mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 17:25:38 +00:00
55cb93fd24
Here is a small set of driver core changes for 6.13-rc1. Nothing major for this merge cycle, except for the 2 simple merge conflicts are here just to make life interesting. Included in here are: - sysfs core changes and preparations for more sysfs api cleanups that can come through all driver trees after -rc1 is out - fw_devlink fixes based on many reports and debugging sessions - list_for_each_reverse() removal, no one was using it! - last-minute seq_printf() format string bug found and fixed in many drivers all at once. - minor bugfixes and changes full details in the shortlog As mentioned above, there is 2 merge conflicts with your tree, one is where the file is removed (easy enough to resolve), the second is a build time error, that has been found in linux-next and the fix can be seen here: https://lore.kernel.org/r/20241107212645.41252436@canb.auug.org.au Other than that, the changes here have been in linux-next with no other reported issues. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZ0lEog8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ym+0ACgw6wN+LkLVIHWhxTq5DYHQ0QCxY8AoJrRIcKe 78h0+OU3OXhOy8JGz62W =oI5S -----END PGP SIGNATURE----- Merge tag 'driver-core-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is a small set of driver core changes for 6.13-rc1. Nothing major for this merge cycle, except for the two simple merge conflicts are here just to make life interesting. Included in here are: - sysfs core changes and preparations for more sysfs api cleanups that can come through all driver trees after -rc1 is out - fw_devlink fixes based on many reports and debugging sessions - list_for_each_reverse() removal, no one was using it! - last-minute seq_printf() format string bug found and fixed in many drivers all at once. - minor bugfixes and changes full details in the shortlog" * tag 'driver-core-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (35 commits) Fix a potential abuse of seq_printf() format string in drivers cpu: Remove spurious NULL in attribute_group definition s390/con3215: Remove spurious NULL in attribute_group definition perf: arm-ni: Remove spurious NULL in attribute_group definition driver core: Constify bin_attribute definitions sysfs: attribute_group: allow registration of const bin_attribute firmware_loader: Fix possible resource leak in fw_log_firmware_info() drivers: core: fw_devlink: Fix excess parameter description in docstring driver core: class: Correct WARN() message in APIs class_(for_each|find)_device() cacheinfo: Use of_property_present() for non-boolean properties cdx: Fix cdx_mmap_resource() after constifying attr in ->mmap() drivers: core: fw_devlink: Make the error message a bit more useful phy: tegra: xusb: Set fwnode for xusb port devices drm: display: Set fwnode for aux bus devices driver core: fw_devlink: Stop trying to optimize cycle detection logic driver core: Constify attribute arguments of binary attributes sysfs: bin_attribute: add const read/write callback variants sysfs: implement all BIN_ATTR_* macros in terms of __BIN_ATTR() sysfs: treewide: constify attribute callback of bin_attribute::llseek() sysfs: treewide: constify attribute callback of bin_attribute::mmap() ...
3237 lines
78 KiB
C
3237 lines
78 KiB
C
/* CPU control.
|
|
* (C) 2001, 2002, 2003, 2004 Rusty Russell
|
|
*
|
|
* This code is licenced under the GPL.
|
|
*/
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/isolation.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/smt.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/smpboot.h>
|
|
#include <linux/relay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/scs.h>
|
|
#include <linux/percpu-rwsem.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/random.h>
|
|
#include <linux/cc_platform.h>
|
|
|
|
#include <trace/events/power.h>
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/cpuhp.h>
|
|
|
|
#include "smpboot.h"
|
|
|
|
/**
|
|
* struct cpuhp_cpu_state - Per cpu hotplug state storage
|
|
* @state: The current cpu state
|
|
* @target: The target state
|
|
* @fail: Current CPU hotplug callback state
|
|
* @thread: Pointer to the hotplug thread
|
|
* @should_run: Thread should execute
|
|
* @rollback: Perform a rollback
|
|
* @single: Single callback invocation
|
|
* @bringup: Single callback bringup or teardown selector
|
|
* @node: Remote CPU node; for multi-instance, do a
|
|
* single entry callback for install/remove
|
|
* @last: For multi-instance rollback, remember how far we got
|
|
* @cb_state: The state for a single callback (install/uninstall)
|
|
* @result: Result of the operation
|
|
* @ap_sync_state: State for AP synchronization
|
|
* @done_up: Signal completion to the issuer of the task for cpu-up
|
|
* @done_down: Signal completion to the issuer of the task for cpu-down
|
|
*/
|
|
struct cpuhp_cpu_state {
|
|
enum cpuhp_state state;
|
|
enum cpuhp_state target;
|
|
enum cpuhp_state fail;
|
|
#ifdef CONFIG_SMP
|
|
struct task_struct *thread;
|
|
bool should_run;
|
|
bool rollback;
|
|
bool single;
|
|
bool bringup;
|
|
struct hlist_node *node;
|
|
struct hlist_node *last;
|
|
enum cpuhp_state cb_state;
|
|
int result;
|
|
atomic_t ap_sync_state;
|
|
struct completion done_up;
|
|
struct completion done_down;
|
|
#endif
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
|
|
.fail = CPUHP_INVALID,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
cpumask_t cpus_booted_once_mask;
|
|
#endif
|
|
|
|
#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
|
|
static struct lockdep_map cpuhp_state_up_map =
|
|
STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
|
|
static struct lockdep_map cpuhp_state_down_map =
|
|
STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
|
|
|
|
|
|
static inline void cpuhp_lock_acquire(bool bringup)
|
|
{
|
|
lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
|
|
}
|
|
|
|
static inline void cpuhp_lock_release(bool bringup)
|
|
{
|
|
lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
|
|
}
|
|
#else
|
|
|
|
static inline void cpuhp_lock_acquire(bool bringup) { }
|
|
static inline void cpuhp_lock_release(bool bringup) { }
|
|
|
|
#endif
|
|
|
|
/**
|
|
* struct cpuhp_step - Hotplug state machine step
|
|
* @name: Name of the step
|
|
* @startup: Startup function of the step
|
|
* @teardown: Teardown function of the step
|
|
* @cant_stop: Bringup/teardown can't be stopped at this step
|
|
* @multi_instance: State has multiple instances which get added afterwards
|
|
*/
|
|
struct cpuhp_step {
|
|
const char *name;
|
|
union {
|
|
int (*single)(unsigned int cpu);
|
|
int (*multi)(unsigned int cpu,
|
|
struct hlist_node *node);
|
|
} startup;
|
|
union {
|
|
int (*single)(unsigned int cpu);
|
|
int (*multi)(unsigned int cpu,
|
|
struct hlist_node *node);
|
|
} teardown;
|
|
/* private: */
|
|
struct hlist_head list;
|
|
/* public: */
|
|
bool cant_stop;
|
|
bool multi_instance;
|
|
};
|
|
|
|
static DEFINE_MUTEX(cpuhp_state_mutex);
|
|
static struct cpuhp_step cpuhp_hp_states[];
|
|
|
|
static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
|
|
{
|
|
return cpuhp_hp_states + state;
|
|
}
|
|
|
|
static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
|
|
{
|
|
return bringup ? !step->startup.single : !step->teardown.single;
|
|
}
|
|
|
|
/**
|
|
* cpuhp_invoke_callback - Invoke the callbacks for a given state
|
|
* @cpu: The cpu for which the callback should be invoked
|
|
* @state: The state to do callbacks for
|
|
* @bringup: True if the bringup callback should be invoked
|
|
* @node: For multi-instance, do a single entry callback for install/remove
|
|
* @lastp: For multi-instance rollback, remember how far we got
|
|
*
|
|
* Called from cpu hotplug and from the state register machinery.
|
|
*
|
|
* Return: %0 on success or a negative errno code
|
|
*/
|
|
static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
|
|
bool bringup, struct hlist_node *node,
|
|
struct hlist_node **lastp)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
struct cpuhp_step *step = cpuhp_get_step(state);
|
|
int (*cbm)(unsigned int cpu, struct hlist_node *node);
|
|
int (*cb)(unsigned int cpu);
|
|
int ret, cnt;
|
|
|
|
if (st->fail == state) {
|
|
st->fail = CPUHP_INVALID;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (cpuhp_step_empty(bringup, step)) {
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
}
|
|
|
|
if (!step->multi_instance) {
|
|
WARN_ON_ONCE(lastp && *lastp);
|
|
cb = bringup ? step->startup.single : step->teardown.single;
|
|
|
|
trace_cpuhp_enter(cpu, st->target, state, cb);
|
|
ret = cb(cpu);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
return ret;
|
|
}
|
|
cbm = bringup ? step->startup.multi : step->teardown.multi;
|
|
|
|
/* Single invocation for instance add/remove */
|
|
if (node) {
|
|
WARN_ON_ONCE(lastp && *lastp);
|
|
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
|
|
ret = cbm(cpu, node);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* State transition. Invoke on all instances */
|
|
cnt = 0;
|
|
hlist_for_each(node, &step->list) {
|
|
if (lastp && node == *lastp)
|
|
break;
|
|
|
|
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
|
|
ret = cbm(cpu, node);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
if (ret) {
|
|
if (!lastp)
|
|
goto err;
|
|
|
|
*lastp = node;
|
|
return ret;
|
|
}
|
|
cnt++;
|
|
}
|
|
if (lastp)
|
|
*lastp = NULL;
|
|
return 0;
|
|
err:
|
|
/* Rollback the instances if one failed */
|
|
cbm = !bringup ? step->startup.multi : step->teardown.multi;
|
|
if (!cbm)
|
|
return ret;
|
|
|
|
hlist_for_each(node, &step->list) {
|
|
if (!cnt--)
|
|
break;
|
|
|
|
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
|
|
ret = cbm(cpu, node);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
/*
|
|
* Rollback must not fail,
|
|
*/
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static bool cpuhp_is_ap_state(enum cpuhp_state state)
|
|
{
|
|
/*
|
|
* The extra check for CPUHP_TEARDOWN_CPU is only for documentation
|
|
* purposes as that state is handled explicitly in cpu_down.
|
|
*/
|
|
return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
|
|
}
|
|
|
|
static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
|
|
{
|
|
struct completion *done = bringup ? &st->done_up : &st->done_down;
|
|
wait_for_completion(done);
|
|
}
|
|
|
|
static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
|
|
{
|
|
struct completion *done = bringup ? &st->done_up : &st->done_down;
|
|
complete(done);
|
|
}
|
|
|
|
/*
|
|
* The former STARTING/DYING states, ran with IRQs disabled and must not fail.
|
|
*/
|
|
static bool cpuhp_is_atomic_state(enum cpuhp_state state)
|
|
{
|
|
return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
|
|
}
|
|
|
|
/* Synchronization state management */
|
|
enum cpuhp_sync_state {
|
|
SYNC_STATE_DEAD,
|
|
SYNC_STATE_KICKED,
|
|
SYNC_STATE_SHOULD_DIE,
|
|
SYNC_STATE_ALIVE,
|
|
SYNC_STATE_SHOULD_ONLINE,
|
|
SYNC_STATE_ONLINE,
|
|
};
|
|
|
|
#ifdef CONFIG_HOTPLUG_CORE_SYNC
|
|
/**
|
|
* cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
|
|
* @state: The synchronization state to set
|
|
*
|
|
* No synchronization point. Just update of the synchronization state, but implies
|
|
* a full barrier so that the AP changes are visible before the control CPU proceeds.
