linux-stable/kernel/trace/bpf_trace.c
Florent Revest 48cac3f4a9 bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().

"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.

In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.

Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.

This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.

Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.

To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().

Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 15:56:31 -07:00

1978 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/bpf_perf_event.h>
#include <linux/btf.h>
#include <linux/filter.h>
#include <linux/uaccess.h>
#include <linux/ctype.h>
#include <linux/kprobes.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/error-injection.h>
#include <linux/btf_ids.h>
#include <linux/bpf_lsm.h>
#include <net/bpf_sk_storage.h>
#include <uapi/linux/bpf.h>
#include <uapi/linux/btf.h>
#include <asm/tlb.h>
#include "trace_probe.h"
#include "trace.h"
#define CREATE_TRACE_POINTS
#include "bpf_trace.h"
#define bpf_event_rcu_dereference(p) \
rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
#ifdef CONFIG_MODULES
struct bpf_trace_module {
struct module *module;
struct list_head list;
};
static LIST_HEAD(bpf_trace_modules);
static DEFINE_MUTEX(bpf_module_mutex);
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
{
struct bpf_raw_event_map *btp, *ret = NULL;
struct bpf_trace_module *btm;
unsigned int i;
mutex_lock(&bpf_module_mutex);
list_for_each_entry(btm, &bpf_trace_modules, list) {
for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
btp = &btm->module->bpf_raw_events[i];
if (!strcmp(btp->tp->name, name)) {
if (try_module_get(btm->module))
ret = btp;
goto out;
}
}
}
out:
mutex_unlock(&bpf_module_mutex);
return ret;
}
#else
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
{
return NULL;
}
#endif /* CONFIG_MODULES */
u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
u64 flags, const struct btf **btf,
s32 *btf_id);
/**
* trace_call_bpf - invoke BPF program
* @call: tracepoint event
* @ctx: opaque context pointer
*
* kprobe handlers execute BPF programs via this helper.
* Can be used from static tracepoints in the future.
*
* Return: BPF programs always return an integer which is interpreted by
* kprobe handler as:
* 0 - return from kprobe (event is filtered out)
* 1 - store kprobe event into ring buffer
* Other values are reserved and currently alias to 1
*/
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
{
unsigned int ret;
cant_sleep();
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
/*
* since some bpf program is already running on this cpu,
* don't call into another bpf program (same or different)
* and don't send kprobe event into ring-buffer,
* so return zero here
*/
ret = 0;
goto out;
}
/*
* Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
* to all call sites, we did a bpf_prog_array_valid() there to check
* whether call->prog_array is empty or not, which is
* a heuristic to speed up execution.
*
* If bpf_prog_array_valid() fetched prog_array was
* non-NULL, we go into trace_call_bpf() and do the actual
* proper rcu_dereference() under RCU lock.
* If it turns out that prog_array is NULL then, we bail out.
* For the opposite, if the bpf_prog_array_valid() fetched pointer
* was NULL, you'll skip the prog_array with the risk of missing
* out of events when it was updated in between this and the
* rcu_dereference() which is accepted risk.
*/
ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
out:
__this_cpu_dec(bpf_prog_active);
return ret;
}
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
{
regs_set_return_value(regs, rc);
override_function_with_return(regs);
return 0;
}
static const struct bpf_func_proto bpf_override_return_proto = {
.func = bpf_override_return,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_ANYTHING,
};
#endif
static __always_inline int
bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
{
int ret;
ret = copy_from_user_nofault(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
const void __user *, unsafe_ptr)
{
return bpf_probe_read_user_common(dst, size, unsafe_ptr);
}
const struct bpf_func_proto bpf_probe_read_user_proto = {
.func = bpf_probe_read_user,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
static __always_inline int
bpf_probe_read_user_str_common(void *dst, u32 size,
const void __user *unsafe_ptr)
{
int ret;
/*
* NB: We rely on strncpy_from_user() not copying junk past the NUL
* terminator into `dst`.
*
* strncpy_from_user() does long-sized strides in the fast path. If the
* strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
* then there could be junk after the NUL in `dst`. If user takes `dst`
* and keys a hash map with it, then semantically identical strings can
* occupy multiple entries in the map.
*/
ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
const void __user *, unsafe_ptr)
{
return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
}
const struct bpf_func_proto bpf_probe_read_user_str_proto = {
.func = bpf_probe_read_user_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
static __always_inline int
bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
{
int ret = security_locked_down(LOCKDOWN_BPF_READ);
if (unlikely(ret < 0))
goto fail;
ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
goto fail;
return ret;
fail:
memset(dst, 0, size);
return ret;
}
BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
const void *, unsafe_ptr)
{
return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
}
const struct bpf_func_proto bpf_probe_read_kernel_proto = {
.func = bpf_probe_read_kernel,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
static __always_inline int
bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
{
int ret = security_locked_down(LOCKDOWN_BPF_READ);
if (unlikely(ret < 0))
goto fail;
/*
* The strncpy_from_kernel_nofault() call will likely not fill the
* entire buffer, but that's okay in this circumstance as we're probing
* arbitrary memory anyway similar to bpf_probe_read_*() and might
* as well probe the stack. Thus, memory is explicitly cleared
* only in error case, so that improper users ignoring return
* code altogether don't copy garbage; otherwise length of string
* is returned that can be used for bpf_perf_event_output() et al.
