linux-stable/mm/mremap.c
Linus Torvalds 6e17c6de3d - Yosry Ahmed brought back some cgroup v1 stats in OOM logs.
- Yosry has also eliminated cgroup's atomic rstat flushing.
 
 - Nhat Pham adds the new cachestat() syscall.  It provides userspace
   with the ability to query pagecache status - a similar concept to
   mincore() but more powerful and with improved usability.
 
 - Mel Gorman provides more optimizations for compaction, reducing the
   prevalence of page rescanning.
 
 - Lorenzo Stoakes has done some maintanance work on the get_user_pages()
   interface.
 
 - Liam Howlett continues with cleanups and maintenance work to the maple
   tree code.  Peng Zhang also does some work on maple tree.
 
 - Johannes Weiner has done some cleanup work on the compaction code.
 
 - David Hildenbrand has contributed additional selftests for
   get_user_pages().
 
 - Thomas Gleixner has contributed some maintenance and optimization work
   for the vmalloc code.
 
 - Baolin Wang has provided some compaction cleanups,
 
 - SeongJae Park continues maintenance work on the DAMON code.
 
 - Huang Ying has done some maintenance on the swap code's usage of
   device refcounting.
 
 - Christoph Hellwig has some cleanups for the filemap/directio code.
 
 - Ryan Roberts provides two patch series which yield some
   rationalization of the kernel's access to pte entries - use the provided
   APIs rather than open-coding accesses.
 
 - Lorenzo Stoakes has some fixes to the interaction between pagecache
   and directio access to file mappings.
 
 - John Hubbard has a series of fixes to the MM selftesting code.
 
 - ZhangPeng continues the folio conversion campaign.
 
 - Hugh Dickins has been working on the pagetable handling code, mainly
   with a view to reducing the load on the mmap_lock.
 
 - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from
   128 to 8.
 
 - Domenico Cerasuolo has improved the zswap reclaim mechanism by
   reorganizing the LRU management.
 
 - Matthew Wilcox provides some fixups to make gfs2 work better with the
   buffer_head code.
 
 - Vishal Moola also has done some folio conversion work.
 
 - Matthew Wilcox has removed the remnants of the pagevec code - their
   functionality is migrated over to struct folio_batch.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA
 joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh
 J0qXCzqaaN8+BuEyLGDVPaXur9KirwY=
 =B7yQ
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull mm updates from Andrew Morton:

 - Yosry Ahmed brought back some cgroup v1 stats in OOM logs

 - Yosry has also eliminated cgroup's atomic rstat flushing

 - Nhat Pham adds the new cachestat() syscall. It provides userspace
   with the ability to query pagecache status - a similar concept to
   mincore() but more powerful and with improved usability

 - Mel Gorman provides more optimizations for compaction, reducing the
   prevalence of page rescanning

 - Lorenzo Stoakes has done some maintanance work on the
   get_user_pages() interface

 - Liam Howlett continues with cleanups and maintenance work to the
   maple tree code. Peng Zhang also does some work on maple tree

 - Johannes Weiner has done some cleanup work on the compaction code

 - David Hildenbrand has contributed additional selftests for
   get_user_pages()

 - Thomas Gleixner has contributed some maintenance and optimization
   work for the vmalloc code

 - Baolin Wang has provided some compaction cleanups,

 - SeongJae Park continues maintenance work on the DAMON code

 - Huang Ying has done some maintenance on the swap code's usage of
   device refcounting

 - Christoph Hellwig has some cleanups for the filemap/directio code

 - Ryan Roberts provides two patch series which yield some
   rationalization of the kernel's access to pte entries - use the
   provided APIs rather than open-coding accesses

 - Lorenzo Stoakes has some fixes to the interaction between pagecache
   and directio access to file mappings

 - John Hubbard has a series of fixes to the MM selftesting code

 - ZhangPeng continues the folio conversion campaign

 - Hugh Dickins has been working on the pagetable handling code, mainly
   with a view to reducing the load on the mmap_lock

 - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
   from 128 to 8

 - Domenico Cerasuolo has improved the zswap reclaim mechanism by
   reorganizing the LRU management

 - Matthew Wilcox provides some fixups to make gfs2 work better with the
   buffer_head code