|
|
*/
|
|
static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
|
|
{
|
|
atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
|
|
|
|
(void)atomic_xchg(st, state);
|
|
}
|
|
|
|
void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
|
|
|
|
static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
|
|
enum cpuhp_sync_state next_state)
|
|
{
|
|
atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
|
|
ktime_t now, end, start = ktime_get();
|
|
int sync;
|
|
|
|
end = start + 10ULL * NSEC_PER_SEC;
|
|
|
|
sync = atomic_read(st);
|
|
while (1) {
|
|
if (sync == state) {
|
|
if (!atomic_try_cmpxchg(st, &sync, next_state))
|
|
continue;
|
|
return true;
|
|
}
|
|
|
|
now = ktime_get();
|
|
if (now > end) {
|
|
/* Timeout. Leave the state unchanged */
|
|
return false;
|
|
} else if (now - start < NSEC_PER_MSEC) {
|
|
/* Poll for one millisecond */
|
|
arch_cpuhp_sync_state_poll();
|
|
} else {
|
|
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
|
|
}
|
|
sync = atomic_read(st);
|
|
}
|
|
return true;
|
|
}
|
|
#else /* CONFIG_HOTPLUG_CORE_SYNC */
|
|
static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
|
|
#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
|
|
|
|
#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
|
|
/**
|
|
* cpuhp_ap_report_dead - Update synchronization state to DEAD
|
|
*
|
|
* No synchronization point. Just update of the synchronization state.
|
|
*/
|
|
void cpuhp_ap_report_dead(void)
|
|
{
|
|
cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
|
|
}
|
|
|
|
void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
|
|
|
|
/*
|
|
* Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
|
|
* because the AP cannot issue complete() at this stage.
|
|
*/
|
|
static void cpuhp_bp_sync_dead(unsigned int cpu)
|
|
{
|
|
atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
|
|
int sync = atomic_read(st);
|
|
|
|
do {
|
|
/* CPU can have reported dead already. Don't overwrite that! */
|
|
if (sync == SYNC_STATE_DEAD)
|
|
break;
|
|
} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
|
|
|
|
if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
|
|
/* CPU reached dead state. Invoke the cleanup function */
|
|
arch_cpuhp_cleanup_dead_cpu(cpu);
|
|
return;
|
|
}
|
|
|
|
/* No further action possible. Emit message and give up. */
|
|
pr_err("CPU%u failed to report dead state\n", cpu);
|
|
}
|
|
#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
|
|
static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
|
|
#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
|
|
|
|
#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
|
|
/**
|
|
* cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
|
|
*
|
|
* Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
|
|
* for the BP to release it.
|
|
*/
|
|
void cpuhp_ap_sync_alive(void)
|
|
{
|
|
atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
|
|
|
|
cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
|
|
|
|
/* Wait for the control CPU to release it. */
|
|
while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
|
|
cpu_relax();
|
|
}
|
|
|
|
static bool cpuhp_can_boot_ap(unsigned int cpu)
|
|
{
|
|
atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
|
|
int sync = atomic_read(st);
|
|
|
|
again:
|
|
switch (sync) {
|
|
case SYNC_STATE_DEAD:
|
|
/* CPU is properly dead */
|
|
break;
|
|
case SYNC_STATE_KICKED:
|
|
/* CPU did not come up in previous attempt */
|
|
break;
|
|
case SYNC_STATE_ALIVE:
|
|
/* CPU is stuck cpuhp_ap_sync_alive(). */
|
|
break;
|
|
default:
|
|
/* CPU failed to report online or dead and is in limbo state. */
|
|
return false;
|
|
}
|
|
|
|
/* Prepare for booting */
|
|
if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
|
|
goto again;
|
|
|
|
return true;
|
|
}
|
|
|
|
void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
|
|
|
|
/*
|
|
* Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
|
|
* because the AP cannot issue complete() so early in the bringup.
|
|
*/
|
|
static int cpuhp_bp_sync_alive(unsigned int cpu)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
|
|
return 0;
|
|
|
|
if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
|
|
pr_err("CPU%u failed to report alive state\n", cpu);
|
|
ret = -EIO;
|
|
}
|
|
|
|
/* Let the architecture cleanup the kick alive mechanics. */
|
|
arch_cpuhp_cleanup_kick_cpu(cpu);
|
|
return ret;
|
|
}
|
|
#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
|
|
static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
|
|
static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
|
|
#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
|
|
|
|
/* Serializes the updates to cpu_online_mask, cpu_present_mask */
|
|
static DEFINE_MUTEX(cpu_add_remove_lock);
|
|
bool cpuhp_tasks_frozen;
|
|
EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
|
|
|
|
/*
|
|
* The following two APIs (cpu_maps_update_begin/done) must be used when
|
|
* attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
|
|
*/
|
|
void cpu_maps_update_begin(void)
|
|
{
|
|
mutex_lock(&cpu_add_remove_lock);
|
|
}
|
|
|
|
void cpu_maps_update_done(void)
|
|
{
|
|
mutex_unlock(&cpu_add_remove_lock);
|
|
}
|
|
|
|
/*
|
|
* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
|
|
* Should always be manipulated under cpu_add_remove_lock
|
|
*/
|
|
static int cpu_hotplug_disabled;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
|
|
|
|
static bool cpu_hotplug_offline_disabled __ro_after_init;
|
|
|
|
void cpus_read_lock(void)
|
|
{
|
|
percpu_down_read(&cpu_hotplug_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpus_read_lock);
|
|
|
|
int cpus_read_trylock(void)
|
|
{
|
|
return percpu_down_read_trylock(&cpu_hotplug_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpus_read_trylock);
|
|
|
|
void cpus_read_unlock(void)
|
|
{
|
|
percpu_up_read(&cpu_hotplug_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpus_read_unlock);
|
|
|
|
void cpus_write_lock(void)
|
|
{
|
|
percpu_down_write(&cpu_hotplug_lock);
|
|
}
|
|
|
|
void cpus_write_unlock(void)
|
|
{
|
|
percpu_up_write(&cpu_hotplug_lock);
|
|
}
|
|
|
|
void lockdep_assert_cpus_held(void)
|
|
{
|
|
/*
|
|
* We can't have hotplug operations before userspace starts running,
|
|
* and some init codepaths will knowingly not take the hotplug lock.
|
|
* This is all valid, so mute lockdep until it makes sense to report
|
|
* unheld locks.
|
|
*/
|
|
if (system_state < SYSTEM_RUNNING)
|
|
return;
|
|
|
|
percpu_rwsem_assert_held(&cpu_hotplug_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
int lockdep_is_cpus_held(void)
|
|
{
|
|
return percpu_rwsem_is_held(&cpu_hotplug_lock);
|
|
}
|
|
#endif
|
|
|
|
static void lockdep_acquire_cpus_lock(void)
|
|
{
|
|
rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
|
|
}
|
|
|
|
static void lockdep_release_cpus_lock(void)
|
|
{
|
|
rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
|
|
}
|
|
|
|
/* Declare CPU offlining not supported */
|
|
void cpu_hotplug_disable_offlining(void)
|
|
{
|
|
cpu_maps_update_begin();
|
|
cpu_hotplug_offline_disabled = true;
|
|
cpu_maps_update_done();
|
|
}
|
|
|
|
/*
|
|
* Wait for currently running CPU hotplug operations to complete (if any) and
|
|
* disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
|
|
* the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
|
|
* hotplug path before performing hotplug operations. So acquiring that lock
|
|
* guarantees mutual exclusion from any currently running hotplug operations.
|
|
*/
|
|
void cpu_hotplug_disable(void)
|
|
{
|
|
cpu_maps_update_begin();
|
|
cpu_hotplug_disabled++;
|
|
cpu_maps_update_done();
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
|
|
|
|
static void __cpu_hotplug_enable(void)
|
|
{
|
|
if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
|
|
return;
|
|
cpu_hotplug_disabled--;
|
|
}
|
|
|
|
void cpu_hotplug_enable(void)
|
|
{
|
|
cpu_maps_update_begin();
|
|
__cpu_hotplug_enable();
|
|
cpu_maps_update_done();
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
|
|
|
|
#else
|
|
|
|
static void lockdep_acquire_cpus_lock(void)
|
|
{
|
|
}
|
|
|
|
static void lockdep_release_cpus_lock(void)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* Architectures that need SMT-specific errata handling during SMT hotplug
|
|
* should override this.
|
|
*/
|
|
void __weak arch_smt_update(void) { }
|
|
|
|
#ifdef CONFIG_HOTPLUG_SMT
|
|
|
|
enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
|
|
static unsigned int cpu_smt_max_threads __ro_after_init;
|
|
unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
|
|
|
|
void __init cpu_smt_disable(bool force)
|
|
{
|
|
if (!cpu_smt_possible())
|
|
return;
|
|
|
|
if (force) {
|
|
pr_info("SMT: Force disabled\n");
|
|
cpu_smt_control = CPU_SMT_FORCE_DISABLED;
|
|
} else {
|
|
pr_info("SMT: disabled\n");
|
|
cpu_smt_control = CPU_SMT_DISABLED;
|
|
}
|
|
cpu_smt_num_threads = 1;
|
|
}
|
|
|
|
/*
|
|
* The decision whether SMT is supported can only be done after the full
|
|
* CPU identification. Called from architecture code.
|
|
*/
|
|
void __init cpu_smt_set_num_threads(unsigned int num_threads,
|
|
unsigned int max_threads)
|
|
{
|
|
WARN_ON(!num_threads || (num_threads > max_threads));
|
|
|
|
if (max_threads == 1)
|
|
cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
|
|
|
|
cpu_smt_max_threads = max_threads;
|
|
|
|
/*
|
|
* If SMT has been disabled via the kernel command line or SMT is
|
|
* not supported, set cpu_smt_num_threads to 1 for consistency.
|
|
* If enabled, take the architecture requested number of threads
|
|
* to bring up into account.
|
|
*/
|
|
if (cpu_smt_control != CPU_SMT_ENABLED)
|
|
cpu_smt_num_threads = 1;
|
|
else if (num_threads < cpu_smt_num_threads)
|
|
cpu_smt_num_threads = num_threads;
|
|
}
|
|
|
|
static int __init smt_cmdline_disable(char *str)
|
|
{
|
|
cpu_smt_disable(str && !strcmp(str, "force"));
|
|
return 0;
|
|
}
|
|
early_param("nosmt", smt_cmdline_disable);
|
|
|
|
/*
|
|
* For Archicture supporting partial SMT states check if the thread is allowed.
|
|
* Otherwise this has already been checked through cpu_smt_max_threads when
|
|
* setting the SMT level.
|
|
*/
|
|
static inline bool cpu_smt_thread_allowed(unsigned int cpu)
|
|
{
|
|
#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
|
|
return topology_smt_thread_allowed(cpu);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static inline bool cpu_bootable(unsigned int cpu)
|
|
{
|
|
if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
|
|
return true;
|
|
|
|
/* All CPUs are bootable if controls are not configured */
|
|
if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
|
|
return true;
|
|
|
|
/* All CPUs are bootable if CPU is not SMT capable */
|
|
if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
|
|
return true;
|
|
|
|
if (topology_is_primary_thread(cpu))
|
|
return true;
|
|
|
|
/*
|
|
* On x86 it's required to boot all logical CPUs at least once so
|
|
* that the init code can get a chance to set CR4.MCE on each
|
|
* CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
|
|
* core will shutdown the machine.
|
|
*/
|
|
return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
|
|
}
|
|
|
|
/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
|
|
bool cpu_smt_possible(void)
|
|
{
|
|
return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
|
|
cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_smt_possible);
|
|
|
|
#else
|
|
static inline bool cpu_bootable(unsigned int cpu) { return true; }
|
|
#endif
|
|
|
|
static inline enum cpuhp_state
|
|
cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state = st->state;
|
|
bool bringup = st->state < target;
|
|
|
|
st->rollback = false;
|
|
st->last = NULL;
|
|
|
|
st->target = target;
|
|
st->single = false;
|
|
st->bringup = bringup;
|
|
if (cpu_dying(cpu) != !bringup)
|
|
set_cpu_dying(cpu, !bringup);
|
|
|
|
return prev_state;
|
|
}
|
|
|
|
static inline void
|
|
cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state prev_state)
|
|
{
|
|
bool bringup = !st->bringup;
|
|
|
|
st->target = prev_state;
|
|
|
|
/*
|
|
* Already rolling back. No need invert the bringup value or to change
|
|
* the current state.
