Linus Torvalds bf9aa14fc5 A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
 
     posix-timers are currently auto-rearmed by the kernel when the signal
     of the timer is ignored so that the timer signal can be delivered once
     the corresponding signal is unignored.
 
     This requires to throttle the timer to prevent a DoS by small intervals
     and keeps the system pointlessly out of low power states for no value.
     This is a long standing non-trivial problem due to the lock order of
     posix-timer lock and the sighand lock along with life time issues as
     the timer and the sigqueue have different life time rules.
 
     Cure this by:
 
      * Embedding the sigqueue into the timer struct to have the same life
        time rules. Aside of that this also avoids the lookup of the timer
        in the signal delivery and rearm path as it's just a always valid
        container_of() now.
 
      * Queuing ignored timer signals onto a seperate ignored list.
 
      * Moving queued timer signals onto the ignored list when the signal is
        switched to SIG_IGN before it could be delivered.
 
      * Walking the ignored list when SIG_IGN is lifted and requeue the
        signals to the actual signal lists. This allows the signal delivery
        code to rearm the timer.
 
     This also required to consolidate the signal delivery rules so they are
     consistent across all situations. With that all self test scenarios
     finally succeed.
 
   - Core infrastructure for VFS multigrain timestamping
 
     This is required to allow the kernel to use coarse grained time stamps
     by default and switch to fine grained time stamps when inode attributes
     are actively observed via getattr().
 
     These changes have been provided to the VFS tree as well, so that the
     VFS specific infrastructure could be built on top.
 
   - Cleanup and consolidation of the sleep() infrastructure
 
     * Move all sleep and timeout functions into one file
 
     * Rework udelay() and ndelay() into proper documented inline functions
       and replace the hardcoded magic numbers by proper defines.
 
     * Rework the fsleep() implementation to take the reality of the timer
       wheel granularity on different HZ values into account. Right now the
       boundaries are hard coded time ranges which fail to provide the
       requested accuracy on different HZ settings.
 
     * Update documentation for all sleep/timeout related functions and fix
       up stale documentation links all over the place
 
     * Fixup a few usage sites
 
   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks
 
     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as that's
     the clock which drives the timekeeping adjustments via the various user
     space daemons through adjtimex(2).
 
     The non TAI based clock domains are accessible via the file descriptor
     based posix clocks, but their usability is very limited. They can't be
     accessed fast as they always go all the way out to the hardware and
     they cannot be utilized in the kernel itself.
 
     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.
 
     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the kernel
     provides access to clock MONOTONIC, REALTIME etc.
 
     Instead of creating a duplicated infrastructure this rework converts
     timekeeping and adjtimex(2) into generic functionality which operates
     on pointers to data structures instead of using static variables.
 
     This allows to provide time accessors and adjtimex(2) functionality for
     the independent PTP clocks in a subsequent step.
 
   - Consolidate hrtimer initialization
 
     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.
 
     That's an extra unnecessary step and makes Rust support less straight
     forward than it should be.
 
     Provide a new set of hrtimer_setup*() functions and convert the core
     code and a few usage sites of the less frequently used interfaces over.
 
     The bulk of the htimer_init() to hrtimer_setup() conversion is already
     prepared and scheduled for the next merge window.
 
   - Drivers:
 
     * Ensure that the global timekeeping clocksource is utilizing the
       cluster 0 timer on MIPS multi-cluster systems.
 
       Otherwise CPUs on different clusters use their cluster specific
       clocksource which is not guaranteed to be synchronized with other
       clusters.
 
     * Mostly boring cleanups, fixes, improvements and code movement
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL
 tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9
 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM
 EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9
 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG
 bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB
 DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3
 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV
 Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n
 AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5
 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw
 hZZ4hdM9+3T7cg==
 =2VC6
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "A rather large update for timekeeping and timers:

   - The final step to get rid of auto-rearming posix-timers

     posix-timers are currently auto-rearmed by the kernel when the
     signal of the timer is ignored so that the timer signal can be
     delivered once the corresponding signal is unignored.

     This requires to throttle the timer to prevent a DoS by small
     intervals and keeps the system pointlessly out of low power states
     for no value. This is a long standing non-trivial problem due to
     the lock order of posix-timer lock and the sighand lock along with
     life time issues as the timer and the sigqueue have different life
     time rules.

     Cure this by:

       - Embedding the sigqueue into the timer struct to have the same
         life time rules. Aside of that this also avoids the lookup of
         the timer in the signal delivery and rearm path as it's just a
         always valid container_of() now.

       - Queuing ignored timer signals onto a seperate ignored list.

       - Moving queued timer signals onto the ignored list when the
         signal is switched to SIG_IGN before it could be delivered.

       - Walking the ignored list when SIG_IGN is lifted and requeue the
         signals to the actual signal lists. This allows the signal
         delivery code to rearm the timer.

     This also required to consolidate the signal delivery rules so they
     are consistent across all situations. With that all self test
     scenarios finally succeed.

   - Core infrastructure for VFS multigrain timestamping

     This is required to allow the kernel to use coarse grained time
     stamps by default and switch to fine grained time stamps when inode
     attributes are actively observed via getattr().

     These changes have been provided to the VFS tree as well, so that
     the VFS specific infrastructure could be built on top.

   - Cleanup and consolidation of the sleep() infrastructure

       - Move all sleep and timeout functions into one file

       - Rework udelay() and ndelay() into proper documented inline
         functions and replace the hardcoded magic numbers by proper
         defines.

       - Rework the fsleep() implementation to take the reality of the
         timer wheel granularity on different HZ values into account.
         Right now the boundaries are hard coded time ranges which fail
         to provide the requested accuracy on different HZ settings.

       - Update documentation for all sleep/timeout related functions
         and fix up stale documentation links all over the place

       - Fixup a few usage sites

   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
     clocks

     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as
     that's the clock which drives the timekeeping adjustments via the
     various user space daemons through adjtimex(2).

     The non TAI based clock domains are accessible via the file
     descriptor based posix clocks, but their usability is very limited.
     They can't be accessed fast as they always go all the way out to
     the hardware and they cannot be utilized in the kernel itself.

     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.

     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the
     kernel provides access to clock MONOTONIC, REALTIME etc.

     Instead of creating a duplicated infrastructure this rework
     converts timekeeping and adjtimex(2) into generic functionality
     which operates on pointers to data structures instead of using
     static variables.

     This allows to provide time accessors and adjtimex(2) functionality
     for the independent PTP clocks in a subsequent step.

   - Consolidate hrtimer initialization

     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.

     That's an extra unnecessary step and makes Rust support less
     straight forward than it should be.

     Provide a new set of hrtimer_setup*() functions and convert the
     core code and a few usage sites of the less frequently used
     interfaces over.

     The bulk of the htimer_init() to hrtimer_setup() conversion is
     already prepared and scheduled for the next merge window.

   - Drivers:

       - Ensure that the global timekeeping clocksource is utilizing the
         cluster 0 timer on MIPS multi-cluster systems.

         Otherwise CPUs on different clusters use their cluster specific
         clocksource which is not guaranteed to be synchronized with
         other clusters.

