Linus Torvalds 3822a7c409 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X bit.
 
 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.
 
 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes
 
 - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
   does perform some memcg maintenance and cleanup work.
 
 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".  These filters provide users
   with finer-grained control over DAMOS's actions.  SeongJae has also done
   some DAMON cleanup work.
 
 - Kairui Song adds a series ("Clean up and fixes for swap").
 
 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".
 
 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series.  It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.
 
 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".
 
 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".
 
 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".
 
 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".
 
 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series "mm:
   support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
   PTEs".
 
 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".
 
 - Sergey Senozhatsky has improved zsmalloc's memory utilization with his
   series "zsmalloc: make zspage chain size configurable".
 
 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.  The previous BPF-based approach had
   shortcomings.  See "mm: In-kernel support for memory-deny-write-execute
   (MDWE)".
 
 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
 
 - T.J.  Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".
 
 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a per-node
   basis.  See the series "Introduce per NUMA node memory error
   statistics".
 
 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage during
   compaction".
 
 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".
 
 - Christoph Hellwig has removed block_device_operations.rw_page() in ths
   series "remove ->rw_page".
 
 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".
 
 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier functions".
 
 - Some pagemap cleanup and generalization work in Mike Rapoport's series
   "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
   "fixups for generic implementation of pfn_valid()"
 
 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
 
 - Jason Gunthorpe rationalized the GUP system's interface to the rest of
   the kernel in the series "Simplify the external interface for GUP".
 
 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface.  To support this, we'll temporarily be
   printing warnings when people use the debugfs interface.  See the series
   "mm/damon: deprecate DAMON debugfs interface".
 
 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.
 
 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".
 
 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
 jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
 DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
 =MlGs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
   F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X
   bit.

 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.

 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes

 - Johannes Weiner has a series ("mm: push down lock_page_memcg()")
   which does perform some memcg maintenance and cleanup work.

 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".

   These filters provide users with finer-grained control over DAMOS's
   actions. SeongJae has also done some DAMON cleanup work.

 - Kairui Song adds a series ("Clean up and fixes for swap").

 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".

 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.

 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".

 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".

 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".

 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".

 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series
   "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
   swap PTEs".

 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".

 - Sergey Senozhatsky has improved zsmalloc's memory utilization with
   his series "zsmalloc: make zspage chain size configurable".

 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.

   The previous BPF-based approach had shortcomings. See "mm: In-kernel
   support for memory-deny-write-execute (MDWE)".

 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".

 - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".

 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a
   per-node basis. See the series "Introduce per NUMA node memory error
   statistics".

 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage
   during compaction".

 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".

 - Christoph Hellwig has removed block_device_operations.rw_page() in
   ths series "remove ->rw_page".

 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".

 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier
   functions".

 - Some pagemap cleanup and generalization work in Mike Rapoport's
   series "mm, arch: add generic implementation of pfn_valid() for
   FLATMEM" and "fixups for generic implementation of pfn_valid()"

 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".

 - Jason Gunthorpe rationalized the GUP system's interface to the rest
   of the kernel in the series "Simplify the external interface for
   GUP".

 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface. To support this, we'll temporarily be
   printing warnings when people use the debugfs interface. See the
   series "mm/damon: deprecate DAMON debugfs interface".

 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.

 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".

 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".

* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
  include/linux/migrate.h: remove unneeded externs
  mm/memory_hotplug: cleanup return value handing in do_migrate_range()
  mm/uffd: fix comment in handling pte markers
  mm: change to return bool for isolate_movable_page()
  mm: hugetlb: change to return bool for isolate_hugetlb()
  mm: change to return bool for isolate_lru_page()
  mm: change to return bool for folio_isolate_lru()
  objtool: add UACCESS exceptions for __tsan_volatile_read/write
  kmsan: disable ftrace in kmsan core code
  kasan: mark addr_has_metadata __always_inline
  mm: memcontrol: rename memcg_kmem_enabled()
  sh: initialize max_mapnr
  m68k/nommu: add missing definition of ARCH_PFN_OFFSET
  mm: percpu: fix incorrect size in pcpu_obj_full_size()
  maple_tree: reduce stack usage with gcc-9 and earlier
  mm: page_alloc: call panic() when memoryless node allocation fails
  mm: multi-gen LRU: avoid futile retries
  migrate_pages: move THP/hugetlb migration support check to simplify code
  migrate_pages: batch flushing TLB
  migrate_pages: share more code between _unmap and _move
  ...
2023-02-23 17:09:35 -08:00