 - Vishal Moola also has done some folio conversion work

 - Matthew Wilcox has removed the remnants of the pagevec code - their
   functionality is migrated over to struct folio_batch

* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
  mm/hugetlb: remove hugetlb_set_page_subpool()
  mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
  hugetlb: revert use of page_cache_next_miss()
  Revert "page cache: fix page_cache_next/prev_miss off by one"
  mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
  mm: memcg: rename and document global_reclaim()
  mm: kill [add|del]_page_to_lru_list()
  mm: compaction: convert to use a folio in isolate_migratepages_block()
  mm: zswap: fix double invalidate with exclusive loads
  mm: remove unnecessary pagevec includes
  mm: remove references to pagevec
  mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
  mm: remove struct pagevec
  net: convert sunrpc from pagevec to folio_batch
  i915: convert i915_gpu_error to use a folio_batch
  pagevec: rename fbatch_count()
  mm: remove check_move_unevictable_pages()
  drm: convert drm_gem_put_pages() to use a folio_batch
  i915: convert shmem_sg_free_table() to use a folio_batch
  scatterlist: add sg_set_folio()
  ...
2023-06-28 10:28:11 -07:00

1115 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* mm/mremap.c
*
* (C) Copyright 1996 Linus Torvalds
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/ksm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/swapops.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/mmu_notifier.h>
#include <linux/uaccess.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pgd = pgd_offset(mm, addr);
if (pgd_none_or_clear_bad(pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none_or_clear_bad(p4d))
return NULL;
pud = pud_offset(p4d, addr);
if (pud_none_or_clear_bad(pud))
return NULL;
return pud;
}
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = get_old_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return NULL;
return pmd;
}
static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pgd = pgd_offset(mm, addr);
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return NULL;
return pud_alloc(mm, p4d, addr);
}
static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = alloc_new_pud(mm, vma, addr);
if (!pud)
return NULL;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return NULL;
VM_BUG_ON(pmd_trans_huge(*pmd));
return pmd;
}
static void take_rmap_locks(struct vm_area_struct *vma)
{
if (vma->vm_file)
i_mmap_lock_write(vma->vm_file->f_mapping);
if (vma->anon_vma)
anon_vma_lock_write(vma->anon_vma);
}
static void drop_rmap_locks(struct vm_area_struct *vma)
{
if (vma->anon_vma)
anon_vma_unlock_write(vma->anon_vma);
if (vma->vm_file)
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
static pte_t move_soft_dirty_pte(pte_t pte)
{
/*
* Set soft dirty bit so we can notice
* in userspace the ptes were moved.
*/
#ifdef CONFIG_MEM_SOFT_DIRTY
if (pte_present(pte))
pte = pte_mksoft_dirty(pte);
else if (is_swap_pte(pte))
pte = pte_swp_mksoft_dirty(pte);
#endif
return pte;
}
static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
unsigned long old_addr, unsigned long old_end,
struct vm_area_struct *new_vma, pmd_t *new_pmd,
unsigned long new_addr, bool need_rmap_locks)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *old_pte, *new_pte, pte;
spinlock_t *old_ptl, *new_ptl;
bool force_flush = false;
unsigned long len = old_end - old_addr;
int err = 0;
/*
* When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
* locks to ensure that rmap will always observe either the old or the
* new ptes. This is the easiest way to avoid races with
* truncate_pagecache(), page migration, etc...
*
* When need_rmap_locks is false, we use other ways to avoid
* such races:
*
* - During exec() shift_arg_pages(), we use a specially tagged vma
* which rmap call sites look for using vma_is_temporary_stack().
*
* - During mremap(), new_vma is often known to be placed after vma
* in rmap traversal order. This ensures rmap will always observe
* either the old pte, or the new pte, or both (the page table locks
* serialize access to individual ptes, but only rmap traversal
* order guarantees that we won't miss both the old and new ptes).
*/
if (need_rmap_locks)
take_rmap_locks(vma);
/*