       - Mostly boring cleanups, fixes, improvements and code movement"

* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
  posix-timers: Fix spurious warning on double enqueue versus do_exit()
  clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
  clocksource/drivers/gpx: Remove redundant casts
  clocksource/drivers/timer-ti-dm: Fix child node refcount handling
  dt-bindings: timer: actions,owl-timer: convert to YAML
  clocksource/drivers/ralink: Add Ralink System Tick Counter driver
  clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
  clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
  clocksource/drivers:sp804: Make user selectable
  clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
  hrtimers: Delete hrtimer_init_on_stack()
  alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
  io_uring: Switch to use hrtimer_setup_on_stack()
  sched/idle: Switch to use hrtimer_setup_on_stack()
  hrtimers: Delete hrtimer_init_sleeper_on_stack()
  wait: Switch to use hrtimer_setup_sleeper_on_stack()
  timers: Switch to use hrtimer_setup_sleeper_on_stack()
  net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
  futex: Switch to use hrtimer_setup_sleeper_on_stack()
  fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
  ...
2024-11-19 16:35:06 -08:00

2236 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Data Access Monitor
*
* Author: SeongJae Park <sj@kernel.org>
*/
#define pr_fmt(fmt) "damon: " fmt
#include <linux/damon.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/mm.h>
#include <linux/psi.h>
#include <linux/slab.h>
#include <linux/string.h>
#define CREATE_TRACE_POINTS
#include <trace/events/damon.h>
#ifdef CONFIG_DAMON_KUNIT_TEST
#undef DAMON_MIN_REGION
#define DAMON_MIN_REGION 1
#endif
static DEFINE_MUTEX(damon_lock);
static int nr_running_ctxs;
static bool running_exclusive_ctxs;
static DEFINE_MUTEX(damon_ops_lock);
static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
static struct kmem_cache *damon_region_cache __ro_after_init;
/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
static bool __damon_is_registered_ops(enum damon_ops_id id)
{
struct damon_operations empty_ops = {};
if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
return false;
return true;
}
/**
* damon_is_registered_ops() - Check if a given damon_operations is registered.
* @id: Id of the damon_operations to check if registered.
*
* Return: true if the ops is set, false otherwise.
*/
bool damon_is_registered_ops(enum damon_ops_id id)
{
bool registered;
if (id >= NR_DAMON_OPS)
return false;
mutex_lock(&damon_ops_lock);
registered = __damon_is_registered_ops(id);
mutex_unlock(&damon_ops_lock);
return registered;
}
/**
* damon_register_ops() - Register a monitoring operations set to DAMON.
* @ops: monitoring operations set to register.
*
* This function registers a monitoring operations set of valid &struct
* damon_operations->id so that others can find and use them later.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_register_ops(struct damon_operations *ops)
{
int err = 0;
if (ops->id >= NR_DAMON_OPS)
return -EINVAL;
mutex_lock(&damon_ops_lock);
/* Fail for already registered ops */
if (__damon_is_registered_ops(ops->id)) {
err = -EINVAL;
goto out;
}
damon_registered_ops[ops->id] = *ops;
out:
mutex_unlock(&damon_ops_lock);
return err;
}
/**
* damon_select_ops() - Select a monitoring operations to use with the context.
* @ctx: monitoring context to use the operations.
* @id: id of the registered monitoring operations to select.
*
* This function finds registered monitoring operations set of @id and make
* @ctx to use it.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
{
int err = 0;
if (id >= NR_DAMON_OPS)
return -EINVAL;
mutex_lock(&damon_ops_lock);
if (!__damon_is_registered_ops(id))
err = -EINVAL;
else
ctx->ops = damon_registered_ops[id];
mutex_unlock(&damon_ops_lock);
return err;
}
/*
* Construct a damon_region struct
*
* Returns the pointer to the new struct if success, or NULL otherwise
*/
struct damon_region *damon_new_region(unsigned long start, unsigned long end)
{
struct damon_region *region;
region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
if (!region)
return NULL;
region->ar.start = start;
region->ar.end = end;
region->nr_accesses = 0;
region->nr_accesses_bp = 0;
INIT_LIST_HEAD(&region->list);
region->age = 0;
region->last_nr_accesses = 0;
return region;
}
void damon_add_region(struct damon_region *r, struct damon_target *t)
{
list_add_tail(&r->list, &t->regions_list);
t->nr_regions++;
}
static void damon_del_region(struct damon_region *r, struct damon_target *t)
{
list_del(&r->list);
t->nr_regions--;
}
static void damon_free_region(struct damon_region *r)
{
kmem_cache_free(damon_region_cache, r);
}
void damon_destroy_region(struct damon_region *r, struct damon_target *t)
{
damon_del_region(r, t);
damon_free_region(r);
}
/*
* Check whether a region is intersecting an address range
*
* Returns true if it is.
*/
static bool damon_intersect(struct damon_region *r,
struct damon_addr_range *re)
{
return !(r->ar.end <= re->start || re->end <= r->ar.start);
}
/*
* Fill holes in regions with new regions.
*/
static int damon_fill_regions_holes(struct damon_region *first,
struct damon_region *last, struct damon_target *t)
{
struct damon_region *r = first;
damon_for_each_region_from(r, t) {
struct damon_region *next, *newr;
if (r == last)
break;
next = damon_next_region(r);
if (r->ar.end != next->ar.start) {
newr = damon_new_region(r->ar.end, next->ar.start);
if (!newr)
return -ENOMEM;
damon_insert_region(newr, r, next, t);
}
}
return 0;
}
/*
* damon_set_regions() - Set regions of a target for given address ranges.
* @t: the given target.
* @ranges: array of new monitoring target ranges.
* @nr_ranges: length of @ranges.
*
* This function adds new regions to, or modify existing regions of a
* monitoring target to fit in specific ranges.
*
* Return: 0 if success, or negative error code otherwise.
*/
int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
unsigned int nr_ranges)
{
struct damon_region *r, *next;
unsigned int i;
int err;
/* Remove regions which are not in the new ranges */
damon_for_each_region_safe(r, next, t) {
for (i = 0; i < nr_ranges; i++) {
if (damon_intersect(r, &ranges[i]))
break;
}
if (i == nr_ranges)
damon_destroy_region(r, t);
}
r = damon_first_region(t);
/* Add new regions or resize existing regions to fit in the ranges */
for (i = 0; i < nr_ranges; i++) {
struct damon_region *first = NULL, *last, *newr;
struct damon_addr_range *range;
range = &ranges[i];
/* Get the first/last regions intersecting with the range */
damon_for_each_region_from(r, t) {
if (damon_intersect(r, range)) {
if (!first)
first = r;
last = r;
}
if (r->ar.start >= range->end)
break;
}
if (!first) {
/* no region intersects with this range */
newr = damon_new_region(
ALIGN_DOWN(range->start,
DAMON_MIN_REGION),
ALIGN(range->end, DAMON_MIN_REGION));
if (!newr)
return -ENOMEM;
damon_insert_region(newr, damon_prev_region(r), r, t);
} else {
/* resize intersecting regions to fit in this range */
first->ar.start = ALIGN_DOWN(range->start,
DAMON_MIN_REGION);
last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
/* fill possible holes in the range */
err = damon_fill_regions_holes(first, last, t);
if (err)
return err;
}
}
return 0;
}
struct damos_filter *damos_new_filter(enum damos_filter_type type,
bool matching)
{
struct damos_filter *filter;
filter = kmalloc(sizeof(*filter), GFP_KERNEL);
if (!filter)
return NULL;
filter->type = type;
filter->matching = matching;
INIT_LIST_HEAD(&filter->list);
return filter;
}
void damos_add_filter(struct damos *s, struct damos_filter *f)
{
list_add_tail(&f->list, &s->filters);
}
static void damos_del_filter(struct damos_filter *f)
{
list_del(&f->list);
}
static void damos_free_filter(struct damos_filter *f)
{
kfree(f);
}
void damos_destroy_filter(struct damos_filter *f)
{
