stat0; reg < uda1341_reg_last; reg++)
uda->suspend_regs[reg] = uda->regs[reg];
for (reg = 0; reg < CMD_LAST; reg++)
uda->suspend_cfg[reg] = uda->cfg[reg];
break;
case CMD_RESUME:
for (reg = stat0; reg < uda1341_reg_last; reg++)
snd_uda1341_codec_write(clnt, reg, uda->suspend_regs[reg]);
for (reg = 0; reg < CMD_LAST; reg++)
uda->cfg[reg] = uda->suspend_cfg[reg];
break;
#endif
default:
ret = -EINVAL;
break;
}
if (!uda->active)
printk(KERN_ERR "UDA1341 codec not active!\n");
return ret;
}
/* }}} */
/* {{{ Proc interface */
static void snd_uda1341_proc_read(snd_info_entry_t *entry,
snd_info_buffer_t * buffer)
{
struct l3_client *clnt = entry->private_data;
struct uda1341 *uda = clnt->driver_data;
int peak;
peak = snd_uda1341_codec_read(clnt, UDA1341_DATA1);
if (peak < 0)
peak = 0;
snd_iprintf(buffer, "%s\n\n", uda->card->longname);
// for information about computed values see UDA1341TS datasheet pages 15 - 21
snd_iprintf(buffer, "DAC power : %s\n", uda->cfg[CMD_DAC] ? "on" : "off");
snd_iprintf(buffer, "ADC power : %s\n", uda->cfg[CMD_ADC] ? "on" : "off");
snd_iprintf(buffer, "Clock frequency : %s\n", fs_names[uda->cfg[CMD_FS]]);
snd_iprintf(buffer, "Data format : %s\n\n", format_names[uda->cfg[CMD_FORMAT]]);
snd_iprintf(buffer, "Filter mode : %s\n", filter_names[uda->cfg[CMD_FILTER]]);
snd_iprintf(buffer, "Mixer mode : %s\n", mixer_names[uda->cfg[CMD_MIXER]]);
snd_iprintf(buffer, "De-emphasis : %s\n", deemp_names[uda->cfg[CMD_DEEMP]]);
snd_iprintf(buffer, "Peak detection pos. : %s\n", uda->cfg[CMD_PEAK] ? "after" : "before");
snd_iprintf(buffer, "Peak value : %s\n\n", peak_value[peak]);
snd_iprintf(buffer, "Automatic Gain Ctrl : %s\n", uda->cfg[CMD_AGC] ? "on" : "off");
snd_iprintf(buffer, "AGC attack time : %d ms\n", AGC_atime[uda->cfg[CMD_AGC_TIME]]);
snd_iprintf(buffer, "AGC decay time : %d ms\n", AGC_dtime[uda->cfg[CMD_AGC_TIME]]);
snd_iprintf(buffer, "AGC output level : %s dB\n\n", AGC_level[uda->cfg[CMD_AGC_LEVEL]]);
snd_iprintf(buffer, "Mute : %s\n", uda->cfg[CMD_MUTE] ? "on" : "off");
if (uda->cfg[CMD_VOLUME] == 0)
snd_iprintf(buffer, "Volume : 0 dB\n");
else if (uda->cfg[CMD_VOLUME] < 62)
snd_iprintf(buffer, "Volume : %d dB\n", -1*uda->cfg[CMD_VOLUME] +1);
else
snd_iprintf(buffer, "Volume : -INF dB\n");
snd_iprintf(buffer, "Bass : %s\n", bass_values[uda->cfg[CMD_FILTER]][uda->cfg[CMD_BASS]]);
snd_iprintf(buffer, "Trebble : %d dB\n", uda->cfg[CMD_FILTER] ? 2*uda->cfg[CMD_TREBBLE] : 0);
snd_iprintf(buffer, "Input Gain (6dB) : %s\n", uda->cfg[CMD_IGAIN] ? "on" : "off");
snd_iprintf(buffer, "Output Gain (6dB) : %s\n", uda->cfg[CMD_OGAIN] ? "on" : "off");
snd_iprintf(buffer, "Mic sensitivity : %s\n", mic_sens_value[uda->cfg[CMD_MIC]]);
if(uda->cfg[CMD_CH1] < 31)
snd_iprintf(buffer, "Mixer gain channel 1: -%d.%c dB\n",
((uda->cfg[CMD_CH1] >> 1) * 3) + (uda->cfg[CMD_CH1] & 1),
uda->cfg[CMD_CH1] & 1 ? '5' : '0');
else
snd_iprintf(buffer, "Mixer gain channel 1: -INF dB\n");
if(uda->cfg[CMD_CH2] < 31)
snd_iprintf(buffer, "Mixer gain channel 2: -%d.%c dB\n",