|
|
*/
|
|
if (st->rollback)
|
|
return;
|
|
|
|
st->rollback = true;
|
|
|
|
/*
|
|
* If we have st->last we need to undo partial multi_instance of this
|
|
* state first. Otherwise start undo at the previous state.
|
|
*/
|
|
if (!st->last) {
|
|
if (st->bringup)
|
|
st->state--;
|
|
else
|
|
st->state++;
|
|
}
|
|
|
|
st->bringup = bringup;
|
|
if (cpu_dying(cpu) != !bringup)
|
|
set_cpu_dying(cpu, !bringup);
|
|
}
|
|
|
|
/* Regular hotplug invocation of the AP hotplug thread */
|
|
static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
|
|
{
|
|
if (!st->single && st->state == st->target)
|
|
return;
|
|
|
|
st->result = 0;
|
|
/*
|
|
* Make sure the above stores are visible before should_run becomes
|
|
* true. Paired with the mb() above in cpuhp_thread_fun()
|
|
*/
|
|
smp_mb();
|
|
st->should_run = true;
|
|
wake_up_process(st->thread);
|
|
wait_for_ap_thread(st, st->bringup);
|
|
}
|
|
|
|
static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state;
|
|
int ret;
|
|
|
|
prev_state = cpuhp_set_state(cpu, st, target);
|
|
__cpuhp_kick_ap(st);
|
|
if ((ret = st->result)) {
|
|
cpuhp_reset_state(cpu, st, prev_state);
|
|
__cpuhp_kick_ap(st);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bringup_wait_for_ap_online(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
|
|
/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
|
|
wait_for_ap_thread(st, true);
|
|
if (WARN_ON_ONCE((!cpu_online(cpu))))
|
|
return -ECANCELED;
|
|
|
|
/* Unpark the hotplug thread of the target cpu */
|
|
kthread_unpark(st->thread);
|
|
|
|
/*
|
|
* SMT soft disabling on X86 requires to bring the CPU out of the
|
|
* BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
|
|
* CPU marked itself as booted_once in notify_cpu_starting() so the
|
|
* cpu_bootable() check will now return false if this is not the
|
|
* primary sibling.
|
|
*/
|
|
if (!cpu_bootable(cpu))
|
|
return -ECANCELED;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
|
|
static int cpuhp_kick_ap_alive(unsigned int cpu)
|
|
{
|
|
if (!cpuhp_can_boot_ap(cpu))
|
|
return -EAGAIN;
|
|
|
|
return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
|
|
}
|
|
|
|
static int cpuhp_bringup_ap(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int ret;
|
|
|
|
/*
|
|
* Some architectures have to walk the irq descriptors to
|
|
* setup the vector space for the cpu which comes online.
|
|
* Prevent irq alloc/free across the bringup.
|
|
*/
|
|
irq_lock_sparse();
|
|
|
|
ret = cpuhp_bp_sync_alive(cpu);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = bringup_wait_for_ap_online(cpu);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
irq_unlock_sparse();
|
|
|
|
if (st->target <= CPUHP_AP_ONLINE_IDLE)
|
|
return 0;
|
|
|
|
return cpuhp_kick_ap(cpu, st, st->target);
|
|
|
|
out_unlock:
|
|
irq_unlock_sparse();
|
|
return ret;
|
|
}
|
|
#else
|
|
static int bringup_cpu(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
struct task_struct *idle = idle_thread_get(cpu);
|
|
int ret;
|
|
|
|
if (!cpuhp_can_boot_ap(cpu))
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Some architectures have to walk the irq descriptors to
|
|
* setup the vector space for the cpu which comes online.
|
|
*
|
|
* Prevent irq alloc/free across the bringup by acquiring the
|
|
* sparse irq lock. Hold it until the upcoming CPU completes the
|
|
* startup in cpuhp_online_idle() which allows to avoid
|
|
* intermediate synchronization points in the architecture code.
|
|
*/
|
|
irq_lock_sparse();
|
|
|
|
ret = __cpu_up(cpu, idle);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = cpuhp_bp_sync_alive(cpu);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = bringup_wait_for_ap_online(cpu);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
irq_unlock_sparse();
|
|
|
|
if (st->target <= CPUHP_AP_ONLINE_IDLE)
|
|
return 0;
|
|
|
|
return cpuhp_kick_ap(cpu, st, st->target);
|
|
|
|
out_unlock:
|
|
irq_unlock_sparse();
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int finish_cpu(unsigned int cpu)
|
|
{
|
|
struct task_struct *idle = idle_thread_get(cpu);
|
|
struct mm_struct *mm = idle->active_mm;
|
|
|
|
/*
|
|
* idle_task_exit() will have switched to &init_mm, now
|
|
* clean up any remaining active_mm state.
|
|
*/
|
|
if (mm != &init_mm)
|
|
idle->active_mm = &init_mm;
|
|
mmdrop_lazy_tlb(mm);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Hotplug state machine related functions
|
|
*/
|
|
|
|
/*
|
|
* Get the next state to run. Empty ones will be skipped. Returns true if a
|
|
* state must be run.
|
|
*
|
|
* st->state will be modified ahead of time, to match state_to_run, as if it
|
|
* has already ran.
|
|
*/
|
|
static bool cpuhp_next_state(bool bringup,
|
|
enum cpuhp_state *state_to_run,
|
|
struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
do {
|
|
if (bringup) {
|
|
if (st->state >= target)
|
|
return false;
|
|
|
|
*state_to_run = ++st->state;
|
|
} else {
|
|
if (st->state <= target)
|
|
return false;
|
|
|
|
*state_to_run = st->state--;
|
|
}
|
|
|
|
if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
|
|
break;
|
|
} while (true);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __cpuhp_invoke_callback_range(bool bringup,
|
|
unsigned int cpu,
|
|
struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target,
|
|
bool nofail)
|
|
{
|
|
enum cpuhp_state state;
|
|
int ret = 0;
|
|
|
|
while (cpuhp_next_state(bringup, &state, st, target)) {
|
|
int err;
|
|
|
|
err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
|
|
if (!err)
|
|
continue;
|
|
|
|
if (nofail) {
|
|
pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
|
|
cpu, bringup ? "UP" : "DOWN",
|
|
cpuhp_get_step(st->state)->name,
|
|
st->state, err);
|
|
ret = -1;
|
|
} else {
|
|
ret = err;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int cpuhp_invoke_callback_range(bool bringup,
|
|
unsigned int cpu,
|
|
struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
|
|
}
|
|
|
|
static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
|
|
unsigned int cpu,
|
|
struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
|
|
}
|
|
|
|
static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
|
|
{
|
|
if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
|
|
return true;
|
|
/*
|
|
* When CPU hotplug is disabled, then taking the CPU down is not
|
|
* possible because takedown_cpu() and the architecture and
|
|
* subsystem specific mechanisms are not available. So the CPU
|
|
* which would be completely unplugged again needs to stay around
|
|
* in the current state.
|
|
*/
|
|
return st->state <= CPUHP_BRINGUP_CPU;
|
|
}
|
|
|
|
static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state = st->state;
|
|
int ret = 0;
|
|
|
|
ret = cpuhp_invoke_callback_range(true, cpu, st, target);
|
|
if (ret) {
|
|
pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
|
|
ret, cpu, cpuhp_get_step(st->state)->name,
|
|
st->state);
|
|
|
|
cpuhp_reset_state(cpu, st, prev_state);
|
|
if (can_rollback_cpu(st))
|
|
WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
|
|
prev_state));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The cpu hotplug threads manage the bringup and teardown of the cpus
|
|
*/
|
|
static int cpuhp_should_run(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
|
|
return st->should_run;
|
|
}
|
|
|
|
/*
|
|
* Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
|
|
* callbacks when a state gets [un]installed at runtime.
|
|
*
|
|
* Each invocation of this function by the smpboot thread does a single AP
|
|
* state callback.
|
|
*
|
|
* It has 3 modes of operation:
|
|
* - single: runs st->cb_state
|
|
* - up: runs ++st->state, while st->state < st->target
|
|
* - down: runs st->state--, while st->state > st->target
|
|
*
|
|
* When complete or on error, should_run is cleared and the completion is fired.
|
|
*/
|
|
static void cpuhp_thread_fun(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
bool bringup = st->bringup;
|
|
enum cpuhp_state state;
|
|
|
|
if (WARN_ON_ONCE(!st->should_run))
|
|
return;
|
|
|
|
/*
|
|
* ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
|
|
* that if we see ->should_run we also see the rest of the state.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* The BP holds the hotplug lock, but we're now running on the AP,
|
|
* ensure that anybody asserting the lock is held, will actually find
|
|
* it so.
|
|
*/
|
|
lockdep_acquire_cpus_lock();
|
|
cpuhp_lock_acquire(bringup);
|
|
|
|
if (st->single) {
|
|
state = st->cb_state;
|
|
st->should_run = false;
|
|
} else {
|
|
st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
|
|
if (!st->should_run)
|
|
goto end;
|
|
}
|
|
|
|
WARN_ON_ONCE(!cpuhp_is_ap_state(state));
|
|
|
|
if (cpuhp_is_atomic_state(state)) {
|
|
local_irq_disable();
|
|
st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* STARTING/DYING must not fail!
|
|
*/
|
|
WARN_ON_ONCE(st->result);
|
|
} else {
|
|
st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
|
|
}
|
|
|
|
if (st->result) {
|
|
/*
|
|
* If we fail on a rollback, we're up a creek without no
|
|
* paddle, no way forward, no way back. We loose, thanks for
|
|
* playing.
|
|
*/
|
|
WARN_ON_ONCE(st->rollback);
|
|
st->should_run = false;
|
|
}
|
|
|
|
end:
|
|
cpuhp_lock_release(bringup);
|
|
lockdep_release_cpus_lock();
|
|
|
|
if (!st->should_run)
|
|
complete_ap_thread(st, bringup);
|
|
}
|
|
|
|
/* Invoke a single callback on a remote cpu */
|
|
static int
|
|
cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
|
|
struct hlist_node *node)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int ret;
|
|
|
|
if (!cpu_online(cpu))
|
|
return 0;
|
|
|
|
cpuhp_lock_acquire(false);
|
|
cpuhp_lock_release(false);
|
|
|
|
cpuhp_lock_acquire(true);
|
|
cpuhp_lock_release(true);
|
|
|
|
/*
|
|
* If we are up and running, use the hotplug thread. For early calls
|
|
* we invoke the thread function directly.
|
|
*/
|
|
if (!st->thread)
|
|
return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
|
|
|
|
st->rollback = false;
|
|
st->last = NULL;
|
|
|
|
st->node = node;
|
|
st->bringup = bringup;
|
|
st->cb_state = state;
|
|
st->single = true;
|
|
|
|
__cpuhp_kick_ap(st);
|
|
|
|
/*
|
|
* If we failed and did a partial, do a rollback.
|
|
*/
|
|
if ((ret = st->result) && st->last) {
|
|
st->rollback = true;
|
|
st->bringup = !bringup;
|
|
|
|
__cpuhp_kick_ap(st);
|
|
}
|
|
|
|
/*
|
|
* Clean up the leftovers so the next hotplug operation wont use stale
|
|
* data.
