Damien Le Moal 1e4f23c61f nvmet: fix I/O Command Set specific Identify Controller
[ Upstream commit a5a6ab0950b46ab1ef4a5c83c80234018b81b38a ]

For an identify command with cns set to NVME_ID_CNS_CS_CTRL, the NVMe
2.0 specification states that:

If the I/O Command Set specified by the CSI field does not have an
Identify Controller data structure, then the controller shall return
a zero filled data structure. If the host requests a data structure for
an I/O Command Set that the controller does not support, the controller
shall abort the command with a status code of Invalid Field in Command.

However, the current implementation of this identify command in
nvmet_execute_identify() only handles the ZNS command set, returning an
error for the NVM command set, which is not compliant with the
specifications as we do support this command set.

Fix this by:
1) Renaming nvmet_execute_identify_cns_cs_ctrl() to
   nvmet_execute_identify_ctrl_zns() to continue handling the
   ZNS command set as is.
2) Introduce a nvmet_execute_identify_ctrl_ns() helper to handle the
   NVM command set, returning a zero filled nvme_id_ctrl_nvm data
   structure.
3) Modify nvmet_execute_identify() to call these helpers based on
   the csi specified, returning an error for unsupported command sets.

Fixes: aaf2e048af27 ("nvmet: add ZBD over ZNS backend support")
Signed-off-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Tested-by: Chaitanya Kulkarni <kch@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:22 +09:00

747 lines
21 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#ifndef _NVMET_H
#define _NVMET_H
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/kref.h>
#include <linux/percpu-refcount.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/uuid.h>
#include <linux/nvme.h>
#include <linux/configfs.h>
#include <linux/rcupdate.h>
#include <linux/blkdev.h>
#include <linux/radix-tree.h>
#include <linux/t10-pi.h>
#define NVMET_DEFAULT_VS NVME_VS(1, 3, 0)
#define NVMET_ASYNC_EVENTS 4
#define NVMET_ERROR_LOG_SLOTS 128
#define NVMET_NO_ERROR_LOC ((u16)-1)
#define NVMET_DEFAULT_CTRL_MODEL "Linux"
#define NVMET_MN_MAX_SIZE 40
#define NVMET_SN_MAX_SIZE 20
/*
* Supported optional AENs:
*/
#define NVMET_AEN_CFG_OPTIONAL \
(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_ANA_CHANGE)
#define NVMET_DISC_AEN_CFG_OPTIONAL \
(NVME_AEN_CFG_DISC_CHANGE)
/*
* Plus mandatory SMART AENs (we'll never send them, but allow enabling them):
*/
#define NVMET_AEN_CFG_ALL \
(NVME_SMART_CRIT_SPARE | NVME_SMART_CRIT_TEMPERATURE | \
NVME_SMART_CRIT_RELIABILITY | NVME_SMART_CRIT_MEDIA | \
NVME_SMART_CRIT_VOLATILE_MEMORY | NVMET_AEN_CFG_OPTIONAL)
/* Helper Macros when NVMe error is NVME_SC_CONNECT_INVALID_PARAM
* The 16 bit shift is to set IATTR bit to 1, which means offending
* offset starts in the data section of connect()
*/
#define IPO_IATTR_CONNECT_DATA(x) \
(cpu_to_le32((1 << 16) | (offsetof(struct nvmf_connect_data, x))))
#define IPO_IATTR_CONNECT_SQE(x) \
(cpu_to_le32(offsetof(struct nvmf_connect_command, x)))
struct nvmet_ns {
struct percpu_ref ref;
struct block_device *bdev;
struct file *file;
bool readonly;
u32 nsid;
u32 blksize_shift;
loff_t size;
u8 nguid[16];
uuid_t uuid;
u32 anagrpid;
bool buffered_io;
bool enabled;
struct nvmet_subsys *subsys;
const char *device_path;
struct config_group device_group;
struct config_group group;
struct completion disable_done;
mempool_t *bvec_pool;
int use_p2pmem;
struct pci_dev *p2p_dev;
int pi_type;
int metadata_size;
u8 csi;
};
static inline struct nvmet_ns *to_nvmet_ns(struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_ns, group);
}
static inline struct device *nvmet_ns_dev(struct nvmet_ns *ns)
{
return ns->bdev ? disk_to_dev(ns->bdev->bd_disk) : NULL;
}
struct nvmet_cq {
u16 qid;
u16 size;
};
struct nvmet_sq {
struct nvmet_ctrl *ctrl;
struct percpu_ref ref;
u16 qid;
u16 size;
u32 sqhd;
bool sqhd_disabled;
#ifdef CONFIG_NVME_TARGET_AUTH
struct delayed_work auth_expired_work;
bool authenticated;
u16 dhchap_tid;
u16 dhchap_status;
int dhchap_step;
u8 *dhchap_c1;
u8 *dhchap_c2;
u32 dhchap_s1;
u32 dhchap_s2;
u8 *dhchap_skey;
int dhchap_skey_len;
#endif
struct completion free_done;
struct completion confirm_done;
};
struct nvmet_ana_group {
struct config_group group;
struct nvmet_port *port;
u32 grpid;
};
static inline struct nvmet_ana_group *to_ana_group(struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_ana_group,
group);
}
/**
* struct nvmet_port - Common structure to keep port
* information for the target.