* We don't have to worry about the ordering of src and dst
* pte locks because exclusive mmap_lock prevents deadlock.
*/
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
if (!old_pte) {
err = -EAGAIN;
goto out;
}
new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
if (!new_pte) {
pte_unmap_unlock(old_pte, old_ptl);
err = -EAGAIN;
goto out;
}
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
flush_tlb_batched_pending(vma->vm_mm);
arch_enter_lazy_mmu_mode();
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
new_pte++, new_addr += PAGE_SIZE) {
if (pte_none(ptep_get(old_pte)))
continue;
pte = ptep_get_and_clear(mm, old_addr, old_pte);
/*
* If we are remapping a valid PTE, make sure
* to flush TLB before we drop the PTL for the
* PTE.
*
* NOTE! Both old and new PTL matter: the old one
* for racing with page_mkclean(), the new one to
* make sure the physical page stays valid until
* the TLB entry for the old mapping has been
* flushed.
*/
if (pte_present(pte))
force_flush = true;
pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
pte = move_soft_dirty_pte(pte);
set_pte_at(mm, new_addr, new_pte, pte);
}
arch_leave_lazy_mmu_mode();
if (force_flush)
flush_tlb_range(vma, old_end - len, old_end);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
pte_unmap(new_pte - 1);
pte_unmap_unlock(old_pte - 1, old_ptl);
out:
if (need_rmap_locks)
drop_rmap_locks(vma);
return err;
}
#ifndef arch_supports_page_table_move
#define arch_supports_page_table_move arch_supports_page_table_move
static inline bool arch_supports_page_table_move(void)
{
return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
}
#endif
#ifdef CONFIG_HAVE_MOVE_PMD
static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
{
spinlock_t *old_ptl, *new_ptl;
struct mm_struct *mm = vma->vm_mm;
pmd_t pmd;
if (!arch_supports_page_table_move())
return false;
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have released it.
*
* However, there's a case during execve() where we use mremap
* to move the initial stack, and in that case the target area
* may overlap the source area (always moving down).
*
* If everything is PMD-aligned, that works fine, as moving
* each pmd down will clear the source pmd. But if we first
* have a few 4kB-only pages that get moved down, and then
* hit the "now the rest is PMD-aligned, let's do everything
* one pmd at a time", we will still have the old (now empty
* of any 4kB pages, but still there) PMD in the page table
* tree.
*
* Warn on it once - because we really should try to figure
* out how to do this better - but then say "I won't move
* this pmd".
*
* One alternative might be to just unmap the target pmd at
* this point, and verify that it really is empty. We'll see.
*/
if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pmd_lock(vma->vm_mm, old_pmd);
new_ptl = pmd_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pmd */
pmd = *old_pmd;
pmd_clear(old_pmd);
VM_BUG_ON(!pmd_none(*new_pmd));
pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static inline bool move_normal_pmd(struct vm_area_struct *vma,
unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
pmd_t *new_pmd)
{
return false;
}
#endif
#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
if (!arch_supports_page_table_move())
return false;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(vma->vm_mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
pud_populate(mm, new_pud, pud_pgtable(pud));
flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static inline bool move_normal_pud(struct vm_area_struct *vma,
unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
pud_t *new_pud)
{
return false;
}
#endif
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(vma->vm_mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
/* Set the new pud */
/* mark soft_ditry when we add pud level soft dirty support */
set_pud_at(mm, new_addr, new_pud, pud);
flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
{
WARN_ON_ONCE(1);
return false;
}
#endif
enum pgt_entry {
NORMAL_PMD,
HPAGE_PMD,
NORMAL_PUD,
HPAGE_PUD,
};
/*
* Returns an extent of the corresponding size for the pgt_entry specified if
* valid. Else returns a smaller extent bounded by the end of the source and
* destination pgt_entry.
*/
static __always_inline unsigned long get_extent(enum pgt_entry entry,