474 lines
21 KiB
ReStructuredText

=============
HugeTLB Pages
=============
Overview
========
The intent of this file is to give a brief summary of hugetlbpage support in
the Linux kernel. This support is built on top of multiple page size support
that is provided by most modern architectures. For example, x86 CPUs normally
support 4K and 2M (1G if architecturally supported) page sizes, ia64
architecture supports multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M, 16M,
256M and ppc64 supports 4K and 16M. A TLB is a cache of virtual-to-physical
translations. Typically this is a very scarce resource on processor.
Operating systems try to make best use of limited number of TLB resources.
This optimization is more critical now as bigger and bigger physical memories
(several GBs) are more readily available.
Users can use the huge page support in Linux kernel by either using the mmap
system call or standard SYSV shared memory system calls (shmget, shmat).
First the Linux kernel needs to be built with the CONFIG_HUGETLBFS
(present under "File systems") and CONFIG_HUGETLB_PAGE (selected
automatically when CONFIG_HUGETLBFS is selected) configuration
options.
The ``/proc/meminfo`` file provides information about the total number of
persistent hugetlb pages in the kernel's huge page pool. It also displays
default huge page size and information about the number of free, reserved
and surplus huge pages in the pool of huge pages of default size.
The huge page size is needed for generating the proper alignment and
size of the arguments to system calls that map huge page regions.
The output of ``cat /proc/meminfo`` will include lines like::
HugePages_Total: uuu
HugePages_Free: vvv
HugePages_Rsvd: www
HugePages_Surp: xxx
Hugepagesize: yyy kB
Hugetlb: zzz kB
where:
HugePages_Total
is the size of the pool of huge pages.
HugePages_Free
is the number of huge pages in the pool that are not yet
allocated.
HugePages_Rsvd
is short for "reserved," and is the number of huge pages for
which a commitment to allocate from the pool has been made,
but no allocation has yet been made. Reserved huge pages
guarantee that an application will be able to allocate a
huge page from the pool of huge pages at fault time.
HugePages_Surp
is short for "surplus," and is the number of huge pages in
the pool above the value in ``/proc/sys/vm/nr_hugepages``. The
maximum number of surplus huge pages is controlled by
``/proc/sys/vm/nr_overcommit_hugepages``.
Note: When the feature of freeing unused vmemmap pages associated
with each hugetlb page is enabled, the number of surplus huge pages
may be temporarily larger than the maximum number of surplus huge
pages when the system is under memory pressure.
Hugepagesize
is the default hugepage size (in kB).
Hugetlb
is the total amount of memory (in kB), consumed by huge
pages of all sizes.
If huge pages of different sizes are in use, this number
will exceed HugePages_Total \* Hugepagesize. To get more
detailed information, please, refer to
``/sys/kernel/mm/hugepages`` (described below).
``/proc/filesystems`` should also show a filesystem of type "hugetlbfs"
configured in the kernel.
``/proc/sys/vm/nr_hugepages`` indicates the current number of "persistent" huge
pages in the kernel's huge page pool. "Persistent" huge pages will be
returned to the huge page pool when freed by a task. A user with root
privileges can dynamically allocate more or free some persistent huge pages
by increasing or decreasing the value of ``nr_hugepages``.
Note: When the feature of freeing unused vmemmap pages associated with each
hugetlb page is enabled, we can fail to free the huge pages triggered by
the user when the system is under memory pressure. Please try again later.
Pages that are used as huge pages are reserved inside the kernel and cannot
be used for other purposes. Huge pages cannot be swapped out under
memory pressure.
Once a number of huge pages have been pre-allocated to the kernel huge page
pool, a user with appropriate privilege can use either the mmap system call
or shared memory system calls to use the huge pages. See the discussion of
:ref:`Using Huge Pages <using_huge_pages>`, below.
The administrator can allocate persistent huge pages on the kernel boot