* @entry: Entry into referrals or transport list.
* @disc_addr: Address information is stored in a format defined
* for a discovery log page entry.
* @group: ConfigFS group for this element's folder.
* @priv: Private data for the transport.
*/
struct nvmet_port {
struct list_head entry;
struct nvmf_disc_rsp_page_entry disc_addr;
struct config_group group;
struct config_group subsys_group;
struct list_head subsystems;
struct config_group referrals_group;
struct list_head referrals;
struct list_head global_entry;
struct config_group ana_groups_group;
struct nvmet_ana_group ana_default_group;
enum nvme_ana_state *ana_state;
void *priv;
bool enabled;
int inline_data_size;
const struct nvmet_fabrics_ops *tr_ops;
bool pi_enable;
};
static inline struct nvmet_port *to_nvmet_port(struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_port,
group);
}
static inline struct nvmet_port *ana_groups_to_port(
struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_port,
ana_groups_group);
}
struct nvmet_ctrl {
struct nvmet_subsys *subsys;
struct nvmet_sq **sqs;
bool reset_tbkas;
struct mutex lock;
u64 cap;
u32 cc;
u32 csts;
uuid_t hostid;
u16 cntlid;
u32 kato;
struct nvmet_port *port;
u32 aen_enabled;
unsigned long aen_masked;
struct nvmet_req *async_event_cmds[NVMET_ASYNC_EVENTS];
unsigned int nr_async_event_cmds;
struct list_head async_events;
struct work_struct async_event_work;
struct list_head subsys_entry;
struct kref ref;
struct delayed_work ka_work;
struct work_struct fatal_err_work;
const struct nvmet_fabrics_ops *ops;
__le32 *changed_ns_list;
u32 nr_changed_ns;
char subsysnqn[NVMF_NQN_FIELD_LEN];
char hostnqn[NVMF_NQN_FIELD_LEN];
struct device *p2p_client;
struct radix_tree_root p2p_ns_map;
spinlock_t error_lock;
u64 err_counter;
struct nvme_error_slot slots[NVMET_ERROR_LOG_SLOTS];
bool pi_support;
#ifdef CONFIG_NVME_TARGET_AUTH
struct nvme_dhchap_key *host_key;
struct nvme_dhchap_key *ctrl_key;
u8 shash_id;
struct crypto_kpp *dh_tfm;
u8 dh_gid;
u8 *dh_key;
size_t dh_keysize;
#endif
};
struct nvmet_subsys {
enum nvme_subsys_type type;
struct mutex lock;
struct kref ref;
struct xarray namespaces;
unsigned int nr_namespaces;
u32 max_nsid;
u16 cntlid_min;
u16 cntlid_max;
struct list_head ctrls;
struct list_head hosts;
bool allow_any_host;
u16 max_qid;
u64 ver;
char serial[NVMET_SN_MAX_SIZE];
bool subsys_discovered;
char *subsysnqn;
bool pi_support;
struct config_group group;
struct config_group namespaces_group;
struct config_group allowed_hosts_group;
char *model_number;
#ifdef CONFIG_NVME_TARGET_PASSTHRU
struct nvme_ctrl *passthru_ctrl;
char *passthru_ctrl_path;
struct config_group passthru_group;
unsigned int admin_timeout;
unsigned int io_timeout;
unsigned int clear_ids;
#endif /* CONFIG_NVME_TARGET_PASSTHRU */
#ifdef CONFIG_BLK_DEV_ZONED
u8 zasl;
#endif /* CONFIG_BLK_DEV_ZONED */
};
static inline struct nvmet_subsys *to_subsys(struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_subsys, group);