|
|
*/
|
|
st->node = st->last = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static int cpuhp_kick_ap_work(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
enum cpuhp_state prev_state = st->state;
|
|
int ret;
|
|
|
|
cpuhp_lock_acquire(false);
|
|
cpuhp_lock_release(false);
|
|
|
|
cpuhp_lock_acquire(true);
|
|
cpuhp_lock_release(true);
|
|
|
|
trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
|
|
ret = cpuhp_kick_ap(cpu, st, st->target);
|
|
trace_cpuhp_exit(cpu, st->state, prev_state, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct smp_hotplug_thread cpuhp_threads = {
|
|
.store = &cpuhp_state.thread,
|
|
.thread_should_run = cpuhp_should_run,
|
|
.thread_fn = cpuhp_thread_fun,
|
|
.thread_comm = "cpuhp/%u",
|
|
.selfparking = true,
|
|
};
|
|
|
|
static __init void cpuhp_init_state(void)
|
|
{
|
|
struct cpuhp_cpu_state *st;
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
init_completion(&st->done_up);
|
|
init_completion(&st->done_down);
|
|
}
|
|
}
|
|
|
|
void __init cpuhp_threads_init(void)
|
|
{
|
|
cpuhp_init_state();
|
|
BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
|
|
kthread_unpark(this_cpu_read(cpuhp_state.thread));
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
#ifndef arch_clear_mm_cpumask_cpu
|
|
#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
|
|
#endif
|
|
|
|
/**
|
|
* clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
|
|
* @cpu: a CPU id
|
|
*
|
|
* This function walks all processes, finds a valid mm struct for each one and
|
|
* then clears a corresponding bit in mm's cpumask. While this all sounds
|
|
* trivial, there are various non-obvious corner cases, which this function
|
|
* tries to solve in a safe manner.
|
|
*
|
|
* Also note that the function uses a somewhat relaxed locking scheme, so it may
|
|
* be called only for an already offlined CPU.
|
|
*/
|
|
void clear_tasks_mm_cpumask(int cpu)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* This function is called after the cpu is taken down and marked
|
|
* offline, so its not like new tasks will ever get this cpu set in
|
|
* their mm mask. -- Peter Zijlstra
|
|
* Thus, we may use rcu_read_lock() here, instead of grabbing
|
|
* full-fledged tasklist_lock.
|
|
*/
|
|
WARN_ON(cpu_online(cpu));
|
|
rcu_read_lock();
|
|
for_each_process(p) {
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Main thread might exit, but other threads may still have
|
|
* a valid mm. Find one.
|
|
*/
|
|
t = find_lock_task_mm(p);
|
|
if (!t)
|
|
continue;
|
|
arch_clear_mm_cpumask_cpu(cpu, t->mm);
|
|
task_unlock(t);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Take this CPU down. */
|
|
static int take_cpu_down(void *_param)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
|
|
int err, cpu = smp_processor_id();
|
|
|
|
/* Ensure this CPU doesn't handle any more interrupts. */
|
|
err = __cpu_disable();
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/*
|
|
* Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
|
|
* down, that the current state is CPUHP_TEARDOWN_CPU - 1.
|
|
*/
|
|
WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
|
|
|
|
/*
|
|
* Invoke the former CPU_DYING callbacks. DYING must not fail!
|
|
*/
|
|
cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
|
|
|
|
/* Park the stopper thread */
|
|
stop_machine_park(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int takedown_cpu(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int err;
|
|
|
|
/* Park the smpboot threads */
|
|
kthread_park(st->thread);
|
|
|
|
/*
|
|
* Prevent irq alloc/free while the dying cpu reorganizes the
|
|
* interrupt affinities.
|
|
*/
|
|
irq_lock_sparse();
|
|
|
|
/*
|
|
* So now all preempt/rcu users must observe !cpu_active().
|
|
*/
|
|
err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
|
|
if (err) {
|
|
/* CPU refused to die */
|
|
irq_unlock_sparse();
|
|
/* Unpark the hotplug thread so we can rollback there */
|
|
kthread_unpark(st->thread);
|
|
return err;
|
|
}
|
|
BUG_ON(cpu_online(cpu));
|
|
|
|
/*
|
|
* The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
|
|
* all runnable tasks from the CPU, there's only the idle task left now
|
|
* that the migration thread is done doing the stop_machine thing.
|
|
*
|
|
* Wait for the stop thread to go away.
|
|
*/
|
|
wait_for_ap_thread(st, false);
|
|
BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
|
|
|
|
/* Interrupts are moved away from the dying cpu, reenable alloc/free */
|
|
irq_unlock_sparse();
|
|
|
|
hotplug_cpu__broadcast_tick_pull(cpu);
|
|
/* This actually kills the CPU. */
|
|
__cpu_die(cpu);
|
|
|
|
cpuhp_bp_sync_dead(cpu);
|
|
|
|
lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
|
|
|
|
/*
|
|
* Callbacks must be re-integrated right away to the RCU state machine.
|
|
* Otherwise an RCU callback could block a further teardown function
|
|
* waiting for its completion.
|
|
*/
|
|
rcutree_migrate_callbacks(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpuhp_complete_idle_dead(void *arg)
|
|
{
|
|
struct cpuhp_cpu_state *st = arg;
|
|
|
|
complete_ap_thread(st, false);
|
|
}
|
|
|
|
void cpuhp_report_idle_dead(void)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
|
|
BUG_ON(st->state != CPUHP_AP_OFFLINE);
|
|
tick_assert_timekeeping_handover();
|
|
rcutree_report_cpu_dead();
|
|
st->state = CPUHP_AP_IDLE_DEAD;
|
|
/*
|
|
* We cannot call complete after rcutree_report_cpu_dead() so we delegate it
|
|
* to an online cpu.
|
|
*/
|
|
smp_call_function_single(cpumask_first(cpu_online_mask),
|
|
cpuhp_complete_idle_dead, st, 0);
|
|
}
|
|
|
|
static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state = st->state;
|
|
int ret = 0;
|
|
|
|
ret = cpuhp_invoke_callback_range(false, cpu, st, target);
|
|
if (ret) {
|
|
pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
|
|
ret, cpu, cpuhp_get_step(st->state)->name,
|
|
st->state);
|
|
|
|
cpuhp_reset_state(cpu, st, prev_state);
|
|
|
|
if (st->state < prev_state)
|
|
WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
|
|
prev_state));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Requires cpu_add_remove_lock to be held */
|
|
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
|
|
enum cpuhp_state target)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int prev_state, ret = 0;
|
|
|
|
if (num_online_cpus() == 1)
|
|
return -EBUSY;
|
|
|
|
if (!cpu_present(cpu))
|
|
return -EINVAL;
|
|
|
|
cpus_write_lock();
|
|
|
|
cpuhp_tasks_frozen = tasks_frozen;
|
|
|
|
prev_state = cpuhp_set_state(cpu, st, target);
|
|
/*
|
|
* If the current CPU state is in the range of the AP hotplug thread,
|
|
* then we need to kick the thread.
|
|
*/
|
|
if (st->state > CPUHP_TEARDOWN_CPU) {
|
|
st->target = max((int)target, CPUHP_TEARDOWN_CPU);
|
|
ret = cpuhp_kick_ap_work(cpu);
|
|
/*
|
|
* The AP side has done the error rollback already. Just
|
|
* return the error code..
|
|
*/
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We might have stopped still in the range of the AP hotplug
|
|
* thread. Nothing to do anymore.
|
|
*/
|
|
if (st->state > CPUHP_TEARDOWN_CPU)
|
|
goto out;
|
|
|
|
st->target = target;
|
|
}
|
|
/*
|
|
* The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
|
|
* to do the further cleanups.
|
|
*/
|
|
ret = cpuhp_down_callbacks(cpu, st, target);
|
|
if (ret && st->state < prev_state) {
|
|
if (st->state == CPUHP_TEARDOWN_CPU) {
|
|
cpuhp_reset_state(cpu, st, prev_state);
|
|
__cpuhp_kick_ap(st);
|
|
} else {
|
|
WARN(1, "DEAD callback error for CPU%d", cpu);
|
|
}
|
|
}
|
|
|
|
out:
|
|
cpus_write_unlock();
|
|
/*
|
|
* Do post unplug cleanup. This is still protected against
|
|
* concurrent CPU hotplug via cpu_add_remove_lock.
|
|
*/
|
|
lockup_detector_cleanup();
|
|
arch_smt_update();
|
|
return ret;
|
|
}
|
|
|
|
struct cpu_down_work {
|
|
unsigned int cpu;
|
|
enum cpuhp_state target;
|
|
};
|
|
|
|
static long __cpu_down_maps_locked(void *arg)
|
|
{
|
|
struct cpu_down_work *work = arg;
|
|
|
|
return _cpu_down(work->cpu, 0, work->target);
|
|
}
|
|
|
|
static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
|
|
{
|
|
struct cpu_down_work work = { .cpu = cpu, .target = target, };
|
|
|
|
/*
|
|
* If the platform does not support hotplug, report it explicitly to
|
|
* differentiate it from a transient offlining failure.
|
|
*/
|
|
if (cpu_hotplug_offline_disabled)
|
|
return -EOPNOTSUPP;
|
|
if (cpu_hotplug_disabled)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Ensure that the control task does not run on the to be offlined
|
|
* CPU to prevent a deadlock against cfs_b->period_timer.
|
|
* Also keep at least one housekeeping cpu onlined to avoid generating
|
|
* an empty sched_domain span.
|
|
*/
|
|
for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
|
|
if (cpu != work.cpu)
|
|
return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int cpu_down(unsigned int cpu, enum cpuhp_state target)
|
|
{
|
|
int err;
|
|
|
|
cpu_maps_update_begin();
|
|
err = cpu_down_maps_locked(cpu, target);
|
|
cpu_maps_update_done();
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* cpu_device_down - Bring down a cpu device
|
|
* @dev: Pointer to the cpu device to offline
|
|
*
|
|
* This function is meant to be used by device core cpu subsystem only.
|
|
*
|
|
* Other subsystems should use remove_cpu() instead.
|
|
*
|
|
* Return: %0 on success or a negative errno code
|
|
*/
|
|
int cpu_device_down(struct device *dev)
|
|
{
|
|
return cpu_down(dev->id, CPUHP_OFFLINE);
|
|
}
|
|
|
|
int remove_cpu(unsigned int cpu)
|
|
{
|
|
int ret;
|
|
|
|
lock_device_hotplug();
|
|
ret = device_offline(get_cpu_device(cpu));
|
|
unlock_device_hotplug();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(remove_cpu);
|
|
|
|
void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
|
|
{
|
|
unsigned int cpu;
|
|
int error;
|
|
|
|
cpu_maps_update_begin();
|
|
|
|
/*
|
|
* Make certain the cpu I'm about to reboot on is online.
|
|
*
|
|
* This is inline to what migrate_to_reboot_cpu() already do.
|
|
*/
|
|
if (!cpu_online(primary_cpu))
|
|
primary_cpu = cpumask_first(cpu_online_mask);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu == primary_cpu)
|
|
continue;
|
|
|
|
error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
|
|
if (error) {
|
|
pr_err("Failed to offline CPU%d - error=%d",
|
|
cpu, error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure all but the reboot CPU are offline.
|
|
*/
|
|
BUG_ON(num_online_cpus() > 1);
|
|
|
|
/*
|
|
* Make sure the CPUs won't be enabled by someone else after this
|
|
* point. Kexec will reboot to a new kernel shortly resetting
|
|
* everything along the way.
|
|
*/
|
|
cpu_hotplug_disabled++;
|
|
|
|
cpu_maps_update_done();
|
|
}
|
|
|
|
#else
|
|
#define takedown_cpu NULL
|
|
#endif /*CONFIG_HOTPLUG_CPU*/
|
|
|
|
/**
|
|
* notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
|
|
* @cpu: cpu that just started
|
|
*
|
|
* It must be called by the arch code on the new cpu, before the new cpu
|
|
* enables interrupts and before the "boot" cpu returns from __cpu_up().