damos_del_filter(f);
damos_free_filter(f);
}
struct damos_quota_goal *damos_new_quota_goal(
enum damos_quota_goal_metric metric,
unsigned long target_value)
{
struct damos_quota_goal *goal;
goal = kmalloc(sizeof(*goal), GFP_KERNEL);
if (!goal)
return NULL;
goal->metric = metric;
goal->target_value = target_value;
INIT_LIST_HEAD(&goal->list);
return goal;
}
void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
{
list_add_tail(&g->list, &q->goals);
}
static void damos_del_quota_goal(struct damos_quota_goal *g)
{
list_del(&g->list);
}
static void damos_free_quota_goal(struct damos_quota_goal *g)
{
kfree(g);
}
void damos_destroy_quota_goal(struct damos_quota_goal *g)
{
damos_del_quota_goal(g);
damos_free_quota_goal(g);
}
/* initialize fields of @quota that normally API users wouldn't set */
static struct damos_quota *damos_quota_init(struct damos_quota *quota)
{
quota->esz = 0;
quota->total_charged_sz = 0;
quota->total_charged_ns = 0;
quota->charged_sz = 0;
quota->charged_from = 0;
quota->charge_target_from = NULL;
quota->charge_addr_from = 0;
quota->esz_bp = 0;
return quota;
}
struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
enum damos_action action,
unsigned long apply_interval_us,
struct damos_quota *quota,
struct damos_watermarks *wmarks,
int target_nid)
{
struct damos *scheme;
scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
if (!scheme)
return NULL;
scheme->pattern = *pattern;
scheme->action = action;
scheme->apply_interval_us = apply_interval_us;
/*
* next_apply_sis will be set when kdamond starts. While kdamond is
* running, it will also updated when it is added to the DAMON context,
* or damon_attrs are updated.
*/
scheme->next_apply_sis = 0;
INIT_LIST_HEAD(&scheme->filters);
scheme->stat = (struct damos_stat){};
INIT_LIST_HEAD(&scheme->list);
scheme->quota = *(damos_quota_init(quota));
/* quota.goals should be separately set by caller */
INIT_LIST_HEAD(&scheme->quota.goals);
scheme->wmarks = *wmarks;
scheme->wmarks.activated = true;
scheme->target_nid = target_nid;
return scheme;
}
static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
{
unsigned long sample_interval = ctx->attrs.sample_interval ?
ctx->attrs.sample_interval : 1;
unsigned long apply_interval = s->apply_interval_us ?
s->apply_interval_us : ctx->attrs.aggr_interval;
s->next_apply_sis = ctx->passed_sample_intervals +
apply_interval / sample_interval;
}
void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
{
list_add_tail(&s->list, &ctx->schemes);
damos_set_next_apply_sis(s, ctx);
}
static void damon_del_scheme(struct damos *s)
{
list_del(&s->list);
}
static void damon_free_scheme(struct damos *s)
{
kfree(s);
}
void damon_destroy_scheme(struct damos *s)
{
struct damos_quota_goal *g, *g_next;
struct damos_filter *f, *next;
damos_for_each_quota_goal_safe(g, g_next, &s->quota)
damos_destroy_quota_goal(g);
damos_for_each_filter_safe(f, next, s)
damos_destroy_filter(f);
damon_del_scheme(s);
damon_free_scheme(s);
}
/*
* Construct a damon_target struct
*
* Returns the pointer to the new struct if success, or NULL otherwise
*/
struct damon_target *damon_new_target(void)
{
struct damon_target *t;
t = kmalloc(sizeof(*t), GFP_KERNEL);
if (!t)
return NULL;
t->pid = NULL;
t->nr_regions = 0;
INIT_LIST_HEAD(&t->regions_list);
INIT_LIST_HEAD(&t->list);
return t;
}
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
{
list_add_tail(&t->list, &ctx->adaptive_targets);
}
bool damon_targets_empty(struct damon_ctx *ctx)
{
return list_empty(&ctx->adaptive_targets);
}
static void damon_del_target(struct damon_target *t)
{
list_del(&t->list);
}
void damon_free_target(struct damon_target *t)
{
struct damon_region *r, *next;
damon_for_each_region_safe(r, next, t)
damon_free_region(r);
kfree(t);
}
void damon_destroy_target(struct damon_target *t)
{
damon_del_target(t);
damon_free_target(t);
}
unsigned int damon_nr_regions(struct damon_target *t)
{
return t->nr_regions;
}
struct damon_ctx *damon_new_ctx(void)
{
struct damon_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
init_completion(&ctx->kdamond_started);
ctx->attrs.sample_interval = 5 * 1000;
ctx->attrs.aggr_interval = 100 * 1000;
ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
ctx->passed_sample_intervals = 0;
/* These will be set from kdamond_init_intervals_sis() */
ctx->next_aggregation_sis = 0;
ctx->next_ops_update_sis = 0;
mutex_init(&ctx->kdamond_lock);
ctx->attrs.min_nr_regions = 10;
ctx->attrs.max_nr_regions = 1000;
INIT_LIST_HEAD(&ctx->adaptive_targets);
INIT_LIST_HEAD(&ctx->schemes);
return ctx;
}
static void damon_destroy_targets(struct damon_ctx *ctx)
{
struct damon_target *t, *next_t;
if (ctx->ops.cleanup) {
ctx->ops.cleanup(ctx);
return;
}
damon_for_each_target_safe(t, next_t, ctx)
damon_destroy_target(t);
}
void damon_destroy_ctx(struct damon_ctx *ctx)
{
struct damos *s, *next_s;
damon_destroy_targets(ctx);
damon_for_each_scheme_safe(s, next_s, ctx)
damon_destroy_scheme(s);
kfree(ctx);
}
static unsigned int damon_age_for_new_attrs(unsigned int age,
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
{
return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
}
/* convert access ratio in bp (per 10,000) to nr_accesses */
static unsigned int damon_accesses_bp_to_nr_accesses(
unsigned int accesses_bp, struct damon_attrs *attrs)
{
return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
}
/*
* Convert nr_accesses to access ratio in bp (per 10,000).
*
* Callers should ensure attrs.aggr_interval is not zero, like
* damon_update_monitoring_results() does . Otherwise, divide-by-zero would
* happen.
*/
static unsigned int damon_nr_accesses_to_accesses_bp(
unsigned int nr_accesses, struct damon_attrs *attrs)
{
return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
}
static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
{
return damon_accesses_bp_to_nr_accesses(
damon_nr_accesses_to_accesses_bp(
nr_accesses, old_attrs),
new_attrs);
}
static void damon_update_monitoring_result(struct damon_region *r,
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
{
r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
old_attrs, new_attrs);
r->nr_accesses_bp = r->nr_accesses * 10000;
r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
}
/*
* region->nr_accesses is the number of sampling intervals in the last
* aggregation interval that access to the region has found, and region->age is
* the number of aggregation intervals that its access pattern has maintained.
* For the reason, the real meaning of the two fields depend on current
* sampling interval and aggregation interval. This function updates
* ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
*/
static void damon_update_monitoring_results(struct damon_ctx *ctx,
struct damon_attrs *new_attrs)
{
struct damon_attrs *old_attrs = &ctx->attrs;
struct damon_target *t;
struct damon_region *r;
/* if any interval is zero, simply forgive conversion */
if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
!new_attrs->sample_interval ||
!new_attrs->aggr_interval)
return;
damon_for_each_target(t, ctx)
damon_for_each_region(r, t)
damon_update_monitoring_result(
r, old_attrs, new_attrs);
}
/**
* damon_set_attrs() - Set attributes for the monitoring.
* @ctx: monitoring context
* @attrs: monitoring attributes
*
* This function should be called while the kdamond is not running, or an
* access check results aggregation is not ongoing (e.g., from
* &struct damon_callback->after_aggregation or
* &struct damon_callback->after_wmarks_check callbacks).
*
* Every time interval is in micro-seconds.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
{
unsigned long sample_interval = attrs->sample_interval ?
attrs->sample_interval : 1;
struct damos *s;
if (attrs->min_nr_regions < 3)
return -EINVAL;
if (attrs->min_nr_regions > attrs->max_nr_regions)
return -EINVAL;
if (attrs->sample_interval > attrs->aggr_interval)
return -EINVAL;
ctx->next_aggregation_sis = ctx->passed_sample_intervals +