((uda->cfg[CMD_CH2] >> 1) * 3) + (uda->cfg[CMD_CH2] & 1),
uda->cfg[CMD_CH2] & 1 ? '5' : '0');
else
snd_iprintf(buffer, "Mixer gain channel 2: -INF dB\n");
if(uda->cfg[CMD_IG] > 5)
snd_iprintf(buffer, "Input Amp. Gain ch 2: %d.%c dB\n",
(uda->cfg[CMD_IG] >> 1) -3, uda->cfg[CMD_IG] & 1 ? '5' : '0');
else
snd_iprintf(buffer, "Input Amp. Gain ch 2: %s dB\n", ig_small_value[uda->cfg[CMD_IG]]);
}
static void snd_uda1341_proc_regs_read(snd_info_entry_t *entry,
snd_info_buffer_t * buffer)
{
struct l3_client *clnt = entry->private_data;
struct uda1341 *uda = clnt->driver_data;
int reg;
char buf[12];
spin_lock(&uda->reg_lock);
for (reg = 0; reg < uda1341_reg_last; reg ++) {
if (reg == empty)
continue;
int2str_bin8(uda->regs[reg], buf);
snd_iprintf(buffer, "%s = %s\n", uda1341_reg_names[reg], buf);
}
int2str_bin8(snd_uda1341_codec_read(clnt, UDA1341_DATA1), buf);
snd_iprintf(buffer, "DATA1 = %s\n", buf);
spin_unlock(&uda->reg_lock);
}
static void __devinit snd_uda1341_proc_init(snd_card_t *card, struct l3_client *clnt)
{
snd_info_entry_t *entry;
if (! snd_card_proc_new(card, "uda1341", &entry))
snd_info_set_text_ops(entry, clnt, 1024, snd_uda1341_proc_read);
if (! snd_card_proc_new(card, "uda1341-regs", &entry))
snd_info_set_text_ops(entry, clnt, 1024, snd_uda1341_proc_regs_read);
}
/* }}} */
/* {{{ Mixer controls setting */
/* {{{ UDA1341 single functions */
#define UDA1341_SINGLE(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_single, \
.get = snd_uda1341_get_single, .put = snd_uda1341_put_single, \
.private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}
static int snd_uda1341_info_single(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
int mask = (kcontrol->private_value >> 12) & 63;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_uda1341_get_single(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int mask = (kcontrol->private_value >> 12) & 63;
int invert = (kcontrol->private_value >> 18) & 1;
ucontrol->value.integer.value[0] = uda->cfg[where];
if (invert)
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
return 0;
}
static int snd_uda1341_put_single(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int reg = (kcontrol->private_value >> 5) & 15;
int shift = (kcontrol->private_value >> 9) & 7;
int mask = (kcontrol->private_value >> 12) & 63;
int invert = (kcontrol->private_value >> 18) & 1;
unsigned short val;
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
uda->cfg[where] = val;
return snd_uda1341_update_bits(clnt, reg, mask, shift, val, FLUSH);
}
/* }}} */
/* {{{ UDA1341 enum functions */
#define UDA1341_ENUM(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_enum, \
.get = snd_uda1341_get_enum, .put = snd_uda1341_put_enum, \
.private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}
static int snd_uda1341_info_enum(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
int where = kcontrol->private_value & 31;
const char **texts;
// this register we don't handle this way
if (!uda1341_enum_items[where])