|
|
*/
|
|
void notify_cpu_starting(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
|
|
|
|
rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
|
|
cpumask_set_cpu(cpu, &cpus_booted_once_mask);
|
|
|
|
/*
|
|
* STARTING must not fail!
|
|
*/
|
|
cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
|
|
}
|
|
|
|
/*
|
|
* Called from the idle task. Wake up the controlling task which brings the
|
|
* hotplug thread of the upcoming CPU up and then delegates the rest of the
|
|
* online bringup to the hotplug thread.
|
|
*/
|
|
void cpuhp_online_idle(enum cpuhp_state state)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
|
|
/* Happens for the boot cpu */
|
|
if (state != CPUHP_AP_ONLINE_IDLE)
|
|
return;
|
|
|
|
cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
|
|
|
|
/*
|
|
* Unpark the stopper thread before we start the idle loop (and start
|
|
* scheduling); this ensures the stopper task is always available.
|
|
*/
|
|
stop_machine_unpark(smp_processor_id());
|
|
|
|
st->state = CPUHP_AP_ONLINE_IDLE;
|
|
complete_ap_thread(st, true);
|
|
}
|
|
|
|
/* Requires cpu_add_remove_lock to be held */
|
|
static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
struct task_struct *idle;
|
|
int ret = 0;
|
|
|
|
cpus_write_lock();
|
|
|
|
if (!cpu_present(cpu)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The caller of cpu_up() might have raced with another
|
|
* caller. Nothing to do.
|
|
*/
|
|
if (st->state >= target)
|
|
goto out;
|
|
|
|
if (st->state == CPUHP_OFFLINE) {
|
|
/* Let it fail before we try to bring the cpu up */
|
|
idle = idle_thread_get(cpu);
|
|
if (IS_ERR(idle)) {
|
|
ret = PTR_ERR(idle);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Reset stale stack state from the last time this CPU was online.
|
|
*/
|
|
scs_task_reset(idle);
|
|
kasan_unpoison_task_stack(idle);
|
|
}
|
|
|
|
cpuhp_tasks_frozen = tasks_frozen;
|
|
|
|
cpuhp_set_state(cpu, st, target);
|
|
/*
|
|
* If the current CPU state is in the range of the AP hotplug thread,
|
|
* then we need to kick the thread once more.
|
|
*/
|
|
if (st->state > CPUHP_BRINGUP_CPU) {
|
|
ret = cpuhp_kick_ap_work(cpu);
|
|
/*
|
|
* The AP side has done the error rollback already. Just
|
|
* return the error code..
|
|
*/
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Try to reach the target state. We max out on the BP at
|
|
* CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
|
|
* responsible for bringing it up to the target state.
|
|
*/
|
|
target = min((int)target, CPUHP_BRINGUP_CPU);
|
|
ret = cpuhp_up_callbacks(cpu, st, target);
|
|
out:
|
|
cpus_write_unlock();
|
|
arch_smt_update();
|
|
return ret;
|
|
}
|
|
|
|
static int cpu_up(unsigned int cpu, enum cpuhp_state target)
|
|
{
|
|
int err = 0;
|
|
|
|
if (!cpu_possible(cpu)) {
|
|
pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
|
|
cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = try_online_node(cpu_to_node(cpu));
|
|
if (err)
|
|
return err;
|
|
|
|
cpu_maps_update_begin();
|
|
|
|
if (cpu_hotplug_disabled) {
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
if (!cpu_bootable(cpu)) {
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
err = _cpu_up(cpu, 0, target);
|
|
out:
|
|
cpu_maps_update_done();
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* cpu_device_up - Bring up a cpu device
|
|
* @dev: Pointer to the cpu device to online
|
|
*
|
|
* This function is meant to be used by device core cpu subsystem only.
|
|
*
|
|
* Other subsystems should use add_cpu() instead.
|
|
*
|
|
* Return: %0 on success or a negative errno code
|
|
*/
|
|
int cpu_device_up(struct device *dev)
|
|
{
|
|
return cpu_up(dev->id, CPUHP_ONLINE);
|
|
}
|
|
|
|
int add_cpu(unsigned int cpu)
|
|
{
|
|
int ret;
|
|
|
|
lock_device_hotplug();
|
|
ret = device_online(get_cpu_device(cpu));
|
|
unlock_device_hotplug();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_cpu);
|
|
|
|
/**
|
|
* bringup_hibernate_cpu - Bring up the CPU that we hibernated on
|
|
* @sleep_cpu: The cpu we hibernated on and should be brought up.
|
|
*
|
|
* On some architectures like arm64, we can hibernate on any CPU, but on
|
|
* wake up the CPU we hibernated on might be offline as a side effect of
|
|
* using maxcpus= for example.
|
|
*
|
|
* Return: %0 on success or a negative errno code
|
|
*/
|
|
int bringup_hibernate_cpu(unsigned int sleep_cpu)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_online(sleep_cpu)) {
|
|
pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
|
|
ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
|
|
if (ret) {
|
|
pr_err("Failed to bring hibernate-CPU up!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
|
|
enum cpuhp_state target)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
|
|
if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
|
|
/*
|
|
* If this failed then cpu_up() might have only
|
|
* rolled back to CPUHP_BP_KICK_AP for the final
|
|
* online. Clean it up. NOOP if already rolled back.
|
|
*/
|
|
WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
|
|
}
|
|
|
|
if (!--ncpus)
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_PARALLEL
|
|
static bool __cpuhp_parallel_bringup __ro_after_init = true;
|
|
|
|
static int __init parallel_bringup_parse_param(char *arg)
|
|
{
|
|
return kstrtobool(arg, &__cpuhp_parallel_bringup);
|
|
}
|
|
early_param("cpuhp.parallel", parallel_bringup_parse_param);
|
|
|
|
#ifdef CONFIG_HOTPLUG_SMT
|
|
static inline bool cpuhp_smt_aware(void)
|
|
{
|
|
return cpu_smt_max_threads > 1;
|
|
}
|
|
|
|
static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
|
|
{
|
|
return cpu_primary_thread_mask;
|
|
}
|
|
#else
|
|
static inline bool cpuhp_smt_aware(void)
|
|
{
|
|
return false;
|
|
}
|
|
static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
|
|
{
|
|
return cpu_none_mask;
|
|
}
|
|
#endif
|
|
|
|
bool __weak arch_cpuhp_init_parallel_bringup(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* On architectures which have enabled parallel bringup this invokes all BP
|
|
* prepare states for each of the to be onlined APs first. The last state
|
|
* sends the startup IPI to the APs. The APs proceed through the low level
|
|
* bringup code in parallel and then wait for the control CPU to release
|
|
* them one by one for the final onlining procedure.
|
|
*
|
|
* This avoids waiting for each AP to respond to the startup IPI in
|
|
* CPUHP_BRINGUP_CPU.
|
|
*/
|
|
static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
|
|
{
|
|
const struct cpumask *mask = cpu_present_mask;
|
|
|
|
if (__cpuhp_parallel_bringup)
|
|
__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
|
|
if (!__cpuhp_parallel_bringup)
|
|
return false;
|
|
|
|
if (cpuhp_smt_aware()) {
|
|
const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
|
|
static struct cpumask tmp_mask __initdata;
|
|
|
|
/*
|
|
* X86 requires to prevent that SMT siblings stopped while
|
|
* the primary thread does a microcode update for various
|
|
* reasons. Bring the primary threads up first.
|
|
*/
|
|
cpumask_and(&tmp_mask, mask, pmask);
|
|
cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
|
|
cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
|
|
/* Account for the online CPUs */
|
|
ncpus -= num_online_cpus();
|
|
if (!ncpus)
|
|
return true;
|
|
/* Create the mask for secondary CPUs */
|
|
cpumask_andnot(&tmp_mask, mask, pmask);
|
|
mask = &tmp_mask;
|
|
}
|
|
|
|
/* Bring the not-yet started CPUs up */
|
|
cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
|
|
cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
|
|
return true;
|
|
}
|
|
#else
|
|
static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
|
|
#endif /* CONFIG_HOTPLUG_PARALLEL */
|
|
|
|
void __init bringup_nonboot_cpus(unsigned int max_cpus)
|
|
{
|
|
if (!max_cpus)
|
|
return;
|
|
|
|
/* Try parallel bringup optimization if enabled */
|
|
if (cpuhp_bringup_cpus_parallel(max_cpus))
|
|
return;
|
|
|
|
/* Full per CPU serialized bringup */
|
|
cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP_SMP
|
|
static cpumask_var_t frozen_cpus;
|
|
|
|
int freeze_secondary_cpus(int primary)
|
|
{
|
|
int cpu, error = 0;
|
|
|
|
cpu_maps_update_begin();
|
|
if (primary == -1) {
|
|
primary = cpumask_first(cpu_online_mask);
|
|
if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
|
|
primary = housekeeping_any_cpu(HK_TYPE_TIMER);
|
|
} else {
|
|
if (!cpu_online(primary))
|
|
primary = cpumask_first(cpu_online_mask);
|
|
}
|
|
|
|
/*
|
|
* We take down all of the non-boot CPUs in one shot to avoid races
|
|
* with the userspace trying to use the CPU hotplug at the same time
|
|
*/
|
|
cpumask_clear(frozen_cpus);
|
|
|
|
pr_info("Disabling non-boot CPUs ...\n");
|
|
for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
|
|
if (!cpu_online(cpu) || cpu == primary)
|
|
continue;
|
|
|
|
if (pm_wakeup_pending()) {
|
|
pr_info("Wakeup pending. Abort CPU freeze\n");
|
|
error = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
|
|
error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
|
|
trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
|
|
if (!error)
|
|
cpumask_set_cpu(cpu, frozen_cpus);
|
|
else {
|
|
pr_err("Error taking CPU%d down: %d\n", cpu, error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!error)
|
|
BUG_ON(num_online_cpus() > 1);
|
|
else
|
|
pr_err("Non-boot CPUs are not disabled\n");
|
|
|
|
/*
|
|
* Make sure the CPUs won't be enabled by someone else. We need to do
|
|
* this even in case of failure as all freeze_secondary_cpus() users are
|
|
* supposed to do thaw_secondary_cpus() on the failure path.
|
|
*/
|
|
cpu_hotplug_disabled++;
|
|
|
|
cpu_maps_update_done();
|
|
return error;
|
|
}
|
|
|
|
void __weak arch_thaw_secondary_cpus_begin(void)
|
|
{
|
|
}
|
|
|
|
void __weak arch_thaw_secondary_cpus_end(void)
|
|
{
|
|
}
|
|
|
|
void thaw_secondary_cpus(void)
|
|
{
|
|
int cpu, error;
|
|
|
|
/* Allow everyone to use the CPU hotplug again */
|
|
cpu_maps_update_begin();
|
|
__cpu_hotplug_enable();
|
|
if (cpumask_empty(frozen_cpus))
|
|
goto out;
|
|
|
|
pr_info("Enabling non-boot CPUs ...\n");
|
|
|
|
arch_thaw_secondary_cpus_begin();
|
|
|
|
for_each_cpu(cpu, frozen_cpus) {
|
|
trace_suspend_resume(TPS("CPU_ON"), cpu, true);
|
|
error = _cpu_up(cpu, 1, CPUHP_ONLINE);
|
|
trace_suspend_resume(TPS("CPU_ON"), cpu, false);
|
|
if (!error) {
|
|
pr_info("CPU%d is up\n", cpu);
|
|
continue;
|
|
}
|
|
pr_warn("Error taking CPU%d up: %d\n", cpu, error);
|
|
}
|
|
|
|
arch_thaw_secondary_cpus_end();
|
|
|
|
cpumask_clear(frozen_cpus);
|
|
out:
|
|
cpu_maps_update_done();
|
|
}
|
|
|
|
static int __init alloc_frozen_cpus(void)
|
|
{
|
|
if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
core_initcall(alloc_frozen_cpus);
|
|
|
|
/*
|
|
* When callbacks for CPU hotplug notifications are being executed, we must
|
|
* ensure that the state of the system with respect to the tasks being frozen
|
|
* or not, as reported by the notification, remains unchanged *throughout the
|
|
* duration* of the execution of the callbacks.