command line by specifying the "hugepages=N" parameter, where 'N' = the
number of huge pages requested. This is the most reliable method of
allocating huge pages as memory has not yet become fragmented.
Some platforms support multiple huge page sizes. To allocate huge pages
of a specific size, one must precede the huge pages boot command parameters
with a huge page size selection parameter "hugepagesz=<size>". <size> must
be specified in bytes with optional scale suffix [kKmMgG]. The default huge
page size may be selected with the "default_hugepagesz=<size>" boot parameter.
Hugetlb boot command line parameter semantics
hugepagesz
Specify a huge page size. Used in conjunction with hugepages
parameter to preallocate a number of huge pages of the specified
size. Hence, hugepagesz and hugepages are typically specified in
pairs such as::
hugepagesz=2M hugepages=512
hugepagesz can only be specified once on the command line for a
specific huge page size. Valid huge page sizes are architecture
dependent.
hugepages
Specify the number of huge pages to preallocate. This typically
follows a valid hugepagesz or default_hugepagesz parameter. However,
if hugepages is the first or only hugetlb command line parameter it
implicitly specifies the number of huge pages of default size to
allocate. If the number of huge pages of default size is implicitly
specified, it can not be overwritten by a hugepagesz,hugepages
parameter pair for the default size. This parameter also has a
node format. The node format specifies the number of huge pages
to allocate on specific nodes.
For example, on an architecture with 2M default huge page size::
hugepages=256 hugepagesz=2M hugepages=512
will result in 256 2M huge pages being allocated and a warning message
indicating that the hugepages=512 parameter is ignored. If a hugepages
parameter is preceded by an invalid hugepagesz parameter, it will
be ignored.
Node format example::
hugepagesz=2M hugepages=0:1,1:2
It will allocate 1 2M hugepage on node0 and 2 2M hugepages on node1.
If the node number is invalid, the parameter will be ignored.
default_hugepagesz
Specify the default huge page size. This parameter can
only be specified once on the command line. default_hugepagesz can
optionally be followed by the hugepages parameter to preallocate a
specific number of huge pages of default size. The number of default
sized huge pages to preallocate can also be implicitly specified as
mentioned in the hugepages section above. Therefore, on an
architecture with 2M default huge page size::
hugepages=256
default_hugepagesz=2M hugepages=256
hugepages=256 default_hugepagesz=2M
will all result in 256 2M huge pages being allocated. Valid default
huge page size is architecture dependent.
hugetlb_free_vmemmap
When CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP is set, this enables HugeTLB
Vmemmap Optimization (HVO).
When multiple huge page sizes are supported, ``/proc/sys/vm/nr_hugepages``
indicates the current number of pre-allocated huge pages of the default size.
Thus, one can use the following command to dynamically allocate/deallocate
default sized persistent huge pages::
echo 20 > /proc/sys/vm/nr_hugepages
This command will try to adjust the number of default sized huge pages in the
huge page pool to 20, allocating or freeing huge pages, as required.
On a NUMA platform, the kernel will attempt to distribute the huge page pool
over all the set of allowed nodes specified by the NUMA memory policy of the
task that modifies ``nr_hugepages``. The default for the allowed nodes--when the
task has default memory policy--is all on-line nodes with memory. Allowed
nodes with insufficient available, contiguous memory for a huge page will be
silently skipped when allocating persistent huge pages. See the
:ref:`discussion below <mem_policy_and_hp_alloc>`
of the interaction of task memory policy, cpusets and per node attributes
with the allocation and freeing of persistent huge pages.
The success or failure of huge page allocation depends on the amount of
physically contiguous memory that is present in system at the time of the
allocation attempt. If the kernel is unable to allocate huge pages from
some nodes in a NUMA system, it will attempt to make up the difference by
allocating extra pages on other nodes with sufficient available contiguous