*/
ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
goto fail;
return ret;
fail:
memset(dst, 0, size);
return ret;
}
BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
}
const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
.func = bpf_probe_read_kernel_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
const void *, unsafe_ptr)
{
if ((unsigned long)unsafe_ptr < TASK_SIZE) {
return bpf_probe_read_user_common(dst, size,
(__force void __user *)unsafe_ptr);
}
return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
}
static const struct bpf_func_proto bpf_probe_read_compat_proto = {
.func = bpf_probe_read_compat,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
if ((unsigned long)unsafe_ptr < TASK_SIZE) {
return bpf_probe_read_user_str_common(dst, size,
(__force void __user *)unsafe_ptr);
}
return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
}
static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
.func = bpf_probe_read_compat_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
u32, size)
{
/*
* Ensure we're in user context which is safe for the helper to
* run. This helper has no business in a kthread.
*
* access_ok() should prevent writing to non-user memory, but in
* some situations (nommu, temporary switch, etc) access_ok() does
* not provide enough validation, hence the check on KERNEL_DS.
*
* nmi_uaccess_okay() ensures the probe is not run in an interim
* state, when the task or mm are switched. This is specifically
* required to prevent the use of temporary mm.
*/
if (unlikely(in_interrupt() ||
current->flags & (PF_KTHREAD | PF_EXITING)))
return -EPERM;
if (unlikely(uaccess_kernel()))
return -EPERM;
if (unlikely(!nmi_uaccess_okay()))
return -EPERM;
return copy_to_user_nofault(unsafe_ptr, src, size);
}
static const struct bpf_func_proto bpf_probe_write_user_proto = {
.func = bpf_probe_write_user,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE,
};
static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
{
if (!capable(CAP_SYS_ADMIN))
return NULL;
pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
current->comm, task_pid_nr(current));
return &bpf_probe_write_user_proto;
}
static DEFINE_RAW_SPINLOCK(trace_printk_lock);
#define MAX_TRACE_PRINTK_VARARGS 3
#define BPF_TRACE_PRINTK_SIZE 1024
BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
u64, arg2, u64, arg3)
{
u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
u32 *bin_args;
static char buf[BPF_TRACE_PRINTK_SIZE];
unsigned long flags;
int ret;
ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
MAX_TRACE_PRINTK_VARARGS);
if (ret < 0)
return ret;
raw_spin_lock_irqsave(&trace_printk_lock, flags);
ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
trace_bpf_trace_printk(buf);
raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
bpf_bprintf_cleanup();
return ret;
}
static const struct bpf_func_proto bpf_trace_printk_proto = {
.func = bpf_trace_printk,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
};
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
{
/*
* This program might be calling bpf_trace_printk,
* so enable the associated bpf_trace/bpf_trace_printk event.
* Repeat this each time as it is possible a user has
* disabled bpf_trace_printk events. By loading a program
* calling bpf_trace_printk() however the user has expressed
* the intent to see such events.
*/
if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
pr_warn_ratelimited("could not enable bpf_trace_printk events");
return &bpf_trace_printk_proto;
}
#define MAX_SEQ_PRINTF_VARARGS 12
BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
const void *, data, u32, data_len)
{
int err, num_args;
u32 *bin_args;
if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
(data_len && !data))
return -EINVAL;
num_args = data_len / 8;
err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
if (err < 0)
return err;
seq_bprintf(m, fmt, bin_args);
bpf_bprintf_cleanup();
return seq_has_overflowed(m) ? -EOVERFLOW : 0;
}
BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
static const struct bpf_func_proto bpf_seq_printf_proto = {
.func = bpf_seq_printf,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &btf_seq_file_ids[0],
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE,
.arg4_type = ARG_PTR_TO_MEM_OR_NULL,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
{
return seq_write(m, data, len) ? -EOVERFLOW : 0;
}
static const struct bpf_func_proto bpf_seq_write_proto = {
.func = bpf_seq_write,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &btf_seq_file_ids[0],
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
};
BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
u32, btf_ptr_size, u64, flags)
{
const struct btf *btf;
s32 btf_id;
int ret;
ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
if (ret)
return ret;
return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
}
static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
.func = bpf_seq_printf_btf,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &btf_seq_file_ids[0],
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
static __always_inline int
get_map_perf_counter(struct bpf_map *map, u64 flags,
u64 *value, u64 *enabled, u64 *running)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
unsigned int cpu = smp_processor_id();
u64 index = flags & BPF_F_INDEX_MASK;
struct bpf_event_entry *ee;
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
if (index == BPF_F_CURRENT_CPU)
index = cpu;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