}
static inline struct nvmet_subsys *namespaces_to_subsys(
struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_subsys,
namespaces_group);
}
struct nvmet_host {
struct config_group group;
u8 *dhchap_secret;
u8 *dhchap_ctrl_secret;
u8 dhchap_key_hash;
u8 dhchap_ctrl_key_hash;
u8 dhchap_hash_id;
u8 dhchap_dhgroup_id;
};
static inline struct nvmet_host *to_host(struct config_item *item)
{
return container_of(to_config_group(item), struct nvmet_host, group);
}
static inline char *nvmet_host_name(struct nvmet_host *host)
{
return config_item_name(&host->group.cg_item);
}
struct nvmet_host_link {
struct list_head entry;
struct nvmet_host *host;
};
struct nvmet_subsys_link {
struct list_head entry;
struct nvmet_subsys *subsys;
};
struct nvmet_req;
struct nvmet_fabrics_ops {
struct module *owner;
unsigned int type;
unsigned int msdbd;
unsigned int flags;
#define NVMF_KEYED_SGLS (1 << 0)
#define NVMF_METADATA_SUPPORTED (1 << 1)
void (*queue_response)(struct nvmet_req *req);
int (*add_port)(struct nvmet_port *port);
void (*remove_port)(struct nvmet_port *port);
void (*delete_ctrl)(struct nvmet_ctrl *ctrl);
void (*disc_traddr)(struct nvmet_req *req,
struct nvmet_port *port, char *traddr);
u16 (*install_queue)(struct nvmet_sq *nvme_sq);
void (*discovery_chg)(struct nvmet_port *port);
u8 (*get_mdts)(const struct nvmet_ctrl *ctrl);
u16 (*get_max_queue_size)(const struct nvmet_ctrl *ctrl);
};
#define NVMET_MAX_INLINE_BIOVEC 8
#define NVMET_MAX_INLINE_DATA_LEN NVMET_MAX_INLINE_BIOVEC * PAGE_SIZE
struct nvmet_req {
struct nvme_command *cmd;
struct nvme_completion *cqe;
struct nvmet_sq *sq;
struct nvmet_cq *cq;
struct nvmet_ns *ns;
struct scatterlist *sg;
struct scatterlist *metadata_sg;
struct bio_vec inline_bvec[NVMET_MAX_INLINE_BIOVEC];
union {
struct {
struct bio inline_bio;
} b;
struct {
bool mpool_alloc;
struct kiocb iocb;
struct bio_vec *bvec;
struct work_struct work;
} f;
struct {
struct bio inline_bio;
struct request *rq;
struct work_struct work;
bool use_workqueue;
} p;
#ifdef CONFIG_BLK_DEV_ZONED
struct {
struct bio inline_bio;
struct work_struct zmgmt_work;
} z;
#endif /* CONFIG_BLK_DEV_ZONED */
};
int sg_cnt;
int metadata_sg_cnt;
/* data length as parsed from the SGL descriptor: */
size_t transfer_len;
size_t metadata_len;
struct nvmet_port *port;
void (*execute)(struct nvmet_req *req);
const struct nvmet_fabrics_ops *ops;
struct pci_dev *p2p_dev;
struct device *p2p_client;
u16 error_loc;
u64 error_slba;
};
#define NVMET_MAX_MPOOL_BVEC 16
extern struct kmem_cache *nvmet_bvec_cache;
extern struct workqueue_struct *buffered_io_wq;
extern struct workqueue_struct *zbd_wq;
extern struct workqueue_struct *nvmet_wq;
static inline void nvmet_set_result(struct nvmet_req *req, u32 result)
{
req->cqe->result.u32 = cpu_to_le32(result);
}
/*
* NVMe command writes actually are DMA reads for us on the target side.