memory, if any.
System administrators may want to put this command in one of the local rc
init files. This will enable the kernel to allocate huge pages early in
the boot process when the possibility of getting physical contiguous pages
is still very high. Administrators can verify the number of huge pages
actually allocated by checking the sysctl or meminfo. To check the per node
distribution of huge pages in a NUMA system, use::
cat /sys/devices/system/node/node*/meminfo | fgrep Huge
``/proc/sys/vm/nr_overcommit_hugepages`` specifies how large the pool of
huge pages can grow, if more huge pages than ``/proc/sys/vm/nr_hugepages`` are
requested by applications. Writing any non-zero value into this file
indicates that the hugetlb subsystem is allowed to try to obtain that
number of "surplus" huge pages from the kernel's normal page pool, when the
persistent huge page pool is exhausted. As these surplus huge pages become
unused, they are freed back to the kernel's normal page pool.
When increasing the huge page pool size via ``nr_hugepages``, any existing
surplus pages will first be promoted to persistent huge pages. Then, additional
huge pages will be allocated, if necessary and if possible, to fulfill
the new persistent huge page pool size.
The administrator may shrink the pool of persistent huge pages for
the default huge page size by setting the ``nr_hugepages`` sysctl to a
smaller value. The kernel will attempt to balance the freeing of huge pages
across all nodes in the memory policy of the task modifying ``nr_hugepages``.
Any free huge pages on the selected nodes will be freed back to the kernel's
normal page pool.
Caveat: Shrinking the persistent huge page pool via ``nr_hugepages`` such that
it becomes less than the number of huge pages in use will convert the balance
of the in-use huge pages to surplus huge pages. This will occur even if
the number of surplus pages would exceed the overcommit value. As long as
this condition holds--that is, until ``nr_hugepages+nr_overcommit_hugepages`` is
increased sufficiently, or the surplus huge pages go out of use and are freed--
no more surplus huge pages will be allowed to be allocated.
With support for multiple huge page pools at run-time available, much of
the huge page userspace interface in ``/proc/sys/vm`` has been duplicated in
sysfs.
The ``/proc`` interfaces discussed above have been retained for backwards
compatibility. The root huge page control directory in sysfs is::
/sys/kernel/mm/hugepages
For each huge page size supported by the running kernel, a subdirectory
will exist, of the form::
hugepages-${size}kB
Inside each of these directories, the set of files contained in ``/proc``
will exist. In addition, two additional interfaces for demoting huge
pages may exist::
demote
demote_size
nr_hugepages
nr_hugepages_mempolicy
nr_overcommit_hugepages
free_hugepages
resv_hugepages
surplus_hugepages
The demote interfaces provide the ability to split a huge page into
smaller huge pages. For example, the x86 architecture supports both
1GB and 2MB huge pages sizes. A 1GB huge page can be split into 512
2MB huge pages. Demote interfaces are not available for the smallest
huge page size. The demote interfaces are:
demote_size
is the size of demoted pages. When a page is demoted a corresponding
number of huge pages of demote_size will be created. By default,
demote_size is set to the next smaller huge page size. If there are
multiple smaller huge page sizes, demote_size can be set to any of
these smaller sizes. Only huge page sizes less than the current huge
pages size are allowed.
demote
is used to demote a number of huge pages. A user with root privileges
can write to this file. It may not be possible to demote the
requested number of huge pages. To determine how many pages were
actually demoted, compare the value of nr_hugepages before and after
writing to the demote interface. demote is a write only interface.
The interfaces which are the same as in ``/proc`` (all except demote and
demote_size) function as described above for the default huge page-sized case.
.. _mem_policy_and_hp_alloc:
Interaction of Task Memory Policy with Huge Page Allocation/Freeing
===================================================================