ee = READ_ONCE(array->ptrs[index]);
if (!ee)
return -ENOENT;
return perf_event_read_local(ee->event, value, enabled, running);
}
BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
{
u64 value = 0;
int err;
err = get_map_perf_counter(map, flags, &value, NULL, NULL);
/*
* this api is ugly since we miss [-22..-2] range of valid
* counter values, but that's uapi
*/
if (err)
return err;
return value;
}
static const struct bpf_func_proto bpf_perf_event_read_proto = {
.func = bpf_perf_event_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
struct bpf_perf_event_value *, buf, u32, size)
{
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
goto clear;
err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
&buf->running);
if (unlikely(err))
goto clear;
return 0;
clear:
memset(buf, 0, size);
return err;
}
static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
.func = bpf_perf_event_read_value,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
.arg4_type = ARG_CONST_SIZE,
};
static __always_inline u64
__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
u64 flags, struct perf_sample_data *sd)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
unsigned int cpu = smp_processor_id();
u64 index = flags & BPF_F_INDEX_MASK;
struct bpf_event_entry *ee;
struct perf_event *event;
if (index == BPF_F_CURRENT_CPU)
index = cpu;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
ee = READ_ONCE(array->ptrs[index]);
if (!ee)
return -ENOENT;
event = ee->event;
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
return -EINVAL;
if (unlikely(event->oncpu != cpu))
return -EOPNOTSUPP;
return perf_event_output(event, sd, regs);
}
/*
* Support executing tracepoints in normal, irq, and nmi context that each call
* bpf_perf_event_output
*/
struct bpf_trace_sample_data {
struct perf_sample_data sds[3];
};
static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
struct perf_raw_record raw = {
.frag = {
.size = size,
.data = data,
},
};
struct perf_sample_data *sd;
int err;
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
err = -EBUSY;
goto out;
}
sd = &sds->sds[nest_level - 1];
if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
err = -EINVAL;
goto out;
}
perf_sample_data_init(sd, 0, 0);
sd->raw = &raw;
err = __bpf_perf_event_output(regs, map, flags, sd);
out:
this_cpu_dec(bpf_trace_nest_level);
return err;
}
static const struct bpf_func_proto bpf_perf_event_output_proto = {
.func = bpf_perf_event_output,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
struct bpf_nested_pt_regs {
struct pt_regs regs[3];
};
static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
{
int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
struct perf_raw_frag frag = {
.copy = ctx_copy,
.size = ctx_size,
.data = ctx,
};
struct perf_raw_record raw = {
.frag = {
{
.next = ctx_size ? &frag : NULL,
},
.size = meta_size,
.data = meta,
},
};
struct perf_sample_data *sd;
struct pt_regs *regs;
u64 ret;
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
ret = -EBUSY;
goto out;
}
sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
perf_fetch_caller_regs(regs);
perf_sample_data_init(sd, 0, 0);
sd->raw = &raw;
ret = __bpf_perf_event_output(regs, map, flags, sd);
out:
this_cpu_dec(bpf_event_output_nest_level);
return ret;
}
BPF_CALL_0(bpf_get_current_task)
{
return (long) current;
}
const struct bpf_func_proto bpf_get_current_task_proto = {
.func = bpf_get_current_task,
.gpl_only = true,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_task_btf)
{
return (unsigned long) current;
}
BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct)
static const struct bpf_func_proto bpf_get_current_task_btf_proto = {
.func = bpf_get_current_task_btf,
.gpl_only = true,
.ret_type = RET_PTR_TO_BTF_ID,
.ret_btf_id = &bpf_get_current_btf_ids[0],
};
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct cgroup *cgrp;
if (unlikely(idx >= array->map.max_entries))
return -E2BIG;
cgrp = READ_ONCE(array->ptrs[idx]);
if (unlikely(!cgrp))
return -EAGAIN;
return task_under_cgroup_hierarchy(current, cgrp);
}
static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
.func = bpf_current_task_under_cgroup,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
struct send_signal_irq_work {
struct irq_work irq_work;
struct task_struct *task;
u32 sig;
enum pid_type type;
};
static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
static void do_bpf_send_signal(struct irq_work *entry)
{
struct send_signal_irq_work *work;
work = container_of(entry, struct send_signal_irq_work, irq_work);
group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
}
static int bpf_send_signal_common(u32 sig, enum pid_type type)
{
struct send_signal_irq_work *work = NULL;
/* Similar to bpf_probe_write_user, task needs to be
* in a sound condition and kernel memory access be
* permitted in order to send signal to the current
* task.
*/
if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
return -EPERM;
if (unlikely(uaccess_kernel()))
return -EPERM;
if (unlikely(!nmi_uaccess_okay()))
return -EPERM;
if (irqs_disabled()) {
/* Do an early check on signal validity. Otherwise,
* the error is lost in deferred irq_work.
*/
if (unlikely(!valid_signal(sig)))
return -EINVAL;
work = this_cpu_ptr(&send_signal_work);
if (irq_work_is_busy(&work->irq_work))
return -EBUSY;
/* Add the current task, which is the target of sending signal,
* to the irq_work. The current task may change when queued
* irq works get executed.
