mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-20 04:24:13 +00:00
7dbeaad0af
[BUG] The following simple workload from fsstress can lead to qgroup reserved data space leak: 0/0: creat f0 x:0 0 0 0/0: creat add id=0,parent=-1 0/1: write f0[259 1 0 0 0 0] [600030,27288] 0 0/4: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 64 627318] return 25, fallback to stat() 0/4: dwrite f0[259 1 0 0 64 627318] [610304,106496] 0 This would cause btrfs qgroup to leak 20480 bytes for data reserved space. If btrfs qgroup limit is enabled, such leak can lead to unexpected early EDQUOT and unusable space. [CAUSE] When doing direct IO, kernel will try to writeback existing buffered page cache, then invalidate them: generic_file_direct_write() |- filemap_write_and_wait_range(); |- invalidate_inode_pages2_range(); However for btrfs, the bi_end_io hook doesn't finish all its heavy work right after bio ends. In fact, it delays its work further: submit_extent_page(end_io_func=end_bio_extent_writepage); end_bio_extent_writepage() |- btrfs_writepage_endio_finish_ordered() |- btrfs_init_work(finish_ordered_fn); <<< Work queue execution >>> finish_ordered_fn() |- btrfs_finish_ordered_io(); |- Clear qgroup bits This means, when filemap_write_and_wait_range() returns, btrfs_finish_ordered_io() is not guaranteed to be executed, thus the qgroup bits for related range are not cleared. Now into how the leak happens, this will only focus on the overlapping part of buffered and direct IO part. 1. After buffered write The inode had the following range with QGROUP_RESERVED bit: 596 616K |///////////////| Qgroup reserved data space: 20K 2. Writeback part for range [596K, 616K) Write back finished, but btrfs_finish_ordered_io() not get called yet. So we still have: 596K 616K |///////////////| Qgroup reserved data space: 20K 3. Pages for range [596K, 616K) get released This will clear all qgroup bits, but don't update the reserved data space. So we have: 596K 616K | | Qgroup reserved data space: 20K That number doesn't match the qgroup bit range anymore. 4. Dio prepare space for range [596K, 700K) Qgroup reserved data space for that range, we got: 596K 616K 700K |///////////////|///////////////////////| Qgroup reserved data space: 20K + 104K = 124K 5. btrfs_finish_ordered_range() gets executed for range [596K, 616K) Qgroup free reserved space for that range, we got: 596K 616K 700K | |///////////////////////| We need to free that range of reserved space. Qgroup reserved data space: 124K - 20K = 104K 6. btrfs_finish_ordered_range() gets executed for range [596K, 700K) However qgroup bit for range [596K, 616K) is already cleared in previous step, so we only free 84K for qgroup reserved space. 596K 616K 700K | | | We need to free that range of reserved space. Qgroup reserved data space: 104K - 84K = 20K Now there is no way to release that 20K unless disabling qgroup or unmounting the fs. [FIX] This patch will change the timing of btrfs_qgroup_release/free_data() call. Here it uses buffered COW write as an example. The new timing | The old timing ----------------------------------------+--------------------------------------- btrfs_buffered_write() | btrfs_buffered_write() |- btrfs_qgroup_reserve_data() | |- btrfs_qgroup_reserve_data() | btrfs_run_delalloc_range() | btrfs_run_delalloc_range() |- btrfs_add_ordered_extent() | |- btrfs_qgroup_release_data() | The reserved is passed into | btrfs_ordered_extent structure | | btrfs_finish_ordered_io() | btrfs_finish_ordered_io() |- The reserved space is passed to | |- btrfs_qgroup_release_data() btrfs_qgroup_record | The resereved space is passed | to btrfs_qgroup_recrod | btrfs_qgroup_account_extents() | btrfs_qgroup_account_extents() |- btrfs_qgroup_free_refroot() | |- btrfs_qgroup_free_refroot() The point of such change is to ensure, when ordered extents are submitted, the qgroup reserved space is already released, to keep the timing aligned with file_write_and_wait_range(). So that qgroup data reserved space is all bound to btrfs_ordered_extent and solve the timing mismatch. Fixes: f695fdcef83a ("btrfs: qgroup: Introduce functions to release/free qgroup reserve data space") Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
914 lines
25 KiB
C
914 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/sched/mm.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "extent_io.h"
|
|
#include "disk-io.h"
|
|
#include "compression.h"
|
|
#include "delalloc-space.h"
|
|
#include "qgroup.h"
|
|
|
|
static struct kmem_cache *btrfs_ordered_extent_cache;
|
|
|
|
static u64 entry_end(struct btrfs_ordered_extent *entry)
|
|
{
|
|
if (entry->file_offset + entry->num_bytes < entry->file_offset)
|
|
return (u64)-1;
|
|
return entry->file_offset + entry->num_bytes;
|
|
}
|
|
|
|
/* returns NULL if the insertion worked, or it returns the node it did find
|
|
* in the tree
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset)