Whether huge pages are allocated and freed via the ``/proc`` interface or
the ``/sysfs`` interface using the ``nr_hugepages_mempolicy`` attribute, the
NUMA nodes from which huge pages are allocated or freed are controlled by the
NUMA memory policy of the task that modifies the ``nr_hugepages_mempolicy``
sysctl or attribute. When the ``nr_hugepages`` attribute is used, mempolicy
is ignored.
The recommended method to allocate or free huge pages to/from the kernel
huge page pool, using the ``nr_hugepages`` example above, is::
numactl --interleave <node-list> echo 20 \
>/proc/sys/vm/nr_hugepages_mempolicy
or, more succinctly::
numactl -m <node-list> echo 20 >/proc/sys/vm/nr_hugepages_mempolicy
This will allocate or free ``abs(20 - nr_hugepages)`` to or from the nodes
specified in <node-list>, depending on whether number of persistent huge pages
is initially less than or greater than 20, respectively. No huge pages will be
allocated nor freed on any node not included in the specified <node-list>.
When adjusting the persistent hugepage count via ``nr_hugepages_mempolicy``, any
memory policy mode--bind, preferred, local or interleave--may be used. The
resulting effect on persistent huge page allocation is as follows:
#. Regardless of mempolicy mode [see
Documentation/admin-guide/mm/numa_memory_policy.rst],
persistent huge pages will be distributed across the node or nodes
specified in the mempolicy as if "interleave" had been specified.
However, if a node in the policy does not contain sufficient contiguous
memory for a huge page, the allocation will not "fallback" to the nearest
neighbor node with sufficient contiguous memory. To do this would cause
undesirable imbalance in the distribution of the huge page pool, or
possibly, allocation of persistent huge pages on nodes not allowed by
the task's memory policy.
#. One or more nodes may be specified with the bind or interleave policy.
If more than one node is specified with the preferred policy, only the
lowest numeric id will be used. Local policy will select the node where
the task is running at the time the nodes_allowed mask is constructed.
For local policy to be deterministic, the task must be bound to a cpu or
cpus in a single node. Otherwise, the task could be migrated to some
other node at any time after launch and the resulting node will be
indeterminate. Thus, local policy is not very useful for this purpose.
Any of the other mempolicy modes may be used to specify a single node.
#. The nodes allowed mask will be derived from any non-default task mempolicy,
whether this policy was set explicitly by the task itself or one of its
ancestors, such as numactl. This means that if the task is invoked from a
shell with non-default policy, that policy will be used. One can specify a
node list of "all" with numactl --interleave or --membind [-m] to achieve
interleaving over all nodes in the system or cpuset.
#. Any task mempolicy specified--e.g., using numactl--will be constrained by
the resource limits of any cpuset in which the task runs. Thus, there will
be no way for a task with non-default policy running in a cpuset with a
subset of the system nodes to allocate huge pages outside the cpuset
without first moving to a cpuset that contains all of the desired nodes.
#. Boot-time huge page allocation attempts to distribute the requested number
of huge pages over all on-lines nodes with memory.
Per Node Hugepages Attributes
=============================
A subset of the contents of the root huge page control directory in sysfs,
described above, will be replicated under each the system device of each
NUMA node with memory in::
/sys/devices/system/node/node[0-9]*/hugepages/
Under this directory, the subdirectory for each supported huge page size
contains the following attribute files::
nr_hugepages
free_hugepages
surplus_hugepages
The free\_' and surplus\_' attribute files are read-only. They return the number
of free and surplus [overcommitted] huge pages, respectively, on the parent
node.
The ``nr_hugepages`` attribute returns the total number of huge pages on the
specified node. When this attribute is written, the number of persistent huge
pages on the parent node will be adjusted to the specified value, if sufficient