return -EINVAL;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = uda1341_enum_items[where];
if (uinfo->value.enumerated.item >= uda1341_enum_items[where])
uinfo->value.enumerated.item = uda1341_enum_items[where] - 1;
texts = uda1341_enum_names[where];
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_uda1341_get_enum(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
ucontrol->value.enumerated.item[0] = uda->cfg[where];
return 0;
}
static int snd_uda1341_put_enum(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int reg = (kcontrol->private_value >> 5) & 15;
int shift = (kcontrol->private_value >> 9) & 7;
int mask = (kcontrol->private_value >> 12) & 63;
uda->cfg[where] = (ucontrol->value.enumerated.item[0] & mask);
return snd_uda1341_update_bits(clnt, reg, mask, shift, uda->cfg[where], FLUSH);
}
/* }}} */
/* {{{ UDA1341 2regs functions */
#define UDA1341_2REGS(xname, where, reg_1, reg_2, shift_1, shift_2, mask_1, mask_2, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), .info = snd_uda1341_info_2regs, \
.get = snd_uda1341_get_2regs, .put = snd_uda1341_put_2regs, \
.private_value = where | (reg_1 << 5) | (reg_2 << 9) | (shift_1 << 13) | (shift_2 << 16) | \
(mask_1 << 19) | (mask_2 << 25) | (invert << 31) \
}
static int snd_uda1341_info_2regs(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
{
int mask_1 = (kcontrol->private_value >> 19) & 63;
int mask_2 = (kcontrol->private_value >> 25) & 63;
int mask;
mask = (mask_2 + 1) * (mask_1 + 1) - 1;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_uda1341_get_2regs(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int mask_1 = (kcontrol->private_value >> 19) & 63;
int mask_2 = (kcontrol->private_value >> 25) & 63;
int invert = (kcontrol->private_value >> 31) & 1;
int mask;
mask = (mask_2 + 1) * (mask_1 + 1) - 1;
ucontrol->value.integer.value[0] = uda->cfg[where];
if (invert)
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
return 0;
}
static int snd_uda1341_put_2regs(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
{
struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
uda1341_t *uda = clnt->driver_data;
int where = kcontrol->private_value & 31;
int reg_1 = (kcontrol->private_value >> 5) & 15;
int reg_2 = (kcontrol->private_value >> 9) & 15;
int shift_1 = (kcontrol->private_value >> 13) & 7;
int shift_2 = (kcontrol->private_value >> 16) & 7;
int mask_1 = (kcontrol->private_value >> 19) & 63;
int mask_2 = (kcontrol->private_value >> 25) & 63;
int invert = (kcontrol->private_value >> 31) & 1;
int mask;
unsigned short val1, val2, val;
val = ucontrol->value.integer.value[0];
mask = (mask_2 + 1) * (mask_1 + 1) - 1;
val1 = val & mask_1;
val2 = (val / (mask_1 + 1)) & mask_2;
if (invert) {
val1 = mask_1 - val1;
val2 = mask_2 - val2;
}
uda->cfg[where] = invert ? mask - val : val;
//FIXME - return value
snd_uda1341_update_bits(clnt, reg_1, mask_1, shift_1, val1, FLUSH);
return snd_uda1341_update_bits(clnt, reg_2, mask_2, shift_2, val2, FLUSH);
}
/* }}} */
static snd_kcontrol_new_t snd_uda1341_controls[] = {