*/
work->task = current;
work->sig = sig;
work->type = type;
irq_work_queue(&work->irq_work);
return 0;
}
return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
}
BPF_CALL_1(bpf_send_signal, u32, sig)
{
return bpf_send_signal_common(sig, PIDTYPE_TGID);
}
static const struct bpf_func_proto bpf_send_signal_proto = {
.func = bpf_send_signal,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
};
BPF_CALL_1(bpf_send_signal_thread, u32, sig)
{
return bpf_send_signal_common(sig, PIDTYPE_PID);
}
static const struct bpf_func_proto bpf_send_signal_thread_proto = {
.func = bpf_send_signal_thread,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
{
long len;
char *p;
if (!sz)
return 0;
p = d_path(path, buf, sz);
if (IS_ERR(p)) {
len = PTR_ERR(p);
} else {
len = buf + sz - p;
memmove(buf, p, len);
}
return len;
}
BTF_SET_START(btf_allowlist_d_path)
#ifdef CONFIG_SECURITY
BTF_ID(func, security_file_permission)
BTF_ID(func, security_inode_getattr)
BTF_ID(func, security_file_open)
#endif
#ifdef CONFIG_SECURITY_PATH
BTF_ID(func, security_path_truncate)
#endif
BTF_ID(func, vfs_truncate)
BTF_ID(func, vfs_fallocate)
BTF_ID(func, dentry_open)
BTF_ID(func, vfs_getattr)
BTF_ID(func, filp_close)
BTF_SET_END(btf_allowlist_d_path)
static bool bpf_d_path_allowed(const struct bpf_prog *prog)
{
if (prog->type == BPF_PROG_TYPE_TRACING &&
prog->expected_attach_type == BPF_TRACE_ITER)
return true;
if (prog->type == BPF_PROG_TYPE_LSM)
return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
return btf_id_set_contains(&btf_allowlist_d_path,
prog->aux->attach_btf_id);
}
BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
static const struct bpf_func_proto bpf_d_path_proto = {
.func = bpf_d_path,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &bpf_d_path_btf_ids[0],
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.allowed = bpf_d_path_allowed,
};
#define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
BTF_F_PTR_RAW | BTF_F_ZERO)
static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
u64 flags, const struct btf **btf,
s32 *btf_id)
{
const struct btf_type *t;
if (unlikely(flags & ~(BTF_F_ALL)))
return -EINVAL;
if (btf_ptr_size != sizeof(struct btf_ptr))
return -EINVAL;
*btf = bpf_get_btf_vmlinux();
if (IS_ERR_OR_NULL(*btf))
return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
if (ptr->type_id > 0)
*btf_id = ptr->type_id;
else
return -EINVAL;
if (*btf_id > 0)
t = btf_type_by_id(*btf, *btf_id);
if (*btf_id <= 0 || !t)
return -ENOENT;
return 0;
}
BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
u32, btf_ptr_size, u64, flags)
{
const struct btf *btf;
s32 btf_id;
int ret;
ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
if (ret)
return ret;
return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
flags);
}
const struct bpf_func_proto bpf_snprintf_btf_proto = {
.func = bpf_snprintf_btf,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_PTR_TO_MEM,
.arg4_type = ARG_CONST_SIZE,
.arg5_type = ARG_ANYTHING,
};
const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_map_lookup_elem:
return &bpf_map_lookup_elem_proto;
case BPF_FUNC_map_update_elem:
return &bpf_map_update_elem_proto;
case BPF_FUNC_map_delete_elem:
return &bpf_map_delete_elem_proto;
case BPF_FUNC_map_push_elem:
return &bpf_map_push_elem_proto;
case BPF_FUNC_map_pop_elem:
return &bpf_map_pop_elem_proto;
case BPF_FUNC_map_peek_elem:
return &bpf_map_peek_elem_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_ktime_get_boot_ns:
return &bpf_ktime_get_boot_ns_proto;
case BPF_FUNC_ktime_get_coarse_ns:
return &bpf_ktime_get_coarse_ns_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
case BPF_FUNC_get_current_pid_tgid:
return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_current_task:
return &bpf_get_current_task_proto;
case BPF_FUNC_get_current_task_btf:
return &bpf_get_current_task_btf_proto;
case BPF_FUNC_get_current_uid_gid:
return &bpf_get_current_uid_gid_proto;
case BPF_FUNC_get_current_comm:
return &bpf_get_current_comm_proto;
case BPF_FUNC_trace_printk:
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_smp_processor_id_proto;
case BPF_FUNC_get_numa_node_id:
return &bpf_get_numa_node_id_proto;
case BPF_FUNC_perf_event_read:
return &bpf_perf_event_read_proto;
case BPF_FUNC_probe_write_user:
return bpf_get_probe_write_proto();
case BPF_FUNC_current_task_under_cgroup:
return &bpf_current_task_under_cgroup_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
case BPF_FUNC_probe_read_user:
return &bpf_probe_read_user_proto;
case BPF_FUNC_probe_read_kernel:
return &bpf_probe_read_kernel_proto;
case BPF_FUNC_probe_read_user_str:
return &bpf_probe_read_user_str_proto;
case BPF_FUNC_probe_read_kernel_str:
return &bpf_probe_read_kernel_str_proto;
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
case BPF_FUNC_probe_read:
return &bpf_probe_read_compat_proto;
case BPF_FUNC_probe_read_str:
return &bpf_probe_read_compat_str_proto;
#endif
#ifdef CONFIG_CGROUPS
case BPF_FUNC_get_current_cgroup_id:
return &bpf_get_current_cgroup_id_proto;
#endif
case BPF_FUNC_send_signal:
return &bpf_send_signal_proto;
case BPF_FUNC_send_signal_thread:
return &bpf_send_signal_thread_proto;
case BPF_FUNC_perf_event_read_value:
return &bpf_perf_event_read_value_proto;
case BPF_FUNC_get_ns_current_pid_tgid:
return &bpf_get_ns_current_pid_tgid_proto;
case BPF_FUNC_ringbuf_output:
return &bpf_ringbuf_output_proto;