*/
static inline enum dma_data_direction
nvmet_data_dir(struct nvmet_req *req)
{
return nvme_is_write(req->cmd) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
}
struct nvmet_async_event {
struct list_head entry;
u8 event_type;
u8 event_info;
u8 log_page;
};
static inline void nvmet_clear_aen_bit(struct nvmet_req *req, u32 bn)
{
int rae = le32_to_cpu(req->cmd->common.cdw10) & 1 << 15;
if (!rae)
clear_bit(bn, &req->sq->ctrl->aen_masked);
}
static inline bool nvmet_aen_bit_disabled(struct nvmet_ctrl *ctrl, u32 bn)
{
if (!(READ_ONCE(ctrl->aen_enabled) & (1 << bn)))
return true;
return test_and_set_bit(bn, &ctrl->aen_masked);
}
void nvmet_get_feat_kato(struct nvmet_req *req);
void nvmet_get_feat_async_event(struct nvmet_req *req);
u16 nvmet_set_feat_kato(struct nvmet_req *req);
u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask);
void nvmet_execute_async_event(struct nvmet_req *req);
void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl);
void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl);
u16 nvmet_parse_connect_cmd(struct nvmet_req *req);
void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id);
u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req);
u16 nvmet_file_parse_io_cmd(struct nvmet_req *req);
u16 nvmet_bdev_zns_parse_io_cmd(struct nvmet_req *req);
u16 nvmet_parse_admin_cmd(struct nvmet_req *req);
u16 nvmet_parse_discovery_cmd(struct nvmet_req *req);
u16 nvmet_parse_fabrics_admin_cmd(struct nvmet_req *req);
u16 nvmet_parse_fabrics_io_cmd(struct nvmet_req *req);
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops);
void nvmet_req_uninit(struct nvmet_req *req);
bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len);
bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len);
void nvmet_req_complete(struct nvmet_req *req, u16 status);
int nvmet_req_alloc_sgls(struct nvmet_req *req);
void nvmet_req_free_sgls(struct nvmet_req *req);
void nvmet_execute_set_features(struct nvmet_req *req);
void nvmet_execute_get_features(struct nvmet_req *req);
void nvmet_execute_keep_alive(struct nvmet_req *req);
void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, u16 qid,
u16 size);
void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, u16 qid,
u16 size);
void nvmet_sq_destroy(struct nvmet_sq *sq);
int nvmet_sq_init(struct nvmet_sq *sq);
void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl);
void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new);
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp);
struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
const char *hostnqn, u16 cntlid,
struct nvmet_req *req);
void nvmet_ctrl_put(struct nvmet_ctrl *ctrl);
u16 nvmet_check_ctrl_status(struct nvmet_req *req);
struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
enum nvme_subsys_type type);
void nvmet_subsys_put(struct nvmet_subsys *subsys);
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys);
u16 nvmet_req_find_ns(struct nvmet_req *req);
void nvmet_put_namespace(struct nvmet_ns *ns);
int nvmet_ns_enable(struct nvmet_ns *ns);
void nvmet_ns_disable(struct nvmet_ns *ns);
struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid);
void nvmet_ns_free(struct nvmet_ns *ns);
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
struct nvmet_port *port);
void nvmet_port_send_ana_event(struct nvmet_port *port);
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops);
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops);
void nvmet_port_del_ctrls(struct nvmet_port *port,
struct nvmet_subsys *subsys);
int nvmet_enable_port(struct nvmet_port *port);
void nvmet_disable_port(struct nvmet_port *port);
void nvmet_referral_enable(struct nvmet_port *parent, struct nvmet_port *port);
void nvmet_referral_disable(struct nvmet_port *parent, struct nvmet_port *port);
u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
size_t len);
u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf,
size_t len);
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len);
u32 nvmet_get_log_page_len(struct nvme_command *cmd);
u64 nvmet_get_log_page_offset(struct nvme_command *cmd);
extern struct list_head *nvmet_ports;
void nvmet_port_disc_changed(struct nvmet_port *port,
struct nvmet_subsys *subsys);
void nvmet_subsys_disc_changed(struct nvmet_subsys *subsys,
struct nvmet_host *host);
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
u8 event_info, u8 log_page);
#define NVMET_QUEUE_SIZE 1024
#define NVMET_NR_QUEUES 128
#define NVMET_MAX_CMD NVMET_QUEUE_SIZE
/*
* Nice round number that makes a list of nsids fit into a page.