UDA1341_SINGLE("Master Playback Switch", CMD_MUTE, data0_2, 2, 1, 1),
UDA1341_SINGLE("Master Playback Volume", CMD_VOLUME, data0_0, 0, 63, 1),
UDA1341_SINGLE("Bass Playback Volume", CMD_BASS, data0_1, 2, 15, 0),
UDA1341_SINGLE("Treble Playback Volume", CMD_TREBBLE, data0_1, 0, 3, 0),
UDA1341_SINGLE("Input Gain Switch", CMD_IGAIN, stat1, 5, 1, 0),
UDA1341_SINGLE("Output Gain Switch", CMD_OGAIN, stat1, 6, 1, 0),
UDA1341_SINGLE("Mixer Gain Channel 1 Volume", CMD_CH1, ext0, 0, 31, 1),
UDA1341_SINGLE("Mixer Gain Channel 2 Volume", CMD_CH2, ext1, 0, 31, 1),
UDA1341_SINGLE("Mic Sensitivity Volume", CMD_MIC, ext2, 2, 7, 0),
UDA1341_SINGLE("AGC Output Level", CMD_AGC_LEVEL, ext6, 0, 3, 0),
UDA1341_SINGLE("AGC Time Constant", CMD_AGC_TIME, ext6, 2, 7, 0),
UDA1341_SINGLE("AGC Time Constant Switch", CMD_AGC, ext4, 4, 1, 0),
UDA1341_SINGLE("DAC Power", CMD_DAC, stat1, 0, 1, 0),
UDA1341_SINGLE("ADC Power", CMD_ADC, stat1, 1, 1, 0),
UDA1341_ENUM("Peak detection", CMD_PEAK, data0_2, 5, 1, 0),
UDA1341_ENUM("De-emphasis", CMD_DEEMP, data0_2, 3, 3, 0),
UDA1341_ENUM("Mixer mode", CMD_MIXER, ext2, 0, 3, 0),
UDA1341_ENUM("Filter mode", CMD_FILTER, data0_2, 0, 3, 0),
UDA1341_2REGS("Gain Input Amplifier Gain (channel 2)", CMD_IG, ext4, ext5, 0, 0, 3, 31, 0),
};
static void uda1341_free(struct l3_client *uda1341)
{
l3_detach_client(uda1341); // calls kfree for driver_data (uda1341_t)
kfree(uda1341);
}
static int uda1341_dev_free(snd_device_t *device)
{
struct l3_client *clnt = device->device_data;
uda1341_free(clnt);
return 0;
}
int __init snd_chip_uda1341_mixer_new(snd_card_t *card, struct l3_client **clnt)
{
static snd_device_ops_t ops = {
.dev_free = uda1341_dev_free,
};
struct l3_client *uda1341;
int idx, err;
snd_assert(card != NULL, return -EINVAL);
uda1341 = kzalloc(sizeof(*uda1341), GFP_KERNEL);
if (uda1341 == NULL)
return -ENOMEM;
if ((err = l3_attach_client(uda1341, "l3-bit-sa1100-gpio", "snd-uda1341"))) {
kfree(uda1341);
return err;
}
if ((err = snd_device_new(card, SNDRV_DEV_CODEC, uda1341, &ops)) < 0) {
l3_detach_client(uda1341);
kfree(uda1341);
return err;
}
for (idx = 0; idx < ARRAY_SIZE(snd_uda1341_controls); idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_uda1341_controls[idx], uda1341))) < 0)
return err;
}
*clnt = uda1341;
strcpy(card->mixername, "UDA1341TS Mixer");
((uda1341_t *)uda1341->driver_data)->card = card;
snd_uda1341_proc_init(card, uda1341);
return 0;
}
/* }}} */
/* {{{ L3 operations */
static int uda1341_attach(struct l3_client *clnt)
{
struct uda1341 *uda;
uda = kzalloc(sizeof(*uda), 0, GFP_KERNEL);
if (!uda)
return -ENOMEM;
/* init fixed parts of my copy of registers */
uda->regs[stat0] = STAT0;
uda->regs[stat1] = STAT1;
uda->regs[data0_0] = DATA0_0;
uda->regs[data0_1] = DATA0_1;
uda->regs[data0_2] = DATA0_2;
uda->write = snd_uda1341_codec_write;
uda->read = snd_uda1341_codec_read;
spin_lock_init(&uda->reg_lock);
clnt->driver_data = uda;
return 0;
}
static void uda1341_detach(struct l3_client *clnt)
{
kfree(clnt->driver_data);
}
static int