case BPF_FUNC_ringbuf_reserve:
return &bpf_ringbuf_reserve_proto;
case BPF_FUNC_ringbuf_submit:
return &bpf_ringbuf_submit_proto;
case BPF_FUNC_ringbuf_discard:
return &bpf_ringbuf_discard_proto;
case BPF_FUNC_ringbuf_query:
return &bpf_ringbuf_query_proto;
case BPF_FUNC_jiffies64:
return &bpf_jiffies64_proto;
case BPF_FUNC_get_task_stack:
return &bpf_get_task_stack_proto;
case BPF_FUNC_copy_from_user:
return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
case BPF_FUNC_snprintf_btf:
return &bpf_snprintf_btf_proto;
case BPF_FUNC_per_cpu_ptr:
return &bpf_per_cpu_ptr_proto;
case BPF_FUNC_this_cpu_ptr:
return &bpf_this_cpu_ptr_proto;
case BPF_FUNC_task_storage_get:
return &bpf_task_storage_get_proto;
case BPF_FUNC_task_storage_delete:
return &bpf_task_storage_delete_proto;
case BPF_FUNC_for_each_map_elem:
return &bpf_for_each_map_elem_proto;
case BPF_FUNC_snprintf:
return &bpf_snprintf_proto;
default:
return NULL;
}
}
static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto;
case BPF_FUNC_get_stack:
return &bpf_get_stack_proto;
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
case BPF_FUNC_override_return:
return &bpf_override_return_proto;
#endif
default:
return bpf_tracing_func_proto(func_id, prog);
}
}
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (off < 0 || off >= sizeof(struct pt_regs))
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
/*
* Assertion for 32 bit to make sure last 8 byte access
* (BPF_DW) to the last 4 byte member is disallowed.
*/
if (off + size > sizeof(struct pt_regs))
return false;
return true;
}
const struct bpf_verifier_ops kprobe_verifier_ops = {
.get_func_proto = kprobe_prog_func_proto,
.is_valid_access = kprobe_prog_is_valid_access,
};
const struct bpf_prog_ops kprobe_prog_ops = {
};
BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
/*
* r1 points to perf tracepoint buffer where first 8 bytes are hidden
* from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
* from there and call the same bpf_perf_event_output() helper inline.
*/
return ____bpf_perf_event_output(regs, map, flags, data, size);
}
static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
.func = bpf_perf_event_output_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
u64, flags)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
/*
* Same comment as in bpf_perf_event_output_tp(), only that this time
* the other helper's function body cannot be inlined due to being
* external, thus we need to call raw helper function.
*/
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
flags, 0, 0);
}
static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
.func = bpf_get_stackid_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
u64, flags)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
(unsigned long) size, flags, 0);
}
static const struct bpf_func_proto bpf_get_stack_proto_tp = {
.func = bpf_get_stack_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto_tp;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto_tp;
case BPF_FUNC_get_stack:
return &bpf_get_stack_proto_tp;
default:
return bpf_tracing_func_proto(func_id, prog);
}
}
static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
return true;
}
const struct bpf_verifier_ops tracepoint_verifier_ops = {
.get_func_proto = tp_prog_func_proto,
.is_valid_access = tp_prog_is_valid_access,
};
const struct bpf_prog_ops tracepoint_prog_ops = {
};
BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
struct bpf_perf_event_value *, buf, u32, size)
{
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
goto clear;
err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
&buf->running);
if (unlikely(err))
goto clear;
return 0;
clear:
memset(buf, 0, size);
return err;
}
static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
.func = bpf_perf_prog_read_value,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE,
};
BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
void *, buf, u32, size, u64, flags)
{
#ifndef CONFIG_X86
return -ENOENT;
#else
static const u32 br_entry_size = sizeof(struct perf_branch_entry);
struct perf_branch_stack *br_stack = ctx->data->br_stack;
u32 to_copy;
if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
return -EINVAL;
if (unlikely(!br_stack))
return -EINVAL;
if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
return br_stack->nr * br_entry_size;
if (!buf || (size % br_entry_size != 0))
return -EINVAL;
to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
memcpy(buf, br_stack->entries, to_copy);
return to_copy;
#endif
}
static const struct bpf_func_proto bpf_read_branch_records_proto = {
.func = bpf_read_branch_records,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_MEM_OR_NULL,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto_tp;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto_pe;
case BPF_FUNC_get_stack:
return &bpf_get_stack_proto_pe;
case BPF_FUNC_perf_prog_read_value:
return &bpf_perf_prog_read_value_proto;
case BPF_FUNC_read_branch_records:
return &bpf_read_branch_records_proto;
default:
return bpf_tracing_func_proto(func_id, prog);
}
}
/*
* bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
* to avoid potential recursive reuse issue when/if tracepoints are added
* inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
*
* Since raw tracepoints run despite bpf_prog_active, support concurrent usage
* in normal, irq, and nmi context.