* Should become tunable at some point in the future.
*/
#define NVMET_MAX_NAMESPACES 1024
/*
* 0 is not a valid ANA group ID, so we start numbering at 1.
*
* ANA Group 1 exists without manual intervention, has namespaces assigned to it
* by default, and is available in an optimized state through all ports.
*/
#define NVMET_MAX_ANAGRPS 128
#define NVMET_DEFAULT_ANA_GRPID 1
#define NVMET_KAS 10
#define NVMET_DISC_KATO_MS 120000
int __init nvmet_init_configfs(void);
void __exit nvmet_exit_configfs(void);
int __init nvmet_init_discovery(void);
void nvmet_exit_discovery(void);
extern struct nvmet_subsys *nvmet_disc_subsys;
extern struct rw_semaphore nvmet_config_sem;
extern u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
extern u64 nvmet_ana_chgcnt;
extern struct rw_semaphore nvmet_ana_sem;
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn);
int nvmet_bdev_ns_enable(struct nvmet_ns *ns);
int nvmet_file_ns_enable(struct nvmet_ns *ns);
void nvmet_bdev_ns_disable(struct nvmet_ns *ns);
void nvmet_file_ns_disable(struct nvmet_ns *ns);
u16 nvmet_bdev_flush(struct nvmet_req *req);
u16 nvmet_file_flush(struct nvmet_req *req);
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid);
void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns);
void nvmet_file_ns_revalidate(struct nvmet_ns *ns);
bool nvmet_ns_revalidate(struct nvmet_ns *ns);
u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts);
bool nvmet_bdev_zns_enable(struct nvmet_ns *ns);
void nvmet_execute_identify_ctrl_zns(struct nvmet_req *req);
void nvmet_execute_identify_cns_cs_ns(struct nvmet_req *req);
void nvmet_bdev_execute_zone_mgmt_recv(struct nvmet_req *req);
void nvmet_bdev_execute_zone_mgmt_send(struct nvmet_req *req);
void nvmet_bdev_execute_zone_append(struct nvmet_req *req);
static inline u32 nvmet_rw_data_len(struct nvmet_req *req)
{
return ((u32)le16_to_cpu(req->cmd->rw.length) + 1) <<
req->ns->blksize_shift;
}
static inline u32 nvmet_rw_metadata_len(struct nvmet_req *req)
{
if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
return 0;
return ((u32)le16_to_cpu(req->cmd->rw.length) + 1) *
req->ns->metadata_size;
}
static inline u32 nvmet_dsm_len(struct nvmet_req *req)
{
return (le32_to_cpu(req->cmd->dsm.nr) + 1) *
sizeof(struct nvme_dsm_range);
}
static inline struct nvmet_subsys *nvmet_req_subsys(struct nvmet_req *req)
{
return req->sq->ctrl->subsys;
}
static inline bool nvmet_is_disc_subsys(struct nvmet_subsys *subsys)
{
return subsys->type != NVME_NQN_NVME;
}
#ifdef CONFIG_NVME_TARGET_PASSTHRU
void nvmet_passthru_subsys_free(struct nvmet_subsys *subsys);
int nvmet_passthru_ctrl_enable(struct nvmet_subsys *subsys);
void nvmet_passthru_ctrl_disable(struct nvmet_subsys *subsys);
u16 nvmet_parse_passthru_admin_cmd(struct nvmet_req *req);
u16 nvmet_parse_passthru_io_cmd(struct nvmet_req *req);
static inline bool nvmet_is_passthru_subsys(struct nvmet_subsys *subsys)
{
return subsys->passthru_ctrl;
}
#else /* CONFIG_NVME_TARGET_PASSTHRU */
static inline void nvmet_passthru_subsys_free(struct nvmet_subsys *subsys)
{
}
static inline void nvmet_passthru_ctrl_disable(struct nvmet_subsys *subsys)
{
}
static inline u16 nvmet_parse_passthru_admin_cmd(struct nvmet_req *req)
{
return 0;
}
static inline u16 nvmet_parse_passthru_io_cmd(struct nvmet_req *req)