unsigned long old_addr, unsigned long old_end,
unsigned long new_addr)
{
unsigned long next, extent, mask, size;
switch (entry) {
case HPAGE_PMD:
case NORMAL_PMD:
mask = PMD_MASK;
size = PMD_SIZE;
break;
case HPAGE_PUD:
case NORMAL_PUD:
mask = PUD_MASK;
size = PUD_SIZE;
break;
default:
BUILD_BUG();
break;
}
next = (old_addr + size) & mask;
/* even if next overflowed, extent below will be ok */
extent = next - old_addr;
if (extent > old_end - old_addr)
extent = old_end - old_addr;
next = (new_addr + size) & mask;
if (extent > next - new_addr)
extent = next - new_addr;
return extent;
}
/*
* Attempts to speedup the move by moving entry at the level corresponding to
* pgt_entry. Returns true if the move was successful, else false.
*/
static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
unsigned long old_addr, unsigned long new_addr,
void *old_entry, void *new_entry, bool need_rmap_locks)
{
bool moved = false;
/* See comment in move_ptes() */
if (need_rmap_locks)
take_rmap_locks(vma);
switch (entry) {
case NORMAL_PMD:
moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
new_entry);
break;
case NORMAL_PUD:
moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
new_entry);
break;
case HPAGE_PMD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pmd(vma, old_addr, new_addr, old_entry,
new_entry);
break;
case HPAGE_PUD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pud(vma, old_addr, new_addr, old_entry,
new_entry);
break;
default:
WARN_ON_ONCE(1);
break;
}
if (need_rmap_locks)
drop_rmap_locks(vma);
return moved;
}
unsigned long move_page_tables(struct vm_area_struct *vma,
unsigned long old_addr, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long len,
bool need_rmap_locks)
{
unsigned long extent, old_end;
struct mmu_notifier_range range;
pmd_t *old_pmd, *new_pmd;
pud_t *old_pud, *new_pud;
if (!len)
return 0;
old_end = old_addr + len;
if (is_vm_hugetlb_page(vma))
return move_hugetlb_page_tables(vma, new_vma, old_addr,
new_addr, len);
flush_cache_range(vma, old_addr, old_end);
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
old_addr, old_end);
mmu_notifier_invalidate_range_start(&range);
for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
cond_resched();
/*
* If extent is PUD-sized try to speed up the move by moving at the
* PUD level if possible.
*/
extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
old_pud = get_old_pud(vma->vm_mm, old_addr);
if (!old_pud)
continue;
new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
if (!new_pud)
break;
if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
if (extent == HPAGE_PUD_SIZE) {
move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
old_pud, new_pud, need_rmap_locks);
/* We ignore and continue on error? */
continue;
}
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
old_pud, new_pud, true))
continue;
}
extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
old_pmd = get_old_pmd(vma->vm_mm, old_addr);
if (!old_pmd)
continue;
new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
if (!new_pmd)
break;
again:
if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
pmd_devmap(*old_pmd)) {
if (extent == HPAGE_PMD_SIZE &&
move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
old_pmd, new_pmd, need_rmap_locks))
continue;
split_huge_pmd(vma, old_pmd, old_addr);
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
extent == PMD_SIZE) {
/*
* If the extent is PMD-sized, try to speed the move by
* moving at the PMD level if possible.
*/
if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
old_pmd, new_pmd, true))
continue;
}
if (pmd_none(*old_pmd))
continue;
if (pte_alloc(new_vma->vm_mm, new_pmd))
break;
if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
goto again;
}
mmu_notifier_invalidate_range_end(&range);
return len + old_addr - old_end; /* how much done */
}
static unsigned long move_vma(struct vm_area_struct *vma,
unsigned long old_addr, unsigned long old_len,
unsigned long new_len, unsigned long new_addr,
bool *locked, unsigned long flags,
struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
{
long to_account = new_len - old_len;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma;
unsigned long vm_flags = vma->vm_flags;
unsigned long new_pgoff;
unsigned long moved_len;