*/
struct bpf_raw_tp_regs {
struct pt_regs regs[3];
};
static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
static struct pt_regs *get_bpf_raw_tp_regs(void)
{
struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
this_cpu_dec(bpf_raw_tp_nest_level);
return ERR_PTR(-EBUSY);
}
return &tp_regs->regs[nest_level - 1];
}
static void put_bpf_raw_tp_regs(void)
{
this_cpu_dec(bpf_raw_tp_nest_level);
}
BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
struct bpf_map *, map, u64, flags, void *, data, u64, size)
{
struct pt_regs *regs = get_bpf_raw_tp_regs();
int ret;
if (IS_ERR(regs))
return PTR_ERR(regs);
perf_fetch_caller_regs(regs);
ret = ____bpf_perf_event_output(regs, map, flags, data, size);
put_bpf_raw_tp_regs();
return ret;
}
static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
.func = bpf_perf_event_output_raw_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
extern const struct bpf_func_proto bpf_skb_output_proto;
extern const struct bpf_func_proto bpf_xdp_output_proto;
BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
struct bpf_map *, map, u64, flags)
{
struct pt_regs *regs = get_bpf_raw_tp_regs();
int ret;
if (IS_ERR(regs))
return PTR_ERR(regs);
perf_fetch_caller_regs(regs);
/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
flags, 0, 0);
put_bpf_raw_tp_regs();
return ret;
}
static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
.func = bpf_get_stackid_raw_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
void *, buf, u32, size, u64, flags)
{
struct pt_regs *regs = get_bpf_raw_tp_regs();
int ret;
if (IS_ERR(regs))
return PTR_ERR(regs);
perf_fetch_caller_regs(regs);
ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
(unsigned long) size, flags, 0);
put_bpf_raw_tp_regs();
return ret;
}
static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
.func = bpf_get_stack_raw_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto_raw_tp;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto_raw_tp;
case BPF_FUNC_get_stack:
return &bpf_get_stack_proto_raw_tp;
default:
return bpf_tracing_func_proto(func_id, prog);
}
}
const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
#ifdef CONFIG_NET
case BPF_FUNC_skb_output:
return &bpf_skb_output_proto;
case BPF_FUNC_xdp_output:
return &bpf_xdp_output_proto;
case BPF_FUNC_skc_to_tcp6_sock:
return &bpf_skc_to_tcp6_sock_proto;
case BPF_FUNC_skc_to_tcp_sock:
return &bpf_skc_to_tcp_sock_proto;
case BPF_FUNC_skc_to_tcp_timewait_sock:
return &bpf_skc_to_tcp_timewait_sock_proto;
case BPF_FUNC_skc_to_tcp_request_sock:
return &bpf_skc_to_tcp_request_sock_proto;
case BPF_FUNC_skc_to_udp6_sock:
return &bpf_skc_to_udp6_sock_proto;
case BPF_FUNC_sk_storage_get:
return &bpf_sk_storage_get_tracing_proto;
case BPF_FUNC_sk_storage_delete:
return &bpf_sk_storage_delete_tracing_proto;
case BPF_FUNC_sock_from_file:
return &bpf_sock_from_file_proto;
case BPF_FUNC_get_socket_cookie:
return &bpf_get_socket_ptr_cookie_proto;
#endif
case BPF_FUNC_seq_printf:
return prog->expected_attach_type == BPF_TRACE_ITER ?
&bpf_seq_printf_proto :
NULL;
case BPF_FUNC_seq_write:
return prog->expected_attach_type == BPF_TRACE_ITER ?
&bpf_seq_write_proto :
NULL;
case BPF_FUNC_seq_printf_btf:
return prog->expected_attach_type == BPF_TRACE_ITER ?