attrs->aggr_interval / sample_interval;
ctx->next_ops_update_sis = ctx->passed_sample_intervals +
attrs->ops_update_interval / sample_interval;
damon_update_monitoring_results(ctx, attrs);
ctx->attrs = *attrs;
damon_for_each_scheme(s, ctx)
damos_set_next_apply_sis(s, ctx);
return 0;
}
/**
* damon_set_schemes() - Set data access monitoring based operation schemes.
* @ctx: monitoring context
* @schemes: array of the schemes
* @nr_schemes: number of entries in @schemes
*
* This function should not be called while the kdamond of the context is
* running.
*/
void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
ssize_t nr_schemes)
{
struct damos *s, *next;
ssize_t i;
damon_for_each_scheme_safe(s, next, ctx)
damon_destroy_scheme(s);
for (i = 0; i < nr_schemes; i++)
damon_add_scheme(ctx, schemes[i]);
}
static struct damos_quota_goal *damos_nth_quota_goal(
int n, struct damos_quota *q)
{
struct damos_quota_goal *goal;
int i = 0;
damos_for_each_quota_goal(goal, q) {
if (i++ == n)
return goal;
}
return NULL;
}
static void damos_commit_quota_goal(
struct damos_quota_goal *dst, struct damos_quota_goal *src)
{
dst->metric = src->metric;
dst->target_value = src->target_value;
if (dst->metric == DAMOS_QUOTA_USER_INPUT)
dst->current_value = src->current_value;
/* keep last_psi_total as is, since it will be updated in next cycle */
}
/**
* damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
* @dst: The commit destination DAMOS quota.
* @src: The commit source DAMOS quota.
*
* Copies user-specified parameters for quota goals from @src to @dst. Users
* should use this function for quota goals-level parameters update of running
* DAMON contexts, instead of manual in-place updates.
*
* This function should be called from parameters-update safe context, like
* DAMON callbacks.
*/
int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
{
struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
int i = 0, j = 0;
damos_for_each_quota_goal_safe(dst_goal, next, dst) {
src_goal = damos_nth_quota_goal(i++, src);
if (src_goal)
damos_commit_quota_goal(dst_goal, src_goal);
else
damos_destroy_quota_goal(dst_goal);
}
damos_for_each_quota_goal_safe(src_goal, next, src) {
if (j++ < i)
continue;
new_goal = damos_new_quota_goal(
src_goal->metric, src_goal->target_value);
if (!new_goal)
return -ENOMEM;
damos_add_quota_goal(dst, new_goal);
}
return 0;
}
static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
{
int err;
dst->reset_interval = src->reset_interval;
dst->ms = src->ms;
dst->sz = src->sz;
err = damos_commit_quota_goals(dst, src);
if (err)
return err;
dst->weight_sz = src->weight_sz;
dst->weight_nr_accesses = src->weight_nr_accesses;
dst->weight_age = src->weight_age;
return 0;
}
static struct damos_filter *damos_nth_filter(int n, struct damos *s)
{
struct damos_filter *filter;
int i = 0;
damos_for_each_filter(filter, s) {
if (i++ == n)
return filter;
}
return NULL;
}
static void damos_commit_filter_arg(
struct damos_filter *dst, struct damos_filter *src)
{
switch (dst->type) {
case DAMOS_FILTER_TYPE_MEMCG:
dst->memcg_id = src->memcg_id;
break;
case DAMOS_FILTER_TYPE_ADDR:
dst->addr_range = src->addr_range;
break;
case DAMOS_FILTER_TYPE_TARGET:
dst->target_idx = src->target_idx;
break;
default:
break;
}
}
static void damos_commit_filter(
struct damos_filter *dst, struct damos_filter *src)
{
dst->type = src->type;
dst->matching = src->matching;
damos_commit_filter_arg(dst, src);
}
static int damos_commit_filters(struct damos *dst, struct damos *src)
{
struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
int i = 0, j = 0;
damos_for_each_filter_safe(dst_filter, next, dst) {
src_filter = damos_nth_filter(i++, src);
if (src_filter)
damos_commit_filter(dst_filter, src_filter);
else
damos_destroy_filter(dst_filter);
}
damos_for_each_filter_safe(src_filter, next, src) {
if (j++ < i)
continue;
new_filter = damos_new_filter(
src_filter->type, src_filter->matching);
if (!new_filter)
return -ENOMEM;
damos_commit_filter_arg(new_filter, src_filter);
damos_add_filter(dst, new_filter);
}
return 0;
}
static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
{
struct damos *s;
int i = 0;
damon_for_each_scheme(s, ctx) {
if (i++ == n)
return s;
}
return NULL;
}
static int damos_commit(struct damos *dst, struct damos *src)
{
int err;
dst->pattern = src->pattern;
dst->action = src->action;
dst->apply_interval_us = src->apply_interval_us;
err = damos_commit_quota(&dst->quota, &src->quota);
if (err)
return err;
dst->wmarks = src->wmarks;
err = damos_commit_filters(dst, src);
return err;
}
static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
{
struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
int i = 0, j = 0, err;
damon_for_each_scheme_safe(dst_scheme, next, dst) {
src_scheme = damon_nth_scheme(i++, src);
if (src_scheme) {
err = damos_commit(dst_scheme, src_scheme);
if (err)
return err;
} else {
damon_destroy_scheme(dst_scheme);
}
}
damon_for_each_scheme_safe(src_scheme, next, src) {
if (j++ < i)
continue;
new_scheme = damon_new_scheme(&src_scheme->pattern,
src_scheme->action,
src_scheme->apply_interval_us,
&src_scheme->quota, &src_scheme->wmarks,
NUMA_NO_NODE);
if (!new_scheme)
return -ENOMEM;
damon_add_scheme(dst, new_scheme);
}
return 0;
}
static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
{
struct damon_target *t;
int i = 0;
damon_for_each_target(t, ctx) {
if (i++ == n)
return t;
}
return NULL;
}
/*
* The caller should ensure the regions of @src are
* 1. valid (end >= src) and
* 2. sorted by starting address.
*
* If @src has no region, @dst keeps current regions.
*/
static int damon_commit_target_regions(
struct damon_target *dst, struct damon_target *src)
{
struct damon_region *src_region;
struct damon_addr_range *ranges;
int i = 0, err;
damon_for_each_region(src_region, src)
i++;
if (!i)
return 0;
ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
if (!ranges)
return -ENOMEM;
i = 0;
damon_for_each_region(src_region, src)
ranges[i++] = src_region->ar;
err = damon_set_regions(dst, ranges, i);
kfree(ranges);
return err;
}
static int damon_commit_target(
struct damon_target *dst, bool dst_has_pid,
struct damon_target *src, bool src_has_pid)
{
int err;
err = damon_commit_target_regions(dst, src);
if (err)
return err;
if (dst_has_pid)
put_pid(dst->pid);
if (src_has_pid)
get_pid(src->pid);
dst->pid = src->pid;
return 0;
}
static int damon_commit_targets(
struct damon_ctx *dst, struct damon_ctx *src)
{
struct damon_target *dst_target, *next, *src_target, *new_target;
int i = 0, j = 0, err;
damon_for_each_target_safe(dst_target, next, dst) {
src_target = damon_nth_target(i++, src);
if (src_target) {
err = damon_commit_target(
dst_target, damon_target_has_pid(dst),
src_target, damon_target_has_pid(src));
if (err)
return err;
} else {
if (damon_target_has_pid(dst))
put_pid(dst_target->pid);
damon_destroy_target(dst_target);
}
}
damon_for_each_target_safe(src_target, next, src) {
if (j++ < i)
continue;
new_target = damon_new_target();
if (!new_target)
return -ENOMEM;
err = damon_commit_target(new_target, false,
src_target, damon_target_has_pid(src));
if (err)
return err;
}
return 0;
}
/**
* damon_commit_ctx() - Commit parameters of a DAMON context to another.
* @dst: The commit destination DAMON context.
* @src: The commit source DAMON context.
*
* This function copies user-specified parameters from @src to @dst and update
* the internal status and results accordingly. Users should use this function
* for context-level parameters update of running context, instead of manual
* in-place updates.
*
* This function should be called from parameters-update safe context, like
* DAMON callbacks.
*/
int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
{
int err;
err = damon_commit_schemes(dst, src);
if (err)
return err;
err = damon_commit_targets(dst, src);
if (err)
return err;
/*
* schemes and targets should be updated first, since