unsigned long account_start = 0;
unsigned long account_end = 0;
unsigned long hiwater_vm;
int err = 0;
bool need_rmap_locks;
struct vma_iterator vmi;
/*
* We'd prefer to avoid failure later on in do_munmap:
* which may split one vma into three before unmapping.
*/
if (mm->map_count >= sysctl_max_map_count - 3)
return -ENOMEM;
if (unlikely(flags & MREMAP_DONTUNMAP))
to_account = new_len;
if (vma->vm_ops && vma->vm_ops->may_split) {
if (vma->vm_start != old_addr)
err = vma->vm_ops->may_split(vma, old_addr);
if (!err && vma->vm_end != old_addr + old_len)
err = vma->vm_ops->may_split(vma, old_addr + old_len);
if (err)
return err;
}
/*
* Advise KSM to break any KSM pages in the area to be moved:
* it would be confusing if they were to turn up at the new
* location, where they happen to coincide with different KSM
* pages recently unmapped. But leave vma->vm_flags as it was,
* so KSM can come around to merge on vma and new_vma afterwards.
*/
err = ksm_madvise(vma, old_addr, old_addr + old_len,
MADV_UNMERGEABLE, &vm_flags);
if (err)
return err;
if (vm_flags & VM_ACCOUNT) {
if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
return -ENOMEM;
}
vma_start_write(vma);
new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
&need_rmap_locks);
if (!new_vma) {
if (vm_flags & VM_ACCOUNT)
vm_unacct_memory(to_account >> PAGE_SHIFT);
return -ENOMEM;
}
moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
need_rmap_locks);
if (moved_len < old_len) {
err = -ENOMEM;
} else if (vma->vm_ops && vma->vm_ops->mremap) {
err = vma->vm_ops->mremap(new_vma);
}
if (unlikely(err)) {
/*
* On error, move entries back from new area to old,
* which will succeed since page tables still there,
* and then proceed to unmap new area instead of old.
*/
move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
true);
vma = new_vma;
old_len = new_len;
old_addr = new_addr;
new_addr = err;
} else {
mremap_userfaultfd_prep(new_vma, uf);
}
if (is_vm_hugetlb_page(vma)) {
clear_vma_resv_huge_pages(vma);
}
/* Conceal VM_ACCOUNT so old reservation is not undone */
if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
vm_flags_clear(vma, VM_ACCOUNT);
if (vma->vm_start < old_addr)
account_start = vma->vm_start;
if (vma->vm_end > old_addr + old_len)
account_end = vma->vm_end;
}
/*
* If we failed to move page tables we still do total_vm increment
* since do_munmap() will decrement it by old_len == new_len.
*
* Since total_vm is about to be raised artificially high for a
* moment, we need to restore high watermark afterwards: if stats
* are taken meanwhile, total_vm and hiwater_vm appear too high.
* If this were a serious issue, we'd add a flag to do_munmap().
*/
hiwater_vm = mm->hiwater_vm;
vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
/* Tell pfnmap has moved from this vma */
if (unlikely(vma->vm_flags & VM_PFNMAP))
untrack_pfn_clear(vma);
if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
/* We always clear VM_LOCKED[ONFAULT] on the old vma */
vm_flags_clear(vma, VM_LOCKED_MASK);
/*
* anon_vma links of the old vma is no longer needed after its page
* table has been moved.
*/
if (new_vma != vma && vma->vm_start == old_addr &&
vma->vm_end == (old_addr + old_len))
unlink_anon_vmas(vma);
/* Because we won't unmap we don't need to touch locked_vm */
return new_addr;
}
vma_iter_init(&vmi, mm, old_addr);
if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
/* OOM: unable to split vma, just get accounts right */
if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
vm_acct_memory(old_len >> PAGE_SHIFT);
account_start = account_end = 0;
}
if (vm_flags & VM_LOCKED) {
mm->locked_vm += new_len >> PAGE_SHIFT;
*locked = true;
}
mm->hiwater_vm = hiwater_vm;
/* Restore VM_ACCOUNT if one or two pieces of vma left */
if (account_start) {
vma = vma_prev(&vmi);
vm_flags_set(vma, VM_ACCOUNT);
}
if (account_end) {
vma = vma_next(&vmi);
vm_flags_set(vma, VM_ACCOUNT);
}
return new_addr;
}
static struct vm_area_struct *vma_to_resize(unsigned long addr,
unsigned long old_len, unsigned long new_len, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long pgoff;
vma = vma_lookup(mm, addr);
if (!vma)
return ERR_PTR(-EFAULT);
/*
* !old_len is a special case where an attempt is made to 'duplicate'
* a mapping. This makes no sense for private mappings as it will