&bpf_seq_printf_btf_proto :
NULL;
case BPF_FUNC_d_path:
return &bpf_d_path_proto;
default:
return raw_tp_prog_func_proto(func_id, prog);
}
}
static bool raw_tp_prog_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
return true;
}
static bool tracing_prog_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
return btf_ctx_access(off, size, type, prog, info);
}
int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
const union bpf_attr *kattr,
union bpf_attr __user *uattr)
{
return -ENOTSUPP;
}
const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
.get_func_proto = raw_tp_prog_func_proto,
.is_valid_access = raw_tp_prog_is_valid_access,
};
const struct bpf_prog_ops raw_tracepoint_prog_ops = {
#ifdef CONFIG_NET
.test_run = bpf_prog_test_run_raw_tp,
#endif
};
const struct bpf_verifier_ops tracing_verifier_ops = {
.get_func_proto = tracing_prog_func_proto,
.is_valid_access = tracing_prog_is_valid_access,
};
const struct bpf_prog_ops tracing_prog_ops = {
.test_run = bpf_prog_test_run_tracing,
};
static bool raw_tp_writable_prog_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
if (off == 0) {
if (size != sizeof(u64) || type != BPF_READ)
return false;
info->reg_type = PTR_TO_TP_BUFFER;
}
return raw_tp_prog_is_valid_access(off, size, type, prog, info);
}
const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
.get_func_proto = raw_tp_prog_func_proto,
.is_valid_access = raw_tp_writable_prog_is_valid_access,
};
const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
};
static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
const int size_u64 = sizeof(u64);
if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
return false;
if (type != BPF_READ)
return false;
if (off % size != 0) {
if (sizeof(unsigned long) != 4)
return false;
if (size != 8)
return false;
if (off % size != 4)
return false;
}
switch (off) {
case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
bpf_ctx_record_field_size(info, size_u64);
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
return false;
break;
case bpf_ctx_range(struct bpf_perf_event_data, addr):
bpf_ctx_record_field_size(info, size_u64);
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
return false;
break;
default:
if (size != sizeof(long))
return false;
}
return true;
}
static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog, u32 *target_size)
{
struct bpf_insn *insn = insn_buf;
switch (si->off) {
case offsetof(struct bpf_perf_event_data, sample_period):
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
data), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, data));
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
bpf_target_off(struct perf_sample_data, period, 8,
target_size));
break;
case offsetof(struct bpf_perf_event_data, addr):
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
data), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, data));
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
bpf_target_off(struct perf_sample_data, addr, 8,
target_size));
break;
default:
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
regs), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, regs));
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
si->off);
break;
}
return insn - insn_buf;
}
const struct bpf_verifier_ops perf_event_verifier_ops = {
.get_func_proto = pe_prog_func_proto,
.is_valid_access = pe_prog_is_valid_access,
.convert_ctx_access = pe_prog_convert_ctx_access,
};
const struct bpf_prog_ops perf_event_prog_ops = {
};
static DEFINE_MUTEX(bpf_event_mutex);
#define BPF_TRACE_MAX_PROGS 64
int perf_event_attach_bpf_prog(struct perf_event *event,
struct bpf_prog *prog)
{
struct bpf_prog_array *old_array;
struct bpf_prog_array *new_array;
int ret = -EEXIST;
/*
* Kprobe override only works if they are on the function entry,
* and only if they are on the opt-in list.
*/
if (prog->kprobe_override &&
(!trace_kprobe_on_func_entry(event->tp_event) ||
!trace_kprobe_error_injectable(event->tp_event)))
return -EINVAL;
mutex_lock(&bpf_event_mutex);
if (event->prog)
goto unlock;
old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
if (old_array &&
bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
ret = -E2BIG;
goto unlock;
}
ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
if (ret < 0)
goto unlock;
/* set the new array to event->tp_event and set event->prog */
event->prog = prog;
rcu_assign_pointer(event->tp_event->prog_array, new_array);
bpf_prog_array_free(old_array);
unlock:
mutex_unlock(&bpf_event_mutex);
return ret;
}
void perf_event_detach_bpf_prog(struct perf_event *event)
{
struct bpf_prog_array *old_array;
struct bpf_prog_array *new_array;
int ret;
mutex_lock(&bpf_event_mutex);
if (!event->prog)
goto unlock;
old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
if (ret == -ENOENT)
goto unlock;
if (ret < 0) {
bpf_prog_array_delete_safe(old_array, event->prog);
} else {
rcu_assign_pointer(event->tp_event->prog_array, new_array);
bpf_prog_array_free(old_array);
}
bpf_prog_put(event->prog);
event->prog = NULL;
unlock:
mutex_unlock(&bpf_event_mutex);
}
int perf_event_query_prog_array(struct perf_event *event, void __user *info)
{
struct perf_event_query_bpf __user *uquery = info;
struct perf_event_query_bpf query = {};
struct bpf_prog_array *progs;
u32 *ids, prog_cnt, ids_len;
int ret;
if (!perfmon_capable())
return -EPERM;
if (event->attr.type != PERF_TYPE_TRACEPOINT)
return -EINVAL;
if (copy_from_user(&query, uquery, sizeof(query)))
return -EFAULT;
ids_len = query.ids_len;
if (ids_len > BPF_TRACE_MAX_PROGS)
return -E2BIG;
ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
if (!ids)
return -ENOMEM;
/*
* The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
* is required when user only wants to check for uquery->prog_cnt.
* There is no need to check for it since the case is handled
* gracefully in bpf_prog_array_copy_info.