* 1. damon_set_attrs() updates monitoring results of targets and
* next_apply_sis of schemes, and
* 2. ops update should be done after pid handling is done (target
* committing require putting pids).
*/
err = damon_set_attrs(dst, &src->attrs);
if (err)
return err;
dst->ops = src->ops;
return 0;
}
/**
* damon_nr_running_ctxs() - Return number of currently running contexts.
*/
int damon_nr_running_ctxs(void)
{
int nr_ctxs;
mutex_lock(&damon_lock);
nr_ctxs = nr_running_ctxs;
mutex_unlock(&damon_lock);
return nr_ctxs;
}
/* Returns the size upper limit for each monitoring region */
static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
{
struct damon_target *t;
struct damon_region *r;
unsigned long sz = 0;
damon_for_each_target(t, ctx) {
damon_for_each_region(r, t)
sz += damon_sz_region(r);
}
if (ctx->attrs.min_nr_regions)
sz /= ctx->attrs.min_nr_regions;
if (sz < DAMON_MIN_REGION)
sz = DAMON_MIN_REGION;
return sz;
}
static int kdamond_fn(void *data);
/*
* __damon_start() - Starts monitoring with given context.
* @ctx: monitoring context
*
* This function should be called while damon_lock is hold.
*
* Return: 0 on success, negative error code otherwise.
*/
static int __damon_start(struct damon_ctx *ctx)
{
int err = -EBUSY;
mutex_lock(&ctx->kdamond_lock);
if (!ctx->kdamond) {
err = 0;
reinit_completion(&ctx->kdamond_started);
ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
nr_running_ctxs);
if (IS_ERR(ctx->kdamond)) {
err = PTR_ERR(ctx->kdamond);
ctx->kdamond = NULL;
} else {
wait_for_completion(&ctx->kdamond_started);
}
}
mutex_unlock(&ctx->kdamond_lock);
return err;
}
/**
* damon_start() - Starts the monitorings for a given group of contexts.
* @ctxs: an array of the pointers for contexts to start monitoring
* @nr_ctxs: size of @ctxs
* @exclusive: exclusiveness of this contexts group
*
* This function starts a group of monitoring threads for a group of monitoring
* contexts. One thread per each context is created and run in parallel. The
* caller should handle synchronization between the threads by itself. If
* @exclusive is true and a group of threads that created by other
* 'damon_start()' call is currently running, this function does nothing but
* returns -EBUSY.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
{
int i;
int err = 0;
mutex_lock(&damon_lock);
if ((exclusive && nr_running_ctxs) ||
(!exclusive && running_exclusive_ctxs)) {
mutex_unlock(&damon_lock);
return -EBUSY;
}
for (i = 0; i < nr_ctxs; i++) {
err = __damon_start(ctxs[i]);
if (err)
break;
nr_running_ctxs++;
}
if (exclusive && nr_running_ctxs)
running_exclusive_ctxs = true;
mutex_unlock(&damon_lock);
return err;
}
/*
* __damon_stop() - Stops monitoring of a given context.
* @ctx: monitoring context
*
* Return: 0 on success, negative error code otherwise.
*/
static int __damon_stop(struct damon_ctx *ctx)
{
struct task_struct *tsk;
mutex_lock(&ctx->kdamond_lock);
tsk = ctx->kdamond;
if (tsk) {
get_task_struct(tsk);
mutex_unlock(&ctx->kdamond_lock);
kthread_stop_put(tsk);
return 0;
}
mutex_unlock(&ctx->kdamond_lock);
return -EPERM;
}
/**
* damon_stop() - Stops the monitorings for a given group of contexts.
* @ctxs: an array of the pointers for contexts to stop monitoring
* @nr_ctxs: size of @ctxs
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
{
int i, err = 0;
for (i = 0; i < nr_ctxs; i++) {
/* nr_running_ctxs is decremented in kdamond_fn */
err = __damon_stop(ctxs[i]);
if (err)
break;
}
return err;
}
/*
* Reset the aggregated monitoring results ('nr_accesses' of each region).
*/
static void kdamond_reset_aggregated(struct damon_ctx *c)
{
struct damon_target *t;
unsigned int ti = 0; /* target's index */
damon_for_each_target(t, c) {
struct damon_region *r;
damon_for_each_region(r, t) {
trace_damon_aggregated(ti, r, damon_nr_regions(t));
r->last_nr_accesses = r->nr_accesses;
r->nr_accesses = 0;
}
ti++;
}
}
static void damon_split_region_at(struct damon_target *t,
struct damon_region *r, unsigned long sz_r);
static bool __damos_valid_target(struct damon_region *r, struct damos *s)
{
unsigned long sz;
unsigned int nr_accesses = r->nr_accesses_bp / 10000;
sz = damon_sz_region(r);
return s->pattern.min_sz_region <= sz &&
sz <= s->pattern.max_sz_region &&
s->pattern.min_nr_accesses <= nr_accesses &&
nr_accesses <= s->pattern.max_nr_accesses &&
s->pattern.min_age_region <= r->age &&
r->age <= s->pattern.max_age_region;
}
static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
struct damon_region *r, struct damos *s)
{
bool ret = __damos_valid_target(r, s);
if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
return ret;
return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
}
/*
* damos_skip_charged_region() - Check if the given region or starting part of
* it is already charged for the DAMOS quota.
* @t: The target of the region.
* @rp: The pointer to the region.
* @s: The scheme to be applied.
*
* If a quota of a scheme has exceeded in a quota charge window, the scheme's
* action would applied to only a part of the target access pattern fulfilling
* regions. To avoid applying the scheme action to only already applied
* regions, DAMON skips applying the scheme action to the regions that charged
* in the previous charge window.
*
* This function checks if a given region should be skipped or not for the
* reason. If only the starting part of the region has previously charged,
* this function splits the region into two so that the second one covers the
* area that not charged in the previous charge widnow and saves the second
* region in *rp and returns false, so that the caller can apply DAMON action
* to the second one.
*
* Return: true if the region should be entirely skipped, false otherwise.
*/
static bool damos_skip_charged_region(struct damon_target *t,
struct damon_region **rp, struct damos *s)
{
struct damon_region *r = *rp;
struct damos_quota *quota = &s->quota;
unsigned long sz_to_skip;
/* Skip previously charged regions */
if (quota->charge_target_from) {
if (t != quota->charge_target_from)
return true;
if (r == damon_last_region(t)) {
quota->charge_target_from = NULL;
quota->charge_addr_from = 0;
return true;
}
if (quota->charge_addr_from &&
r->ar.end <= quota->charge_addr_from)
return true;
if (quota->charge_addr_from && r->ar.start <
quota->charge_addr_from) {
sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
r->ar.start, DAMON_MIN_REGION);
if (!sz_to_skip) {
if (damon_sz_region(r) <= DAMON_MIN_REGION)
return true;
sz_to_skip = DAMON_MIN_REGION;
}
damon_split_region_at(t, r, sz_to_skip);
r = damon_next_region(r);
*rp = r;
}
quota->charge_target_from = NULL;
quota->charge_addr_from = 0;
}
return false;
}
static void damos_update_stat(struct damos *s,
unsigned long sz_tried, unsigned long sz_applied)
{
s->stat.nr_tried++;
s->stat.sz_tried += sz_tried;
if (sz_applied)
s->stat.nr_applied++;
s->stat.sz_applied += sz_applied;
}
static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
struct damon_region *r, struct damos_filter *filter)
{
bool matched = false;
struct damon_target *ti;
int target_idx = 0;
unsigned long start, end;
switch (filter->type) {
case DAMOS_FILTER_TYPE_TARGET:
damon_for_each_target(ti, ctx) {
if (ti == t)
break;
target_idx++;
}
matched = target_idx == filter->target_idx;
break;
case DAMOS_FILTER_TYPE_ADDR:
start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
/* inside the range */
if (start <= r->ar.start && r->ar.end <= end) {
matched = true;
break;
}
/* outside of the range */
if (r->ar.end <= start || end <= r->ar.start) {
matched = false;
break;
}
/* start before the range and overlap */
if (r->ar.start < start) {
damon_split_region_at(t, r, start - r->ar.start);
matched = false;
break;
}
/* start inside the range */
damon_split_region_at(t, r, end - r->ar.start);
matched = true;
break;
default:
return false;
}
return matched == filter->matching;
}
static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