* instead create a fresh/new mapping unrelated to the original. This
* is contrary to the basic idea of mremap which creates new mappings
* based on the original. There are no known use cases for this
* behavior. As a result, fail such attempts.
*/
if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
return ERR_PTR(-EINVAL);
}
if ((flags & MREMAP_DONTUNMAP) &&
(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
return ERR_PTR(-EINVAL);
/* We can't remap across vm area boundaries */
if (old_len > vma->vm_end - addr)
return ERR_PTR(-EFAULT);
if (new_len == old_len)
return vma;
/* Need to be careful about a growing mapping */
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
return ERR_PTR(-EINVAL);
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
return ERR_PTR(-EFAULT);
if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
return ERR_PTR(-EAGAIN);
if (!may_expand_vm(mm, vma->vm_flags,
(new_len - old_len) >> PAGE_SHIFT))
return ERR_PTR(-ENOMEM);
return vma;
}
static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
unsigned long new_addr, unsigned long new_len, bool *locked,
unsigned long flags, struct vm_userfaultfd_ctx *uf,
struct list_head *uf_unmap_early,
struct list_head *uf_unmap)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret = -EINVAL;
unsigned long map_flags = 0;
if (offset_in_page(new_addr))
goto out;
if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
goto out;
/* Ensure the old/new locations do not overlap */
if (addr + old_len > new_addr && new_addr + new_len > addr)
goto out;
/*
* move_vma() need us to stay 4 maps below the threshold, otherwise
* it will bail out at the very beginning.
* That is a problem if we have already unmaped the regions here
* (new_addr, and old_addr), because userspace will not know the
* state of the vma's after it gets -ENOMEM.
* So, to avoid such scenario we can pre-compute if the whole
* operation has high chances to success map-wise.
* Worst-scenario case is when both vma's (new_addr and old_addr) get
* split in 3 before unmapping it.
* That means 2 more maps (1 for each) to the ones we already hold.
* Check whether current map count plus 2 still leads us to 4 maps below
* the threshold, otherwise return -ENOMEM here to be more safe.
*/
if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
return -ENOMEM;
if (flags & MREMAP_FIXED) {
ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
if (ret)
goto out;
}
if (old_len > new_len) {
ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
if (ret)
goto out;
old_len = new_len;
}
vma = vma_to_resize(addr, old_len, new_len, flags);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto out;
}
/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
if (flags & MREMAP_DONTUNMAP &&
!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
ret = -ENOMEM;
goto out;
}
if (flags & MREMAP_FIXED)
map_flags |= MAP_FIXED;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
((addr - vma->vm_start) >> PAGE_SHIFT),
map_flags);
if (IS_ERR_VALUE(ret))
goto out;
/* We got a new mapping */
if (!(flags & MREMAP_FIXED))
new_addr = ret;
ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
uf_unmap);
out:
return ret;
}
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
{
unsigned long end = vma->vm_end + delta;
if (end < vma->vm_end) /* overflow */
return 0;
if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
return 0;
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
0, MAP_FIXED) & ~PAGE_MASK)
return 0;
return 1;
}
/*
* Expand (or shrink) an existing mapping, potentially moving it at the
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
* This option implies MREMAP_MAYMOVE.
*/
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
unsigned long, new_len, unsigned long, flags,
unsigned long, new_addr)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret = -EINVAL;
bool locked = false;
bool downgraded = false;
struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
LIST_HEAD(uf_unmap_early);
LIST_HEAD(uf_unmap);
/*
* There is a deliberate asymmetry here: we strip the pointer tag
* from the old address but leave the new address alone. This is
* for consistency with mmap(), where we prevent the creation of
* aliasing mappings in userspace by leaving the tag bits of the
* mapping address intact. A non-zero tag will cause the subsequent