{
return 0;
}
static inline bool nvmet_is_passthru_subsys(struct nvmet_subsys *subsys)
{
return NULL;
}
#endif /* CONFIG_NVME_TARGET_PASSTHRU */
static inline bool nvmet_is_passthru_req(struct nvmet_req *req)
{
return nvmet_is_passthru_subsys(nvmet_req_subsys(req));
}
void nvmet_passthrough_override_cap(struct nvmet_ctrl *ctrl);
u16 errno_to_nvme_status(struct nvmet_req *req, int errno);
u16 nvmet_report_invalid_opcode(struct nvmet_req *req);
/* Convert a 32-bit number to a 16-bit 0's based number */
static inline __le16 to0based(u32 a)
{
return cpu_to_le16(max(1U, min(1U << 16, a)) - 1);
}
static inline bool nvmet_ns_has_pi(struct nvmet_ns *ns)
{
if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
return false;
return ns->pi_type && ns->metadata_size == sizeof(struct t10_pi_tuple);
}
static inline __le64 nvmet_sect_to_lba(struct nvmet_ns *ns, sector_t sect)
{
return cpu_to_le64(sect >> (ns->blksize_shift - SECTOR_SHIFT));
}
static inline sector_t nvmet_lba_to_sect(struct nvmet_ns *ns, __le64 lba)
{
return le64_to_cpu(lba) << (ns->blksize_shift - SECTOR_SHIFT);
}
static inline bool nvmet_use_inline_bvec(struct nvmet_req *req)
{
return req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN &&
req->sg_cnt <= NVMET_MAX_INLINE_BIOVEC;
}
static inline void nvmet_req_cns_error_complete(struct nvmet_req *req)
{
pr_debug("unhandled identify cns %d on qid %d\n",
req->cmd->identify.cns, req->sq->qid);
req->error_loc = offsetof(struct nvme_identify, cns);
nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR);
}
static inline void nvmet_req_bio_put(struct nvmet_req *req, struct bio *bio)
{
if (bio != &req->b.inline_bio)
bio_put(bio);
}
#ifdef CONFIG_NVME_TARGET_AUTH
void nvmet_execute_auth_send(struct nvmet_req *req);
void nvmet_execute_auth_receive(struct nvmet_req *req);
int nvmet_auth_set_key(struct nvmet_host *host, const char *secret,
bool set_ctrl);
int nvmet_auth_set_host_hash(struct nvmet_host *host, const char *hash);
int nvmet_setup_auth(struct nvmet_ctrl *ctrl);
void nvmet_auth_sq_init(struct nvmet_sq *sq);
void nvmet_destroy_auth(struct nvmet_ctrl *ctrl);
void nvmet_auth_sq_free(struct nvmet_sq *sq);
int nvmet_setup_dhgroup(struct nvmet_ctrl *ctrl, u8 dhgroup_id);
bool nvmet_check_auth_status(struct nvmet_req *req);
int nvmet_auth_host_hash(struct nvmet_req *req, u8 *response,
unsigned int hash_len);
int nvmet_auth_ctrl_hash(struct nvmet_req *req, u8 *response,
unsigned int hash_len);
static inline bool nvmet_has_auth(struct nvmet_ctrl *ctrl)
{
return ctrl->host_key != NULL;
}
int nvmet_auth_ctrl_exponential(struct nvmet_req *req,
u8 *buf, int buf_size);
int nvmet_auth_ctrl_sesskey(struct nvmet_req *req,
u8 *buf, int buf_size);
#else
static inline int nvmet_setup_auth(struct nvmet_ctrl *ctrl)
{
return 0;
}
static inline void nvmet_auth_sq_init(struct nvmet_sq *sq)
{
}
static inline void nvmet_destroy_auth(struct nvmet_ctrl *ctrl) {};
static inline void nvmet_auth_sq_free(struct nvmet_sq *sq) {};
static inline bool nvmet_check_auth_status(struct nvmet_req *req)
{
return true;
}
static inline bool nvmet_has_auth(struct nvmet_ctrl *ctrl)
{
return false;
}
static inline const char *nvmet_dhchap_dhgroup_name(u8 dhgid) { return NULL; }
#endif
#endif /* _NVMET_H */