|
|
* Hence we need to prevent the freezer from racing with regular CPU hotplug.
|
|
*
|
|
* This synchronization is implemented by mutually excluding regular CPU
|
|
* hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
|
|
* Hibernate notifications.
|
|
*/
|
|
static int
|
|
cpu_hotplug_pm_callback(struct notifier_block *nb,
|
|
unsigned long action, void *ptr)
|
|
{
|
|
switch (action) {
|
|
|
|
case PM_SUSPEND_PREPARE:
|
|
case PM_HIBERNATION_PREPARE:
|
|
cpu_hotplug_disable();
|
|
break;
|
|
|
|
case PM_POST_SUSPEND:
|
|
case PM_POST_HIBERNATION:
|
|
cpu_hotplug_enable();
|
|
break;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
|
|
static int __init cpu_hotplug_pm_sync_init(void)
|
|
{
|
|
/*
|
|
* cpu_hotplug_pm_callback has higher priority than x86
|
|
* bsp_pm_callback which depends on cpu_hotplug_pm_callback
|
|
* to disable cpu hotplug to avoid cpu hotplug race.
|
|
*/
|
|
pm_notifier(cpu_hotplug_pm_callback, 0);
|
|
return 0;
|
|
}
|
|
core_initcall(cpu_hotplug_pm_sync_init);
|
|
|
|
#endif /* CONFIG_PM_SLEEP_SMP */
|
|
|
|
int __boot_cpu_id;
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/* Boot processor state steps */
|
|
static struct cpuhp_step cpuhp_hp_states[] = {
|
|
[CPUHP_OFFLINE] = {
|
|
.name = "offline",
|
|
.startup.single = NULL,
|
|
.teardown.single = NULL,
|
|
},
|
|
#ifdef CONFIG_SMP
|
|
[CPUHP_CREATE_THREADS]= {
|
|
.name = "threads:prepare",
|
|
.startup.single = smpboot_create_threads,
|
|
.teardown.single = NULL,
|
|
.cant_stop = true,
|
|
},
|
|
[CPUHP_PERF_PREPARE] = {
|
|
.name = "perf:prepare",
|
|
.startup.single = perf_event_init_cpu,
|
|
.teardown.single = perf_event_exit_cpu,
|
|
},
|
|
[CPUHP_RANDOM_PREPARE] = {
|
|
.name = "random:prepare",
|
|
.startup.single = random_prepare_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_WORKQUEUE_PREP] = {
|
|
.name = "workqueue:prepare",
|
|
.startup.single = workqueue_prepare_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_HRTIMERS_PREPARE] = {
|
|
.name = "hrtimers:prepare",
|
|
.startup.single = hrtimers_prepare_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_SMPCFD_PREPARE] = {
|
|
.name = "smpcfd:prepare",
|
|
.startup.single = smpcfd_prepare_cpu,
|
|
.teardown.single = smpcfd_dead_cpu,
|
|
},
|
|
[CPUHP_RELAY_PREPARE] = {
|
|
.name = "relay:prepare",
|
|
.startup.single = relay_prepare_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_RCUTREE_PREP] = {
|
|
.name = "RCU/tree:prepare",
|
|
.startup.single = rcutree_prepare_cpu,
|
|
.teardown.single = rcutree_dead_cpu,
|
|
},
|
|
/*
|
|
* On the tear-down path, timers_dead_cpu() must be invoked
|
|
* before blk_mq_queue_reinit_notify() from notify_dead(),
|
|
* otherwise a RCU stall occurs.
|
|
*/
|
|
[CPUHP_TIMERS_PREPARE] = {
|
|
.name = "timers:prepare",
|
|
.startup.single = timers_prepare_cpu,
|
|
.teardown.single = timers_dead_cpu,
|
|
},
|
|
|
|
#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
|
|
/*
|
|
* Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
|
|
* the next step will release it.
|
|
*/
|
|
[CPUHP_BP_KICK_AP] = {
|
|
.name = "cpu:kick_ap",
|
|
.startup.single = cpuhp_kick_ap_alive,
|
|
},
|
|
|
|
/*
|
|
* Waits for the AP to reach cpuhp_ap_sync_alive() and then
|
|
* releases it for the complete bringup.
|
|
*/
|
|
[CPUHP_BRINGUP_CPU] = {
|
|
.name = "cpu:bringup",
|
|
.startup.single = cpuhp_bringup_ap,
|
|
.teardown.single = finish_cpu,
|
|
.cant_stop = true,
|
|
},
|
|
#else
|
|
/*
|
|
* All-in-one CPU bringup state which includes the kick alive.
|
|
*/
|
|
[CPUHP_BRINGUP_CPU] = {
|
|
.name = "cpu:bringup",
|
|
.startup.single = bringup_cpu,
|
|
.teardown.single = finish_cpu,
|
|
.cant_stop = true,
|
|
},
|
|
#endif
|
|
/* Final state before CPU kills itself */
|
|
[CPUHP_AP_IDLE_DEAD] = {
|
|
.name = "idle:dead",
|
|
},
|
|
/*
|
|
* Last state before CPU enters the idle loop to die. Transient state
|
|
* for synchronization.
|
|
*/
|
|
[CPUHP_AP_OFFLINE] = {
|
|
.name = "ap:offline",
|
|
.cant_stop = true,
|
|
},
|
|
/* First state is scheduler control. Interrupts are disabled */
|
|
[CPUHP_AP_SCHED_STARTING] = {
|
|
.name = "sched:starting",
|
|
.startup.single = sched_cpu_starting,
|
|
.teardown.single = sched_cpu_dying,
|
|
},
|
|
[CPUHP_AP_RCUTREE_DYING] = {
|
|
.name = "RCU/tree:dying",
|
|
.startup.single = NULL,
|
|
.teardown.single = rcutree_dying_cpu,
|
|
},
|
|
[CPUHP_AP_SMPCFD_DYING] = {
|
|
.name = "smpcfd:dying",
|
|
.startup.single = NULL,
|
|
.teardown.single = smpcfd_dying_cpu,
|
|
},
|
|
[CPUHP_AP_HRTIMERS_DYING] = {
|
|
.name = "hrtimers:dying",
|
|
.startup.single = NULL,
|
|
.teardown.single = hrtimers_cpu_dying,
|
|
},
|
|
[CPUHP_AP_TICK_DYING] = {
|
|
.name = "tick:dying",
|
|
.startup.single = NULL,
|
|
.teardown.single = tick_cpu_dying,
|
|
},
|
|
/* Entry state on starting. Interrupts enabled from here on. Transient
|
|
* state for synchronsization */
|
|
[CPUHP_AP_ONLINE] = {
|
|
.name = "ap:online",
|
|
},
|
|
/*
|
|
* Handled on control processor until the plugged processor manages
|
|
* this itself.
|
|
*/
|
|
[CPUHP_TEARDOWN_CPU] = {
|
|
.name = "cpu:teardown",
|
|
.startup.single = NULL,
|
|
.teardown.single = takedown_cpu,
|
|
.cant_stop = true,
|
|
},
|
|
|
|
[CPUHP_AP_SCHED_WAIT_EMPTY] = {
|
|
.name = "sched:waitempty",
|
|
.startup.single = NULL,
|
|
.teardown.single = sched_cpu_wait_empty,
|
|
},
|
|
|
|
/* Handle smpboot threads park/unpark */
|
|
[CPUHP_AP_SMPBOOT_THREADS] = {
|
|
.name = "smpboot/threads:online",
|
|
.startup.single = smpboot_unpark_threads,
|
|
.teardown.single = smpboot_park_threads,
|
|
},
|
|
[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
|
|
.name = "irq/affinity:online",
|
|
.startup.single = irq_affinity_online_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_AP_PERF_ONLINE] = {
|
|
.name = "perf:online",
|
|
.startup.single = perf_event_init_cpu,
|
|
.teardown.single = perf_event_exit_cpu,
|
|
},
|
|
[CPUHP_AP_WATCHDOG_ONLINE] = {
|
|
.name = "lockup_detector:online",
|
|
.startup.single = lockup_detector_online_cpu,
|
|
.teardown.single = lockup_detector_offline_cpu,
|
|
},
|
|
[CPUHP_AP_WORKQUEUE_ONLINE] = {
|
|
.name = "workqueue:online",
|
|
.startup.single = workqueue_online_cpu,
|
|
.teardown.single = workqueue_offline_cpu,
|
|
},
|
|
[CPUHP_AP_RANDOM_ONLINE] = {
|
|
.name = "random:online",
|
|
.startup.single = random_online_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_AP_RCUTREE_ONLINE] = {
|
|
.name = "RCU/tree:online",
|
|
.startup.single = rcutree_online_cpu,
|
|
.teardown.single = rcutree_offline_cpu,
|
|
},
|
|
#endif
|
|
/*
|
|
* The dynamically registered state space is here
|
|
*/
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Last state is scheduler control setting the cpu active */
|
|
[CPUHP_AP_ACTIVE] = {
|
|
.name = "sched:active",
|
|
.startup.single = sched_cpu_activate,
|
|
.teardown.single = sched_cpu_deactivate,
|
|
},
|
|
#endif
|
|
|
|
/* CPU is fully up and running. */
|
|
[CPUHP_ONLINE] = {
|
|
.name = "online",
|
|
.startup.single = NULL,
|
|
.teardown.single = NULL,
|
|
},
|
|
};
|
|
|
|
/* Sanity check for callbacks */
|
|
static int cpuhp_cb_check(enum cpuhp_state state)
|
|
{
|
|
if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns a free for dynamic slot assignment of the Online state. The states
|
|
* are protected by the cpuhp_slot_states mutex and an empty slot is identified
|
|
* by having no name assigned.
|
|
*/
|
|
static int cpuhp_reserve_state(enum cpuhp_state state)
|
|
{
|
|
enum cpuhp_state i, end;
|
|
struct cpuhp_step *step;
|
|
|
|
switch (state) {
|
|
case CPUHP_AP_ONLINE_DYN:
|
|
step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
|
|
end = CPUHP_AP_ONLINE_DYN_END;
|
|
break;
|
|
case CPUHP_BP_PREPARE_DYN:
|
|
step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
|
|
end = CPUHP_BP_PREPARE_DYN_END;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = state; i <= end; i++, step++) {
|
|
if (!step->name)
|
|
return i;
|
|
}
|
|
WARN(1, "No more dynamic states available for CPU hotplug\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
|
|
int (*startup)(unsigned int cpu),
|
|
int (*teardown)(unsigned int cpu),
|
|
bool multi_instance)
|
|
{
|
|
/* (Un)Install the callbacks for further cpu hotplug operations */
|
|
struct cpuhp_step *sp;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If name is NULL, then the state gets removed.
|
|
*
|
|
* CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
|
|
* the first allocation from these dynamic ranges, so the removal
|
|
* would trigger a new allocation and clear the wrong (already
|
|
* empty) state, leaving the callbacks of the to be cleared state
|
|
* dangling, which causes wreckage on the next hotplug operation.