struct damon_region *r, struct damos *s)
{
struct damos_filter *filter;
damos_for_each_filter(filter, s) {
if (__damos_filter_out(ctx, t, r, filter))
return true;
}
return false;
}
static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
struct damon_region *r, struct damos *s)
{
struct damos_quota *quota = &s->quota;
unsigned long sz = damon_sz_region(r);
struct timespec64 begin, end;
unsigned long sz_applied = 0;
int err = 0;
/*
* We plan to support multiple context per kdamond, as DAMON sysfs
* implies with 'nr_contexts' file. Nevertheless, only single context
* per kdamond is supported for now. So, we can simply use '0' context
* index here.
*/
unsigned int cidx = 0;
struct damos *siter; /* schemes iterator */
unsigned int sidx = 0;
struct damon_target *titer; /* targets iterator */
unsigned int tidx = 0;
bool do_trace = false;
/* get indices for trace_damos_before_apply() */
if (trace_damos_before_apply_enabled()) {
damon_for_each_scheme(siter, c) {
if (siter == s)
break;
sidx++;
}
damon_for_each_target(titer, c) {
if (titer == t)
break;
tidx++;
}
do_trace = true;
}
if (c->ops.apply_scheme) {
if (quota->esz && quota->charged_sz + sz > quota->esz) {
sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
DAMON_MIN_REGION);
if (!sz)
goto update_stat;
damon_split_region_at(t, r, sz);
}
if (damos_filter_out(c, t, r, s))
return;
ktime_get_coarse_ts64(&begin);
if (c->callback.before_damos_apply)
err = c->callback.before_damos_apply(c, t, r, s);
if (!err) {
trace_damos_before_apply(cidx, sidx, tidx, r,
damon_nr_regions(t), do_trace);
sz_applied = c->ops.apply_scheme(c, t, r, s);
}
ktime_get_coarse_ts64(&end);
quota->total_charged_ns += timespec64_to_ns(&end) -
timespec64_to_ns(&begin);
quota->charged_sz += sz;
if (quota->esz && quota->charged_sz >= quota->esz) {
quota->charge_target_from = t;
quota->charge_addr_from = r->ar.end + 1;
}
}
if (s->action != DAMOS_STAT)
r->age = 0;
update_stat:
damos_update_stat(s, sz, sz_applied);
}
static void damon_do_apply_schemes(struct damon_ctx *c,
struct damon_target *t,
struct damon_region *r)
{
struct damos *s;
damon_for_each_scheme(s, c) {
struct damos_quota *quota = &s->quota;
if (c->passed_sample_intervals < s->next_apply_sis)
continue;
if (!s->wmarks.activated)
continue;
/* Check the quota */
if (quota->esz && quota->charged_sz >= quota->esz)
continue;
if (damos_skip_charged_region(t, &r, s))
continue;
if (!damos_valid_target(c, t, r, s))
continue;
damos_apply_scheme(c, t, r, s);
}
}
/*
* damon_feed_loop_next_input() - get next input to achieve a target score.
* @last_input The last input.
* @score Current score that made with @last_input.
*
* Calculate next input to achieve the target score, based on the last input
* and current score. Assuming the input and the score are positively
* proportional, calculate how much compensation should be added to or
* subtracted from the last input as a proportion of the last input. Avoid
* next input always being zero by setting it non-zero always. In short form
* (assuming support of float and signed calculations), the algorithm is as
* below.
*
* next_input = max(last_input * ((goal - current) / goal + 1), 1)
*
* For simple implementation, we assume the target score is always 10,000. The
* caller should adjust @score for this.
*
* Returns next input that assumed to achieve the target score.
*/
static unsigned long damon_feed_loop_next_input(unsigned long last_input,
unsigned long score)
{
const unsigned long goal = 10000;
/* Set minimum input as 10000 to avoid compensation be zero */
const unsigned long min_input = 10000;
unsigned long score_goal_diff, compensation;
bool over_achieving = score > goal;
if (score == goal)
return last_input;
if (score >= goal * 2)
return min_input;
if (over_achieving)
score_goal_diff = score - goal;
else
score_goal_diff = goal - score;
if (last_input < ULONG_MAX / score_goal_diff)
compensation = last_input * score_goal_diff / goal;
else
compensation = last_input / goal * score_goal_diff;
if (over_achieving)
return max(last_input - compensation, min_input);
if (last_input < ULONG_MAX - compensation)
return last_input + compensation;
return ULONG_MAX;
}
#ifdef CONFIG_PSI
static u64 damos_get_some_mem_psi_total(void)
{
if (static_branch_likely(&psi_disabled))
return 0;
return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
NSEC_PER_USEC);
}
#else /* CONFIG_PSI */
static inline u64 damos_get_some_mem_psi_total(void)
{
return 0;
};
#endif /* CONFIG_PSI */
static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
{
u64 now_psi_total;
switch (goal->metric) {
case DAMOS_QUOTA_USER_INPUT:
/* User should already set goal->current_value */
break;
case DAMOS_QUOTA_SOME_MEM_PSI_US:
now_psi_total = damos_get_some_mem_psi_total();
goal->current_value = now_psi_total - goal->last_psi_total;
goal->last_psi_total = now_psi_total;
break;
default:
break;
}
}
/* Return the highest score since it makes schemes least aggressive */
static unsigned long damos_quota_score(struct damos_quota *quota)
{
struct damos_quota_goal *goal;
unsigned long highest_score = 0;
damos_for_each_quota_goal(goal, quota) {
damos_set_quota_goal_current_value(goal);
highest_score = max(highest_score,
goal->current_value * 10000 /
goal->target_value);
}
return highest_score;
}
/*
* Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
*/
static void damos_set_effective_quota(struct damos_quota *quota)
{
unsigned long throughput;
unsigned long esz;
if (!quota->ms && list_empty(&quota->goals)) {
quota->esz = quota->sz;
return;
}
if (!list_empty(&quota->goals)) {
unsigned long score = damos_quota_score(quota);
quota->esz_bp = damon_feed_loop_next_input(
max(quota->esz_bp, 10000UL),
score);
esz = quota->esz_bp / 10000;
}
if (quota->ms) {
if (quota->total_charged_ns)
throughput = quota->total_charged_sz * 1000000 /
quota->total_charged_ns;
else
throughput = PAGE_SIZE * 1024;
if (!list_empty(&quota->goals))
esz = min(throughput * quota->ms, esz);
else
esz = throughput * quota->ms;
}
if (quota->sz && quota->sz < esz)
esz = quota->sz;
quota->esz = esz;
}
static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
{
struct damos_quota *quota = &s->quota;
struct damon_target *t;
struct damon_region *r;
unsigned long cumulated_sz;
unsigned int score, max_score = 0;
if (!quota->ms && !quota->sz && list_empty(&quota->goals))
return;
/* New charge window starts */
if (time_after_eq(jiffies, quota->charged_from +
msecs_to_jiffies(quota->reset_interval))) {
if (quota->esz && quota->charged_sz >= quota->esz)
s->stat.qt_exceeds++;
quota->total_charged_sz += quota->charged_sz;
quota->charged_from = jiffies;
quota->charged_sz = 0;
damos_set_effective_quota(quota);
}
if (!c->ops.get_scheme_score)
return;
/* Fill up the score histogram */
memset(c->regions_score_histogram, 0,
sizeof(*c->regions_score_histogram) *
(DAMOS_MAX_SCORE + 1));
damon_for_each_target(t, c) {
damon_for_each_region(r, t) {
if (!__damos_valid_target(r, s))
continue;
score = c->ops.get_scheme_score(c, t, r, s);
c->regions_score_histogram[score] +=
damon_sz_region(r);
if (score > max_score)
max_score = score;
}
}
/* Set the min score limit */
for (cumulated_sz = 0, score = max_score; ; score--) {
cumulated_sz += c->regions_score_histogram[score];
if (cumulated_sz >= quota->esz || !score)
break;
}
quota->min_score = score;
}
static void kdamond_apply_schemes(struct damon_ctx *c)
{
struct damon_target *t;
struct damon_region *r, *next_r;
struct damos *s;
unsigned long sample_interval = c->attrs.sample_interval ?
c->attrs.sample_interval : 1;
bool has_schemes_to_apply = false;
damon_for_each_scheme(s, c) {
if (c->passed_sample_intervals < s->next_apply_sis)
continue;
if (!s->wmarks.activated)
continue;
has_schemes_to_apply = true;
damos_adjust_quota(c, s);
}
if (!has_schemes_to_apply)
return;
damon_for_each_target(t, c) {
damon_for_each_region_safe(r, next_r, t)
damon_do_apply_schemes(c, t, r);
}
damon_for_each_scheme(s, c) {