*/
mutex_lock(&bpf_event_mutex);
progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
mutex_unlock(&bpf_event_mutex);
if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
ret = -EFAULT;
kfree(ids);
return ret;
}
extern struct bpf_raw_event_map __start__bpf_raw_tp[];
extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
{
struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
for (; btp < __stop__bpf_raw_tp; btp++) {
if (!strcmp(btp->tp->name, name))
return btp;
}
return bpf_get_raw_tracepoint_module(name);
}
void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
{
struct module *mod;
preempt_disable();
mod = __module_address((unsigned long)btp);
module_put(mod);
preempt_enable();
}
static __always_inline
void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
{
cant_sleep();
rcu_read_lock();
(void) BPF_PROG_RUN(prog, args);
rcu_read_unlock();
}
#define UNPACK(...) __VA_ARGS__
#define REPEAT_1(FN, DL, X, ...) FN(X)
#define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
#define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
#define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
#define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
#define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
#define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
#define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
#define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
#define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
#define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
#define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
#define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
#define SARG(X) u64 arg##X
#define COPY(X) args[X] = arg##X
#define __DL_COM (,)
#define __DL_SEM (;)
#define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
#define BPF_TRACE_DEFN_x(x) \
void bpf_trace_run##x(struct bpf_prog *prog, \
REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
{ \
u64 args[x]; \
REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
__bpf_trace_run(prog, args); \
} \
EXPORT_SYMBOL_GPL(bpf_trace_run##x)
BPF_TRACE_DEFN_x(1);
BPF_TRACE_DEFN_x(2);
BPF_TRACE_DEFN_x(3);
BPF_TRACE_DEFN_x(4);
BPF_TRACE_DEFN_x(5);
BPF_TRACE_DEFN_x(6);
BPF_TRACE_DEFN_x(7);
BPF_TRACE_DEFN_x(8);
BPF_TRACE_DEFN_x(9);
BPF_TRACE_DEFN_x(10);
BPF_TRACE_DEFN_x(11);
BPF_TRACE_DEFN_x(12);
static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
{
struct tracepoint *tp = btp->tp;
/*
* check that program doesn't access arguments beyond what's
* available in this tracepoint
*/
if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
return -EINVAL;
if (prog->aux->max_tp_access > btp->writable_size)
return -EINVAL;
return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
}
int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
{
return __bpf_probe_register(btp, prog);
}
int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
{
return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
}
int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
u32 *fd_type, const char **buf,
u64 *probe_offset, u64 *probe_addr)
{
bool is_tracepoint, is_syscall_tp;
struct bpf_prog *prog;
int flags, err = 0;
prog = event->prog;
if (!prog)
return -ENOENT;
/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
return -EOPNOTSUPP;
*prog_id = prog->aux->id;
flags = event->tp_event->flags;
is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
is_syscall_tp = is_syscall_trace_event(event->tp_event);
if (is_tracepoint || is_syscall_tp) {
*buf = is_tracepoint ? event->tp_event->tp->name
: event->tp_event->name;
*fd_type = BPF_FD_TYPE_TRACEPOINT;
*probe_offset = 0x0;
*probe_addr = 0x0;
} else {
/* kprobe/uprobe */
err = -EOPNOTSUPP;
#ifdef CONFIG_KPROBE_EVENTS
if (flags & TRACE_EVENT_FL_KPROBE)
err = bpf_get_kprobe_info(event, fd_type, buf,
probe_offset, probe_addr,
event->attr.type == PERF_TYPE_TRACEPOINT);
#endif
#ifdef CONFIG_UPROBE_EVENTS
if (flags & TRACE_EVENT_FL_UPROBE)
err = bpf_get_uprobe_info(event, fd_type, buf,
probe_offset,
event->attr.type == PERF_TYPE_TRACEPOINT);
#endif
}
return err;
}
static int __init send_signal_irq_work_init(void)
{
int cpu;
struct send_signal_irq_work *work;
for_each_possible_cpu(cpu) {
work = per_cpu_ptr(&send_signal_work, cpu);
init_irq_work(&work->irq_work, do_bpf_send_signal);
}
return 0;
}
subsys_initcall(send_signal_irq_work_init);
#ifdef CONFIG_MODULES
static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
void *module)
{
struct bpf_trace_module *btm, *tmp;
struct module *mod = module;
int ret = 0;
if (mod->num_bpf_raw_events == 0 ||
(op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
goto out;
mutex_lock(&bpf_module_mutex);
switch (op) {
case MODULE_STATE_COMING:
btm = kzalloc(sizeof(*btm), GFP_KERNEL);
if (btm) {
btm->module = module;
list_add(&btm->list, &bpf_trace_modules);
} else {
ret = -ENOMEM;
}
break;
case MODULE_STATE_GOING:
list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
if (btm->module == module) {
list_del(&btm->list);
kfree(btm);
break;
}
}
break;
}
mutex_unlock(&bpf_module_mutex);
out:
return notifier_from_errno(ret);
}
static struct notifier_block bpf_module_nb = {
.notifier_call = bpf_event_notify,
};
static int __init bpf_event_init(void)
{
register_module_notifier(&bpf_module_nb);
return 0;
}
fs_initcall(bpf_event_init);
#endif /* CONFIG_MODULES */