|
|
*/
|
|
if (name && (state == CPUHP_AP_ONLINE_DYN ||
|
|
state == CPUHP_BP_PREPARE_DYN)) {
|
|
ret = cpuhp_reserve_state(state);
|
|
if (ret < 0)
|
|
return ret;
|
|
state = ret;
|
|
}
|
|
sp = cpuhp_get_step(state);
|
|
if (name && sp->name)
|
|
return -EBUSY;
|
|
|
|
sp->startup.single = startup;
|
|
sp->teardown.single = teardown;
|
|
sp->name = name;
|
|
sp->multi_instance = multi_instance;
|
|
INIT_HLIST_HEAD(&sp->list);
|
|
return ret;
|
|
}
|
|
|
|
static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
|
|
{
|
|
return cpuhp_get_step(state)->teardown.single;
|
|
}
|
|
|
|
/*
|
|
* Call the startup/teardown function for a step either on the AP or
|
|
* on the current CPU.
|
|
*/
|
|
static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
|
|
struct hlist_node *node)
|
|
{
|
|
struct cpuhp_step *sp = cpuhp_get_step(state);
|
|
int ret;
|
|
|
|
/*
|
|
* If there's nothing to do, we done.
|
|
* Relies on the union for multi_instance.
|
|
*/
|
|
if (cpuhp_step_empty(bringup, sp))
|
|
return 0;
|
|
/*
|
|
* The non AP bound callbacks can fail on bringup. On teardown
|
|
* e.g. module removal we crash for now.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
if (cpuhp_is_ap_state(state))
|
|
ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
|
|
else
|
|
ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
|
|
#else
|
|
ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
|
|
#endif
|
|
BUG_ON(ret && !bringup);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called from __cpuhp_setup_state on a recoverable failure.
|
|
*
|
|
* Note: The teardown callbacks for rollback are not allowed to fail!
|
|
*/
|
|
static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
|
|
struct hlist_node *node)
|
|
{
|
|
int cpu;
|
|
|
|
/* Roll back the already executed steps on the other cpus */
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpu >= failedcpu)
|
|
break;
|
|
|
|
/* Did we invoke the startup call on that cpu ? */
|
|
if (cpustate >= state)
|
|
cpuhp_issue_call(cpu, state, false, node);
|
|
}
|
|
}
|
|
|
|
int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
|
|
struct hlist_node *node,
|
|
bool invoke)
|
|
{
|
|
struct cpuhp_step *sp;
|
|
int cpu;
|
|
int ret;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
sp = cpuhp_get_step(state);
|
|
if (sp->multi_instance == false)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
|
|
if (!invoke || !sp->startup.multi)
|
|
goto add_node;
|
|
|
|
/*
|
|
* Try to call the startup callback for each present cpu
|
|
* depending on the hotplug state of the cpu.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate < state)
|
|
continue;
|
|
|
|
ret = cpuhp_issue_call(cpu, state, true, node);
|
|
if (ret) {
|
|
if (sp->teardown.multi)
|
|
cpuhp_rollback_install(cpu, state, node);
|
|
goto unlock;
|
|
}
|
|
}
|
|
add_node:
|
|
ret = 0;
|
|
hlist_add_head(node, &sp->list);
|
|
unlock:
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
|
|
bool invoke)
|
|
{
|
|
int ret;
|
|
|
|
cpus_read_lock();
|
|
ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
|
|
cpus_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
|
|
|
|
/**
|
|
* __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
|
|
* @state: The state to setup
|
|
* @name: Name of the step
|
|
* @invoke: If true, the startup function is invoked for cpus where
|
|
* cpu state >= @state
|
|
* @startup: startup callback function
|
|
* @teardown: teardown callback function
|
|
* @multi_instance: State is set up for multiple instances which get
|
|
* added afterwards.
|
|
*
|
|
* The caller needs to hold cpus read locked while calling this function.
|
|
* Return:
|
|
* On success:
|
|
* Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
|
|
* 0 for all other states
|
|
* On failure: proper (negative) error code
|
|
*/
|
|
int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
|
|
const char *name, bool invoke,
|
|
int (*startup)(unsigned int cpu),
|
|
int (*teardown)(unsigned int cpu),
|
|
bool multi_instance)
|
|
{
|
|
int cpu, ret = 0;
|
|
bool dynstate;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
if (cpuhp_cb_check(state) || !name)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
|
|
ret = cpuhp_store_callbacks(state, name, startup, teardown,
|
|
multi_instance);
|
|
|
|
dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
|
|
if (ret > 0 && dynstate) {
|
|
state = ret;
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret || !invoke || !startup)
|
|
goto out;
|
|
|
|
/*
|
|
* Try to call the startup callback for each present cpu
|
|
* depending on the hotplug state of the cpu.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate < state)
|
|
continue;
|
|
|
|
ret = cpuhp_issue_call(cpu, state, true, NULL);
|
|
if (ret) {
|
|
if (teardown)
|
|
cpuhp_rollback_install(cpu, state, NULL);
|
|
cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
/*
|
|
* If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
|
|
* return the dynamically allocated state in case of success.
|
|
*/
|
|
if (!ret && dynstate)
|
|
return state;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
|
|
|
|
int __cpuhp_setup_state(enum cpuhp_state state,
|
|
const char *name, bool invoke,
|
|
int (*startup)(unsigned int cpu),
|
|
int (*teardown)(unsigned int cpu),
|
|
bool multi_instance)
|
|
{
|
|
int ret;
|
|
|
|
cpus_read_lock();
|
|
ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
|
|
teardown, multi_instance);
|
|
cpus_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_setup_state);
|
|
|
|
int __cpuhp_state_remove_instance(enum cpuhp_state state,
|
|
struct hlist_node *node, bool invoke)
|
|
{
|
|
struct cpuhp_step *sp = cpuhp_get_step(state);
|
|
int cpu;
|
|
|
|
BUG_ON(cpuhp_cb_check(state));
|
|
|
|
if (!sp->multi_instance)
|
|
return -EINVAL;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
|
|
if (!invoke || !cpuhp_get_teardown_cb(state))
|
|
goto remove;
|
|
/*
|
|
* Call the teardown callback for each present cpu depending
|
|
* on the hotplug state of the cpu. This function is not
|
|
* allowed to fail currently!
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate >= state)
|
|
cpuhp_issue_call(cpu, state, false, node);
|
|
}
|
|
|
|
remove:
|
|
hlist_del(node);
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
|
|
|
|
/**
|
|
* __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
|
|
* @state: The state to remove
|
|
* @invoke: If true, the teardown function is invoked for cpus where
|
|
* cpu state >= @state
|
|
*
|
|
* The caller needs to hold cpus read locked while calling this function.
|
|
* The teardown callback is currently not allowed to fail. Think
|
|
* about module removal!
|
|
*/
|
|
void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
|
|
{
|
|
struct cpuhp_step *sp = cpuhp_get_step(state);
|
|
int cpu;
|
|
|
|
BUG_ON(cpuhp_cb_check(state));
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
if (sp->multi_instance) {
|
|
WARN(!hlist_empty(&sp->list),
|
|
"Error: Removing state %d which has instances left.\n",
|
|
state);
|
|
goto remove;
|
|
}
|
|
|
|
if (!invoke || !cpuhp_get_teardown_cb(state))
|
|
goto remove;
|
|
|
|
/*
|
|
* Call the teardown callback for each present cpu depending
|
|
* on the hotplug state of the cpu. This function is not
|
|
* allowed to fail currently!
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate >= state)
|
|
cpuhp_issue_call(cpu, state, false, NULL);
|
|
}
|
|
remove:
|
|
cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
|
|
|
|
void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
|
|
{
|
|
cpus_read_lock();
|
|
__cpuhp_remove_state_cpuslocked(state, invoke);
|
|
cpus_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_remove_state);
|
|
|
|
#ifdef CONFIG_HOTPLUG_SMT
|
|
static void cpuhp_offline_cpu_device(unsigned int cpu)
|
|
{
|
|
struct device *dev = get_cpu_device(cpu);
|
|
|
|
dev->offline = true;
|
|
/* Tell user space about the state change */
|
|
kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
|
|
}
|
|
|
|
static void cpuhp_online_cpu_device(unsigned int cpu)
|
|
{
|
|
struct device *dev = get_cpu_device(cpu);
|
|
|
|
dev->offline = false;
|
|
/* Tell user space about the state change */
|
|
kobject_uevent(&dev->kobj, KOBJ_ONLINE);
|
|
}
|
|
|
|
int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
|
|
{
|
|
int cpu, ret = 0;
|
|
|
|
cpu_maps_update_begin();
|
|
for_each_online_cpu(cpu) {
|
|
if (topology_is_primary_thread(cpu))
|
|
continue;
|
|
/*
|
|
* Disable can be called with CPU_SMT_ENABLED when changing
|
|
* from a higher to lower number of SMT threads per core.
|
|
*/
|
|
if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
|
|
continue;
|
|
ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
|
|
if (ret)
|
|
break;
|
|
/*
|
|
* As this needs to hold the cpu maps lock it's impossible
|
|
* to call device_offline() because that ends up calling
|
|
* cpu_down() which takes cpu maps lock. cpu maps lock
|
|
* needs to be held as this might race against in kernel
|
|
* abusers of the hotplug machinery (thermal management).
|
|
*
|
|
* So nothing would update device:offline state. That would
|
|
* leave the sysfs entry stale and prevent onlining after
|
|
* smt control has been changed to 'off' again. This is
|
|
* called under the sysfs hotplug lock, so it is properly
|
|
* serialized against the regular offline usage.
|
|
*/
|
|
cpuhp_offline_cpu_device(cpu);
|
|
}
|
|
if (!ret)
|
|
cpu_smt_control = ctrlval;
|
|
cpu_maps_update_done();
|
|
return ret;
|
|
}
|
|
|
|
/* Check if the core a CPU belongs to is online */
|
|
#if !defined(topology_is_core_online)
|
|
static inline bool topology_is_core_online(unsigned int cpu)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
int cpuhp_smt_enable(void)
|
|
{
|
|
int cpu, ret = 0;
|
|
|
|
cpu_maps_update_begin();
|
|
cpu_smt_control = CPU_SMT_ENABLED;
|
|
for_each_present_cpu(cpu) {
|
|
/* Skip online CPUs and CPUs on offline nodes */
|
|
if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
|
|
continue;
|
|
if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
|
|
continue;
|
|
ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
|
|
if (ret)
|
|
break;
|
|
/* See comment in cpuhp_smt_disable() */
|
|
cpuhp_online_cpu_device(cpu);
|
|
}
|
|
cpu_maps_update_done();
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
|
|
static ssize_t state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
|
|
return sprintf(buf, "%d\n", st->state);
|
|
}
|
|
static DEVICE_ATTR_RO(state);
|
|
|
|
static ssize_t target_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
struct cpuhp_step *sp;
|
|
int target, ret;
|
|
|
|
ret = kstrtoint(buf, 10, &target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
|
|
if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
#else
|
|
if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
ret = lock_device_hotplug_sysfs();
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
sp = cpuhp_get_step(target);
|
|
ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (st->state < target)
|
|
ret = cpu_up(dev->id, target);
|
|
else if (st->state > target)
|
|
ret = cpu_down(dev->id, target);
|
|
else if (WARN_ON(st->target != target))
|
|
st->target = target;
|
|
out:
|
|
unlock_device_hotplug();
|
|
return ret ? ret : count;
|
|
}
|
|
|
|
static ssize_t target_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
|
|
return sprintf(buf, "%d\n", st->target);
|
|
}
|
|
static DEVICE_ATTR_RW(target);
|
|
|
|
static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
struct cpuhp_step *sp;
|
|
int fail, ret;
|
|
|
|
ret = kstrtoint(buf, 10, &fail);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (fail == CPUHP_INVALID) {
|
|
st->fail = fail;
|
|
return count;
|
|
}
|
|
|
|
if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Cannot fail STARTING/DYING callbacks.