if (c->passed_sample_intervals < s->next_apply_sis)
continue;
s->next_apply_sis = c->passed_sample_intervals +
(s->apply_interval_us ? s->apply_interval_us :
c->attrs.aggr_interval) / sample_interval;
}
}
/*
* Merge two adjacent regions into one region
*/
static void damon_merge_two_regions(struct damon_target *t,
struct damon_region *l, struct damon_region *r)
{
unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
(sz_l + sz_r);
l->nr_accesses_bp = l->nr_accesses * 10000;
l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
l->ar.end = r->ar.end;
damon_destroy_region(r, t);
}
/*
* Merge adjacent regions having similar access frequencies
*
* t target affected by this merge operation
* thres '->nr_accesses' diff threshold for the merge
* sz_limit size upper limit of each region
*/
static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
unsigned long sz_limit)
{
struct damon_region *r, *prev = NULL, *next;
damon_for_each_region_safe(r, next, t) {
if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
r->age = 0;
else
r->age++;
if (prev && prev->ar.end == r->ar.start &&
abs(prev->nr_accesses - r->nr_accesses) <= thres &&
damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
damon_merge_two_regions(t, prev, r);
else
prev = r;
}
}
/*
* Merge adjacent regions having similar access frequencies
*
* threshold '->nr_accesses' diff threshold for the merge
* sz_limit size upper limit of each region
*
* This function merges monitoring target regions which are adjacent and their
* access frequencies are similar. This is for minimizing the monitoring
* overhead under the dynamically changeable access pattern. If a merge was
* unnecessarily made, later 'kdamond_split_regions()' will revert it.
*
* The total number of regions could be higher than the user-defined limit,
* max_nr_regions for some cases. For example, the user can update
* max_nr_regions to a number that lower than the current number of regions
* while DAMON is running. For such a case, repeat merging until the limit is
* met while increasing @threshold up to possible maximum level.
*/
static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
unsigned long sz_limit)
{
struct damon_target *t;
unsigned int nr_regions;
unsigned int max_thres;
max_thres = c->attrs.aggr_interval /
(c->attrs.sample_interval ? c->attrs.sample_interval : 1);
do {
nr_regions = 0;
damon_for_each_target(t, c) {
damon_merge_regions_of(t, threshold, sz_limit);
nr_regions += damon_nr_regions(t);
}
threshold = max(1, threshold * 2);
} while (nr_regions > c->attrs.max_nr_regions &&
threshold / 2 < max_thres);
}
/*
* Split a region in two
*
* r the region to be split
* sz_r size of the first sub-region that will be made
*/
static void damon_split_region_at(struct damon_target *t,
struct damon_region *r, unsigned long sz_r)
{
struct damon_region *new;
new = damon_new_region(r->ar.start + sz_r, r->ar.end);
if (!new)
return;
r->ar.end = new->ar.start;
new->age = r->age;
new->last_nr_accesses = r->last_nr_accesses;
new->nr_accesses_bp = r->nr_accesses_bp;
new->nr_accesses = r->nr_accesses;
damon_insert_region(new, r, damon_next_region(r), t);
}
/* Split every region in the given target into 'nr_subs' regions */
static void damon_split_regions_of(struct damon_target *t, int nr_subs)
{
struct damon_region *r, *next;
unsigned long sz_region, sz_sub = 0;
int i;
damon_for_each_region_safe(r, next, t) {
sz_region = damon_sz_region(r);
for (i = 0; i < nr_subs - 1 &&
sz_region > 2 * DAMON_MIN_REGION; i++) {
/*
* Randomly select size of left sub-region to be at
* least 10 percent and at most 90% of original region
*/
sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
sz_region / 10, DAMON_MIN_REGION);
/* Do not allow blank region */
if (sz_sub == 0 || sz_sub >= sz_region)
continue;
damon_split_region_at(t, r, sz_sub);
sz_region = sz_sub;
}
}
}
/*
* Split every target region into randomly-sized small regions
*
* This function splits every target region into random-sized small regions if
* current total number of the regions is equal or smaller than half of the
* user-specified maximum number of regions. This is for maximizing the
* monitoring accuracy under the dynamically changeable access patterns. If a
* split was unnecessarily made, later 'kdamond_merge_regions()' will revert
* it.
*/
static void kdamond_split_regions(struct damon_ctx *ctx)
{
struct damon_target *t;
unsigned int nr_regions = 0;
static unsigned int last_nr_regions;
int nr_subregions = 2;
damon_for_each_target(t, ctx)
nr_regions += damon_nr_regions(t);
if (nr_regions > ctx->attrs.max_nr_regions / 2)
return;
/* Maybe the middle of the region has different access frequency */
if (last_nr_regions == nr_regions &&
nr_regions < ctx->attrs.max_nr_regions / 3)
nr_subregions = 3;
damon_for_each_target(t, ctx)
damon_split_regions_of(t, nr_subregions);
last_nr_regions = nr_regions;
}
/*
* Check whether current monitoring should be stopped
*
* The monitoring is stopped when either the user requested to stop, or all
* monitoring targets are invalid.
*
* Returns true if need to stop current monitoring.
*/
static bool kdamond_need_stop(struct damon_ctx *ctx)
{
struct damon_target *t;
if (kthread_should_stop())
return true;
if (!ctx->ops.target_valid)
return false;
damon_for_each_target(t, ctx) {
if (ctx->ops.target_valid(t))
return false;
}
return true;
}
static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
unsigned long *metric_value)
{
switch (metric) {
case DAMOS_WMARK_FREE_MEM_RATE:
*metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
totalram_pages();
return 0;
default:
break;
}
return -EINVAL;
}
/*
* Returns zero if the scheme is active. Else, returns time to wait for next
* watermark check in micro-seconds.
*/
static unsigned long damos_wmark_wait_us(struct damos *scheme)
{
unsigned long metric;
if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
return 0;
/* higher than high watermark or lower than low watermark */
if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
if (scheme->wmarks.activated)
pr_debug("deactivate a scheme (%d) for %s wmark\n",
scheme->action,
metric > scheme->wmarks.high ?
"high" : "low");
scheme->wmarks.activated = false;
return scheme->wmarks.interval;
}
/* inactive and higher than middle watermark */
if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
!scheme->wmarks.activated)
return scheme->wmarks.interval;
if (!scheme->wmarks.activated)
pr_debug("activate a scheme (%d)\n", scheme->action);
scheme->wmarks.activated = true;
return 0;
}
static void kdamond_usleep(unsigned long usecs)
{
if (usecs >= USLEEP_RANGE_UPPER_BOUND)
schedule_timeout_idle(usecs_to_jiffies(usecs));
else
usleep_range_idle(usecs, usecs + 1);
}
/* Returns negative error code if it's not activated but should return */
static int kdamond_wait_activation(struct damon_ctx *ctx)
{
struct damos *s;
unsigned long wait_time;
unsigned long min_wait_time = 0;
bool init_wait_time = false;
while (!kdamond_need_stop(ctx)) {
damon_for_each_scheme(s, ctx) {
wait_time = damos_wmark_wait_us(s);
if (!init_wait_time || wait_time < min_wait_time) {
init_wait_time = true;
min_wait_time = wait_time;
}
}
if (!min_wait_time)
return 0;
kdamond_usleep(min_wait_time);
if (ctx->callback.after_wmarks_check &&
ctx->callback.after_wmarks_check(ctx))
break;
}
return -EBUSY;
}
static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
{
unsigned long sample_interval = ctx->attrs.sample_interval ?
ctx->attrs.sample_interval : 1;
unsigned long apply_interval;
struct damos *scheme;
ctx->passed_sample_intervals = 0;
ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
sample_interval;
damon_for_each_scheme(scheme, ctx) {
apply_interval = scheme->apply_interval_us ?
scheme->apply_interval_us : ctx->attrs.aggr_interval;
scheme->next_apply_sis = apply_interval / sample_interval;
}
}
/*
* The monitoring daemon that runs as a kernel thread
*/
static int kdamond_fn(void *data)
{
struct damon_ctx *ctx = data;