uda1341_command(struct l3_client *clnt, int cmd, void *arg)
{
if (cmd != CMD_READ_REG)
return snd_uda1341_cfg_write(clnt, cmd, (int) arg, FLUSH);
return snd_uda1341_codec_read(clnt, (int) arg);
}
static int uda1341_open(struct l3_client *clnt)
{
struct uda1341 *uda = clnt->driver_data;
uda->active = 1;
/* init default configuration */
snd_uda1341_cfg_write(clnt, CMD_RESET, 0, REGS_ONLY);
snd_uda1341_cfg_write(clnt, CMD_FS, F256, FLUSH); // unknown state after reset
snd_uda1341_cfg_write(clnt, CMD_FORMAT, LSB16, FLUSH); // unknown state after reset
snd_uda1341_cfg_write(clnt, CMD_OGAIN, ON, FLUSH); // default off after reset
snd_uda1341_cfg_write(clnt, CMD_IGAIN, ON, FLUSH); // default off after reset
snd_uda1341_cfg_write(clnt, CMD_DAC, ON, FLUSH); // ??? default value after reset
snd_uda1341_cfg_write(clnt, CMD_ADC, ON, FLUSH); // ??? default value after reset
snd_uda1341_cfg_write(clnt, CMD_VOLUME, 20, FLUSH); // default 0dB after reset
snd_uda1341_cfg_write(clnt, CMD_BASS, 0, REGS_ONLY); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_TREBBLE, 0, REGS_ONLY); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_PEAK, AFTER, REGS_ONLY);// default value after reset
snd_uda1341_cfg_write(clnt, CMD_DEEMP, NONE, REGS_ONLY);// default value after reset
//at this moment should be QMUTED by h3600_audio_init
snd_uda1341_cfg_write(clnt, CMD_MUTE, OFF, REGS_ONLY); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_FILTER, MAX, FLUSH); // defaul flat after reset
snd_uda1341_cfg_write(clnt, CMD_CH1, 31, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_CH2, 4, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_MIC, 4, FLUSH); // default 0dB after reset
snd_uda1341_cfg_write(clnt, CMD_MIXER, MIXER, FLUSH); // default doub.dif.mode
snd_uda1341_cfg_write(clnt, CMD_AGC, OFF, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_IG, 0, FLUSH); // unknown state after reset
snd_uda1341_cfg_write(clnt, CMD_AGC_TIME, 0, FLUSH); // default value after reset
snd_uda1341_cfg_write(clnt, CMD_AGC_LEVEL, 0, FLUSH); // default value after reset
return 0;
}
static void uda1341_close(struct l3_client *clnt)
{
struct uda1341 *uda = clnt->driver_data;
uda->active = 0;
}
/* }}} */
/* {{{ Module and L3 initialization */
static struct l3_ops uda1341_ops = {
.open = uda1341_open,
.command = uda1341_command,
.close = uda1341_close,
};
static struct l3_driver uda1341_driver = {
.name = UDA1341_ALSA_NAME,
.attach_client = uda1341_attach,
.detach_client = uda1341_detach,
.ops = &uda1341_ops,
.owner = THIS_MODULE,
};
static int __init uda1341_init(void)
{
return l3_add_driver(&uda1341_driver);
}
static void __exit uda1341_exit(void)
{
l3_del_driver(&uda1341_driver);
}
module_init(uda1341_init);
module_exit(uda1341_exit);
MODULE_AUTHOR("Tomas Kasparek <tomas.kasparek@seznam.cz>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Philips UDA1341 CODEC driver for ALSA");
MODULE_SUPPORTED_DEVICE("{{UDA1341,UDA1341TS}}");
EXPORT_SYMBOL(snd_chip_uda1341_mixer_new);
/* }}} */
/*
* Local variables:
* indent-tabs-mode: t
* End:
*/