|
|
*/
|
|
if (cpuhp_is_atomic_state(fail))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* DEAD callbacks cannot fail...
|
|
* ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
|
|
* triggering STARTING callbacks, a failure in this state would
|
|
* hinder rollback.
|
|
*/
|
|
if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Cannot fail anything that doesn't have callbacks.
|
|
*/
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
sp = cpuhp_get_step(fail);
|
|
if (!sp->startup.single && !sp->teardown.single)
|
|
ret = -EINVAL;
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
st->fail = fail;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t fail_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
|
|
return sprintf(buf, "%d\n", st->fail);
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(fail);
|
|
|
|
static struct attribute *cpuhp_cpu_attrs[] = {
|
|
&dev_attr_state.attr,
|
|
&dev_attr_target.attr,
|
|
&dev_attr_fail.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group cpuhp_cpu_attr_group = {
|
|
.attrs = cpuhp_cpu_attrs,
|
|
.name = "hotplug",
|
|
};
|
|
|
|
static ssize_t states_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t cur, res = 0;
|
|
int i;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
|
|
struct cpuhp_step *sp = cpuhp_get_step(i);
|
|
|
|
if (sp->name) {
|
|
cur = sprintf(buf, "%3d: %s\n", i, sp->name);
|
|
buf += cur;
|
|
res += cur;
|
|
}
|
|
}
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
return res;
|
|
}
|
|
static DEVICE_ATTR_RO(states);
|
|
|
|
static struct attribute *cpuhp_cpu_root_attrs[] = {
|
|
&dev_attr_states.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group cpuhp_cpu_root_attr_group = {
|
|
.attrs = cpuhp_cpu_root_attrs,
|
|
.name = "hotplug",
|
|
};
|
|
|
|
#ifdef CONFIG_HOTPLUG_SMT
|
|
|
|
static bool cpu_smt_num_threads_valid(unsigned int threads)
|
|
{
|
|
if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
|
|
return threads >= 1 && threads <= cpu_smt_max_threads;
|
|
return threads == 1 || threads == cpu_smt_max_threads;
|
|
}
|
|
|
|
static ssize_t
|
|
__store_smt_control(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ctrlval, ret, num_threads, orig_threads;
|
|
bool force_off;
|
|
|
|
if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
|
|
return -EPERM;
|
|
|
|
if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
|
|
return -ENODEV;
|
|
|
|
if (sysfs_streq(buf, "on")) {
|
|
ctrlval = CPU_SMT_ENABLED;
|
|
num_threads = cpu_smt_max_threads;
|
|
} else if (sysfs_streq(buf, "off")) {
|
|
ctrlval = CPU_SMT_DISABLED;
|
|
num_threads = 1;
|
|
} else if (sysfs_streq(buf, "forceoff")) {
|
|
ctrlval = CPU_SMT_FORCE_DISABLED;
|
|
num_threads = 1;
|
|
} else if (kstrtoint(buf, 10, &num_threads) == 0) {
|
|
if (num_threads == 1)
|
|
ctrlval = CPU_SMT_DISABLED;
|
|
else if (cpu_smt_num_threads_valid(num_threads))
|
|
ctrlval = CPU_SMT_ENABLED;
|
|
else
|
|
return -EINVAL;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = lock_device_hotplug_sysfs();
|
|
if (ret)
|
|
return ret;
|
|
|
|
orig_threads = cpu_smt_num_threads;
|
|
cpu_smt_num_threads = num_threads;
|
|
|
|
force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
|
|
|
|
if (num_threads > orig_threads)
|
|
ret = cpuhp_smt_enable();
|
|
else if (num_threads < orig_threads || force_off)
|
|
ret = cpuhp_smt_disable(ctrlval);
|
|
|
|
unlock_device_hotplug();
|
|
return ret ? ret : count;
|
|
}
|
|
|
|
#else /* !CONFIG_HOTPLUG_SMT */
|
|
static ssize_t
|
|
__store_smt_control(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_SMT */
|
|
|
|
static const char *smt_states[] = {
|
|
[CPU_SMT_ENABLED] = "on",
|
|
[CPU_SMT_DISABLED] = "off",
|
|
[CPU_SMT_FORCE_DISABLED] = "forceoff",
|
|
[CPU_SMT_NOT_SUPPORTED] = "notsupported",
|
|
[CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
|
|
};
|
|
|
|
static ssize_t control_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
const char *state = smt_states[cpu_smt_control];
|
|
|
|
#ifdef CONFIG_HOTPLUG_SMT
|
|
/*
|
|
* If SMT is enabled but not all threads are enabled then show the
|
|
* number of threads. If all threads are enabled show "on". Otherwise
|
|
* show the state name.
|
|
*/
|
|
if (cpu_smt_control == CPU_SMT_ENABLED &&
|
|
cpu_smt_num_threads != cpu_smt_max_threads)
|
|
return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
|
|
#endif
|
|
|
|
return sysfs_emit(buf, "%s\n", state);
|
|
}
|
|
|
|
static ssize_t control_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return __store_smt_control(dev, attr, buf, count);
|
|
}
|
|
static DEVICE_ATTR_RW(control);
|
|
|
|
static ssize_t active_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%d\n", sched_smt_active());
|
|
}
|
|
static DEVICE_ATTR_RO(active);
|
|
|
|
static struct attribute *cpuhp_smt_attrs[] = {
|
|
&dev_attr_control.attr,
|
|
&dev_attr_active.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group cpuhp_smt_attr_group = {
|
|
.attrs = cpuhp_smt_attrs,
|
|
.name = "smt",
|
|
};
|
|
|
|
static int __init cpu_smt_sysfs_init(void)
|
|
{
|
|
struct device *dev_root;
|
|
int ret = -ENODEV;
|
|
|
|
dev_root = bus_get_dev_root(&cpu_subsys);
|
|
if (dev_root) {
|
|
ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
|
|
put_device(dev_root);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __init cpuhp_sysfs_init(void)
|
|
{
|
|
struct device *dev_root;
|
|
int cpu, ret;
|
|
|
|
ret = cpu_smt_sysfs_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_root = bus_get_dev_root(&cpu_subsys);
|
|
if (dev_root) {
|
|
ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
|
|
put_device(dev_root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct device *dev = get_cpu_device(cpu);
|
|
|
|
if (!dev)
|
|
continue;
|
|
ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
device_initcall(cpuhp_sysfs_init);
|
|
#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* cpu_bit_bitmap[] is a special, "compressed" data structure that
|
|
* represents all NR_CPUS bits binary values of 1<<nr.
|
|
*
|
|
* It is used by cpumask_of() to get a constant address to a CPU
|
|
* mask value that has a single bit set only.
|
|
*/
|
|
|
|
/* cpu_bit_bitmap[0] is empty - so we can back into it */
|
|
#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
|
|
#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
|
|
#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
|
|
#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
|
|
|
|
const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
|
|
|
|
MASK_DECLARE_8(0), MASK_DECLARE_8(8),
|
|
MASK_DECLARE_8(16), MASK_DECLARE_8(24),
|
|
#if BITS_PER_LONG > 32
|
|
MASK_DECLARE_8(32), MASK_DECLARE_8(40),
|
|
MASK_DECLARE_8(48), MASK_DECLARE_8(56),
|
|
#endif
|
|
};
|
|
EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
|
|
|
|
const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
|
|
EXPORT_SYMBOL(cpu_all_bits);
|
|
|
|
#ifdef CONFIG_INIT_ALL_POSSIBLE
|
|
struct cpumask __cpu_possible_mask __ro_after_init
|
|
= {CPU_BITS_ALL};
|
|
#else
|
|
struct cpumask __cpu_possible_mask __ro_after_init;
|
|
#endif
|
|
EXPORT_SYMBOL(__cpu_possible_mask);
|
|
|
|
struct cpumask __cpu_online_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_online_mask);
|
|
|
|
struct cpumask __cpu_enabled_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_enabled_mask);
|
|
|
|
struct cpumask __cpu_present_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_present_mask);
|
|
|
|
struct cpumask __cpu_active_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_active_mask);
|
|
|
|
struct cpumask __cpu_dying_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_dying_mask);
|
|
|
|
atomic_t __num_online_cpus __read_mostly;
|
|
EXPORT_SYMBOL(__num_online_cpus);
|
|
|
|
void init_cpu_present(const struct cpumask *src)
|
|
{
|
|
cpumask_copy(&__cpu_present_mask, src);
|
|
}
|
|
|
|
void init_cpu_possible(const struct cpumask *src)
|
|
{
|
|
cpumask_copy(&__cpu_possible_mask, src);
|
|
}
|
|
|
|
void init_cpu_online(const struct cpumask *src)
|
|
{
|
|
cpumask_copy(&__cpu_online_mask, src);
|
|
}
|
|
|
|
void set_cpu_online(unsigned int cpu, bool online)
|
|
{
|
|
/*
|
|
* atomic_inc/dec() is required to handle the horrid abuse of this
|
|
* function by the reboot and kexec code which invoke it from
|
|
* IPI/NMI broadcasts when shutting down CPUs. Invocation from
|
|
* regular CPU hotplug is properly serialized.
|
|
*
|
|
* Note, that the fact that __num_online_cpus is of type atomic_t
|
|
* does not protect readers which are not serialized against
|
|
* concurrent hotplug operations.
|
|
*/
|
|
if (online) {
|
|
if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
|
|
atomic_inc(&__num_online_cpus);
|
|
} else {
|
|
if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
|
|
atomic_dec(&__num_online_cpus);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Activate the first processor.
|
|
*/
|
|
void __init boot_cpu_init(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Mark the boot cpu "present", "online" etc for SMP and UP case */
|
|
set_cpu_online(cpu, true);
|
|
set_cpu_active(cpu, true);
|
|
set_cpu_present(cpu, true);
|
|
set_cpu_possible(cpu, true);
|
|
|
|
#ifdef CONFIG_SMP
|
|
__boot_cpu_id = cpu;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Must be called _AFTER_ setting up the per_cpu areas
|
|
*/
|
|
void __init boot_cpu_hotplug_init(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
|
|
atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
|
|
#endif
|
|
this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
|
|
this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_MITIGATIONS
|
|
/*
|
|
* These are used for a global "mitigations=" cmdline option for toggling
|
|
* optional CPU mitigations.
|
|
*/
|
|
enum cpu_mitigations {
|
|
CPU_MITIGATIONS_OFF,
|
|
CPU_MITIGATIONS_AUTO,
|
|
CPU_MITIGATIONS_AUTO_NOSMT,
|
|
};
|
|
|
|
static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
|
|
|
|
static int __init mitigations_parse_cmdline(char *arg)
|
|
{
|
|
if (!strcmp(arg, "off"))
|
|
cpu_mitigations = CPU_MITIGATIONS_OFF;
|
|
else if (!strcmp(arg, "auto"))
|
|
cpu_mitigations = CPU_MITIGATIONS_AUTO;
|
|
else if (!strcmp(arg, "auto,nosmt"))
|
|
cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
|
|
else
|
|
pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
|
|
arg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* mitigations=off */
|
|
bool cpu_mitigations_off(void)
|
|
{
|
|
return cpu_mitigations == CPU_MITIGATIONS_OFF;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_mitigations_off);
|
|
|
|
/* mitigations=auto,nosmt */
|
|
bool cpu_mitigations_auto_nosmt(void)
|
|
{
|
|
return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
|
|
#else
|
|
static int __init mitigations_parse_cmdline(char *arg)
|
|
{
|
|
pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
|
|
return 0;
|
|
}
|
|
#endif
|
|
early_param("mitigations", mitigations_parse_cmdline);
|