struct damon_target *t;
struct damon_region *r, *next;
unsigned int max_nr_accesses = 0;
unsigned long sz_limit = 0;
pr_debug("kdamond (%d) starts\n", current->pid);
complete(&ctx->kdamond_started);
kdamond_init_intervals_sis(ctx);
if (ctx->ops.init)
ctx->ops.init(ctx);
if (ctx->callback.before_start && ctx->callback.before_start(ctx))
goto done;
ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
if (!ctx->regions_score_histogram)
goto done;
sz_limit = damon_region_sz_limit(ctx);
while (!kdamond_need_stop(ctx)) {
/*
* ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
* be changed from after_wmarks_check() or after_aggregation()
* callbacks. Read the values here, and use those for this
* iteration. That is, damon_set_attrs() updated new values
* are respected from next iteration.
*/
unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
unsigned long sample_interval = ctx->attrs.sample_interval;
if (kdamond_wait_activation(ctx))
break;
if (ctx->ops.prepare_access_checks)
ctx->ops.prepare_access_checks(ctx);
if (ctx->callback.after_sampling &&
ctx->callback.after_sampling(ctx))
break;
kdamond_usleep(sample_interval);
ctx->passed_sample_intervals++;
if (ctx->ops.check_accesses)
max_nr_accesses = ctx->ops.check_accesses(ctx);
if (ctx->passed_sample_intervals >= next_aggregation_sis) {
kdamond_merge_regions(ctx,
max_nr_accesses / 10,
sz_limit);
if (ctx->callback.after_aggregation &&
ctx->callback.after_aggregation(ctx))
break;
}
/*
* do kdamond_apply_schemes() after kdamond_merge_regions() if
* possible, to reduce overhead
*/
if (!list_empty(&ctx->schemes))
kdamond_apply_schemes(ctx);
sample_interval = ctx->attrs.sample_interval ?
ctx->attrs.sample_interval : 1;
if (ctx->passed_sample_intervals >= next_aggregation_sis) {
ctx->next_aggregation_sis = next_aggregation_sis +
ctx->attrs.aggr_interval / sample_interval;
kdamond_reset_aggregated(ctx);
kdamond_split_regions(ctx);
if (ctx->ops.reset_aggregated)
ctx->ops.reset_aggregated(ctx);
}
if (ctx->passed_sample_intervals >= next_ops_update_sis) {
ctx->next_ops_update_sis = next_ops_update_sis +
ctx->attrs.ops_update_interval /
sample_interval;
if (ctx->ops.update)
ctx->ops.update(ctx);
sz_limit = damon_region_sz_limit(ctx);
}
}
done:
damon_for_each_target(t, ctx) {
damon_for_each_region_safe(r, next, t)
damon_destroy_region(r, t);
}
if (ctx->callback.before_terminate)
ctx->callback.before_terminate(ctx);
if (ctx->ops.cleanup)
ctx->ops.cleanup(ctx);
kfree(ctx->regions_score_histogram);
pr_debug("kdamond (%d) finishes\n", current->pid);
mutex_lock(&ctx->kdamond_lock);
ctx->kdamond = NULL;
mutex_unlock(&ctx->kdamond_lock);
mutex_lock(&damon_lock);
nr_running_ctxs--;
if (!nr_running_ctxs && running_exclusive_ctxs)
running_exclusive_ctxs = false;
mutex_unlock(&damon_lock);
return 0;
}
/*
* struct damon_system_ram_region - System RAM resource address region of
* [@start, @end).
* @start: Start address of the region (inclusive).
* @end: End address of the region (exclusive).
*/
struct damon_system_ram_region {
unsigned long start;
unsigned long end;
};
static int walk_system_ram(struct resource *res, void *arg)
{
struct damon_system_ram_region *a = arg;
if (a->end - a->start < resource_size(res)) {
a->start = res->start;
a->end = res->end;
}
return 0;
}
/*
* Find biggest 'System RAM' resource and store its start and end address in
* @start and @end, respectively. If no System RAM is found, returns false.
*/
static bool damon_find_biggest_system_ram(unsigned long *start,
unsigned long *end)
{
struct damon_system_ram_region arg = {};
walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
if (arg.end <= arg.start)
return false;
*start = arg.start;
*end = arg.end;
return true;
}
/**
* damon_set_region_biggest_system_ram_default() - Set the region of the given
* monitoring target as requested, or biggest 'System RAM'.
* @t: The monitoring target to set the region.
* @start: The pointer to the start address of the region.
* @end: The pointer to the end address of the region.
*
* This function sets the region of @t as requested by @start and @end. If the
* values of @start and @end are zero, however, this function finds the biggest
* 'System RAM' resource and sets the region to cover the resource. In the
* latter case, this function saves the start and end addresses of the resource
* in @start and @end, respectively.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_set_region_biggest_system_ram_default(struct damon_target *t,
unsigned long *start, unsigned long *end)
{
struct damon_addr_range addr_range;
if (*start > *end)
return -EINVAL;
if (!*start && !*end &&
!damon_find_biggest_system_ram(start, end))
return -EINVAL;
addr_range.start = *start;
addr_range.end = *end;
return damon_set_regions(t, &addr_range, 1);
}
/*
* damon_moving_sum() - Calculate an inferred moving sum value.
* @mvsum: Inferred sum of the last @len_window values.
* @nomvsum: Non-moving sum of the last discrete @len_window window values.
* @len_window: The number of last values to take care of.
* @new_value: New value that will be added to the pseudo moving sum.
*
* Moving sum (moving average * window size) is good for handling noise, but
* the cost of keeping past values can be high for arbitrary window size. This
* function implements a lightweight pseudo moving sum function that doesn't
* keep the past window values.
*
* It simply assumes there was no noise in the past, and get the no-noise
* assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
* non-moving sum of the last window. For example, if @len_window is 10 and we
* have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
* values. Hence, this function simply drops @nomvsum / @len_window from
* given @mvsum and add @new_value.
*
* For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
* the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
* calculating next moving sum with a new value, we should drop 0 from 50 and
* add the new value. However, this function assumes it got value 5 for each
* of the last ten times. Based on the assumption, when the next value is
* measured, it drops the assumed past value, 5 from the current sum, and add
* the new value to get the updated pseduo-moving average.
*
* This means the value could have errors, but the errors will be disappeared
* for every @len_window aligned calls. For example, if @len_window is 10, the
* pseudo moving sum with 11th value to 19th value would have an error. But
* the sum with 20th value will not have the error.
*
* Return: Pseudo-moving average after getting the @new_value.
*/
static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
unsigned int len_window, unsigned int new_value)
{
return mvsum - nomvsum / len_window + new_value;
}
/**
* damon_update_region_access_rate() - Update the access rate of a region.
* @r: The DAMON region to update for its access check result.
* @accessed: Whether the region has accessed during last sampling interval.
* @attrs: The damon_attrs of the DAMON context.
*
* Update the access rate of a region with the region's last sampling interval
* access check result.
*
* Usually this will be called by &damon_operations->check_accesses callback.
*/
void damon_update_region_access_rate(struct damon_region *r, bool accessed,
struct damon_attrs *attrs)
{
unsigned int len_window = 1;
/*
* sample_interval can be zero, but cannot be larger than
* aggr_interval, owing to validation of damon_set_attrs().
*/
if (attrs->sample_interval)
len_window = damon_max_nr_accesses(attrs);
r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
r->last_nr_accesses * 10000, len_window,
accessed ? 10000 : 0);
if (accessed)
r->nr_accesses++;
}
static int __init damon_init(void)
{
damon_region_cache = KMEM_CACHE(damon_region, 0);
if (unlikely(!damon_region_cache)) {
pr_err("creating damon_region_cache fails\n");
return -ENOMEM;
}
return 0;
}
subsys_initcall(damon_init);
#include "tests/core-kunit.h"