* range checks to reject the address as invalid.
*
* See Documentation/arch/arm64/tagged-address-abi.rst for more
* information.
*/
addr = untagged_addr(addr);
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
return ret;
if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
return ret;
/*
* MREMAP_DONTUNMAP is always a move and it does not allow resizing
* in the process.
*/
if (flags & MREMAP_DONTUNMAP &&
(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
return ret;
if (offset_in_page(addr))
return ret;
old_len = PAGE_ALIGN(old_len);
new_len = PAGE_ALIGN(new_len);
/*
* We allow a zero old-len as a special case
* for DOS-emu "duplicate shm area" thing. But
* a zero new-len is nonsensical.
*/
if (!new_len)
return ret;
if (mmap_write_lock_killable(current->mm))
return -EINTR;
vma = vma_lookup(mm, addr);
if (!vma) {
ret = -EFAULT;
goto out;
}
if (is_vm_hugetlb_page(vma)) {
struct hstate *h __maybe_unused = hstate_vma(vma);
old_len = ALIGN(old_len, huge_page_size(h));
new_len = ALIGN(new_len, huge_page_size(h));
/* addrs must be huge page aligned */
if (addr & ~huge_page_mask(h))
goto out;
if (new_addr & ~huge_page_mask(h))
goto out;
/*
* Don't allow remap expansion, because the underlying hugetlb
* reservation is not yet capable to handle split reservation.
*/
if (new_len > old_len)
goto out;
}
if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
ret = mremap_to(addr, old_len, new_addr, new_len,
&locked, flags, &uf, &uf_unmap_early,
&uf_unmap);
goto out;
}
/*
* Always allow a shrinking remap: that just unmaps
* the unnecessary pages..
* do_vmi_munmap does all the needed commit accounting, and
* downgrades mmap_lock to read if so directed.
*/
if (old_len >= new_len) {
int retval;
VMA_ITERATOR(vmi, mm, addr + new_len);
retval = do_vmi_munmap(&vmi, mm, addr + new_len,
old_len - new_len, &uf_unmap, true);
/* Returning 1 indicates mmap_lock is downgraded to read. */
if (retval == 1) {
downgraded = true;
} else if (retval < 0 && old_len != new_len) {
ret = retval;
goto out;
}
ret = addr;
goto out;
}
/*
* Ok, we need to grow..
*/
vma = vma_to_resize(addr, old_len, new_len, flags);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto out;
}
/* old_len exactly to the end of the area..
*/
if (old_len == vma->vm_end - addr) {
/* can we just expand the current mapping? */
if (vma_expandable(vma, new_len - old_len)) {
long pages = (new_len - old_len) >> PAGE_SHIFT;
unsigned long extension_start = addr + old_len;
unsigned long extension_end = addr + new_len;
pgoff_t extension_pgoff = vma->vm_pgoff +
((extension_start - vma->vm_start) >> PAGE_SHIFT);
VMA_ITERATOR(vmi, mm, extension_start);
if (vma->vm_flags & VM_ACCOUNT) {
if (security_vm_enough_memory_mm(mm, pages)) {
ret = -ENOMEM;
goto out;
}
}
/*
* Function vma_merge() is called on the extension we
* are adding to the already existing vma, vma_merge()
* will merge this extension with the already existing
* vma (expand operation itself) and possibly also with
* the next vma if it becomes adjacent to the expanded
* vma and otherwise compatible.
*/
vma = vma_merge(&vmi, mm, vma, extension_start,
extension_end, vma->vm_flags, vma->anon_vma,
vma->vm_file, extension_pgoff, vma_policy(vma),
vma->vm_userfaultfd_ctx, anon_vma_name(vma));
if (!vma) {
vm_unacct_memory(pages);
ret = -ENOMEM;
goto out;
}
vm_stat_account(mm, vma->vm_flags, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
locked = true;
new_addr = addr;
}
ret = addr;
goto out;
}
}
/*
* We weren't able to just expand or shrink the area,
* we need to create a new one and move it..
*/
ret = -ENOMEM;
if (flags & MREMAP_MAYMOVE) {
unsigned long map_flags = 0;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
vma->vm_pgoff +
((addr - vma->vm_start) >> PAGE_SHIFT),
map_flags);
if (IS_ERR_VALUE(new_addr)) {
ret = new_addr;
goto out;
}
ret = move_vma(vma, addr, old_len, new_len, new_addr,
&locked, flags, &uf, &uf_unmap);
}
out:
if (offset_in_page(ret))
locked = false;
if (downgraded)
mmap_read_unlock(current->mm);
else
mmap_write_unlock(current->mm);
if (locked && new_len > old_len)
mm_populate(new_addr + old_len, new_len - old_len);
userfaultfd_unmap_complete(mm, &uf_unmap_early);
mremap_userfaultfd_complete(&uf, addr, ret, old_len);
userfaultfd_unmap_complete(mm, &uf_unmap);
return ret;
}