resources exist, regardless of the task's mempolicy or cpuset constraints.
Note that the number of overcommit and reserve pages remain global quantities,
as we don't know until fault time, when the faulting task's mempolicy is
applied, from which node the huge page allocation will be attempted.
.. _using_huge_pages:
Using Huge Pages
================
If the user applications are going to request huge pages using mmap system
call, then it is required that system administrator mount a file system of
type hugetlbfs::
mount -t hugetlbfs \
-o uid=<value>,gid=<value>,mode=<value>,pagesize=<value>,size=<value>,\
min_size=<value>,nr_inodes=<value> none /mnt/huge
This command mounts a (pseudo) filesystem of type hugetlbfs on the directory
``/mnt/huge``. Any file created on ``/mnt/huge`` uses huge pages.
The ``uid`` and ``gid`` options sets the owner and group of the root of the
file system. By default the ``uid`` and ``gid`` of the current process
are taken.
The ``mode`` option sets the mode of root of file system to value & 01777.
This value is given in octal. By default the value 0755 is picked.
If the platform supports multiple huge page sizes, the ``pagesize`` option can
be used to specify the huge page size and associated pool. ``pagesize``
is specified in bytes. If ``pagesize`` is not specified the platform's
default huge page size and associated pool will be used.
The ``size`` option sets the maximum value of memory (huge pages) allowed
for that filesystem (``/mnt/huge``). The ``size`` option can be specified
in bytes, or as a percentage of the specified huge page pool (``nr_hugepages``).
The size is rounded down to HPAGE_SIZE boundary.
The ``min_size`` option sets the minimum value of memory (huge pages) allowed
for the filesystem. ``min_size`` can be specified in the same way as ``size``,
either bytes or a percentage of the huge page pool.
At mount time, the number of huge pages specified by ``min_size`` are reserved
for use by the filesystem.
If there are not enough free huge pages available, the mount will fail.
As huge pages are allocated to the filesystem and freed, the reserve count
is adjusted so that the sum of allocated and reserved huge pages is always
at least ``min_size``.
The option ``nr_inodes`` sets the maximum number of inodes that ``/mnt/huge``
can use.
If the ``size``, ``min_size`` or ``nr_inodes`` option is not provided on
command line then no limits are set.
For ``pagesize``, ``size``, ``min_size`` and ``nr_inodes`` options, you can
use [G|g]/[M|m]/[K|k] to represent giga/mega/kilo.
For example, size=2K has the same meaning as size=2048.
While read system calls are supported on files that reside on hugetlb
file systems, write system calls are not.
Regular chown, chgrp, and chmod commands (with right permissions) could be
used to change the file attributes on hugetlbfs.
Also, it is important to note that no such mount command is required if
applications are going to use only shmat/shmget system calls or mmap with
MAP_HUGETLB. For an example of how to use mmap with MAP_HUGETLB see
:ref:`map_hugetlb <map_hugetlb>` below.
Users who wish to use hugetlb memory via shared memory segment should be
members of a supplementary group and system admin needs to configure that gid
into ``/proc/sys/vm/hugetlb_shm_group``. It is possible for same or different
applications to use any combination of mmaps and shm* calls, though the mount of
filesystem will be required for using mmap calls without MAP_HUGETLB.
Syscalls that operate on memory backed by hugetlb pages only have their lengths
aligned to the native page size of the processor; they will normally fail with
errno set to EINVAL or exclude hugetlb pages that extend beyond the length if
not hugepage aligned. For example, munmap(2) will fail if memory is backed by
a hugetlb page and the length is smaller than the hugepage size.
Examples
========
.. _map_hugetlb:
``map_hugetlb``
see tools/testing/selftests/mm/map_hugetlb.c
``hugepage-shm``
see tools/testing/selftests/mm/hugepage-shm.c
``hugepage-mmap``
see tools/testing/selftests/mm/hugepage-mmap.c
The `libhugetlbfs`_ library provides a wide range of userspace tools
to help with huge page usability, environment setup, and control.
.. _libhugetlbfs: https://github.com/libhugetlbfs/libhugetlbfs