|
|
p = &(*p)->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* look for a given offset in the tree, and if it can't be found return the
|
|
* first lesser offset
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
|
|
struct rb_node **prev_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *test;
|
|
struct btrfs_ordered_extent *entry;
|
|
struct btrfs_ordered_extent *prev_entry = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (file_offset < entry->file_offset)
|
|
n = n->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
if (!prev_ret)
|
|
return NULL;
|
|
|
|
while (prev && file_offset >= entry_end(prev_entry)) {
|
|
test = rb_next(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (file_offset < entry_end(prev_entry))
|
|
break;
|
|
|
|
prev = test;
|
|
}
|
|
if (prev)
|
|
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
while (prev && file_offset < entry_end(prev_entry)) {
|
|
test = rb_prev(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
prev = test;
|
|
}
|
|
*prev_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* helper to check if a given offset is inside a given entry
|
|
*/
|
|
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
|
|
{
|
|
if (file_offset < entry->file_offset ||
|
|
entry->file_offset + entry->num_bytes <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
|
|
u64 len)
|
|
{
|
|
if (file_offset + len <= entry->file_offset ||
|
|
entry->file_offset + entry->num_bytes <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look find the first ordered struct that has this offset, otherwise
|
|
* the first one less than this offset
|
|
*/
|
|
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_root *root = &tree->tree;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *ret;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
if (tree->last) {
|
|
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (offset_in_entry(entry, file_offset))
|
|
return tree->last;
|
|
}
|
|
ret = __tree_search(root, file_offset, &prev);
|
|
if (!ret)
|
|
ret = prev;
|
|
if (ret)
|
|
tree->last = ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocate and add a new ordered_extent into the per-inode tree.
|
|
*
|
|
* The tree is given a single reference on the ordered extent that was
|
|
* inserted.
|
|
*/
|
|
static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes,
|
|
u64 disk_num_bytes, int type, int dio,
|
|
int compress_type)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry;
|
|
int ret;
|
|
|
|
if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
|
|
/* For nocow write, we can release the qgroup rsv right now */
|
|
ret = btrfs_qgroup_free_data(inode, NULL, file_offset,
|
|
num_bytes);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* The ordered extent has reserved qgroup space, release now
|
|
* and pass the reserved number for qgroup_record to free.
|
|
*/
|
|
ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
entry->file_offset = file_offset;
|
|
entry->disk_bytenr = disk_bytenr;
|
|
entry->num_bytes = num_bytes;
|
|
entry->disk_num_bytes = disk_num_bytes;
|
|
entry->bytes_left = num_bytes;
|
|
entry->inode = igrab(inode);
|
|
entry->compress_type = compress_type;
|
|
entry->truncated_len = (u64)-1;
|
|
entry->qgroup_rsv = ret;
|
|
if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
|
|
set_bit(type, &entry->flags);
|
|
|
|
if (dio) {
|
|
percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
|
|
fs_info->delalloc_batch);
|
|
set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
|
|
}
|
|
|
|
/* one ref for the tree */
|
|
refcount_set(&entry->refs, 1);
|
|
init_waitqueue_head(&entry->wait);
|
|
INIT_LIST_HEAD(&entry->list);
|
|
INIT_LIST_HEAD(&entry->root_extent_list);
|
|
INIT_LIST_HEAD(&entry->work_list);
|
|
init_completion(&entry->completion);
|
|
INIT_LIST_HEAD(&entry->log_list);
|
|
INIT_LIST_HEAD(&entry->trans_list);
|
|
|
|
trace_btrfs_ordered_extent_add(inode, entry);
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_insert(&tree->tree, file_offset,
|
|
&entry->rb_node);
|
|
if (node)
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"inconsistency in ordered tree at offset %llu",
|
|
file_offset);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_add_tail(&entry->root_extent_list,
|
|
&root->ordered_extents);
|
|
root->nr_ordered_extents++;
|
|
if (root->nr_ordered_extents == 1) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(!list_empty(&root->ordered_root));
|
|
list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
/*
|
|
* We don't need the count_max_extents here, we can assume that all of
|
|
* that work has been done at higher layers, so this is truly the
|
|
* smallest the extent is going to get.
|
|
*/
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
|
|
int type)
|
|
{
|
|
return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
|
|
num_bytes, disk_num_bytes, type, 0,
|
|
BTRFS_COMPRESS_NONE);
|
|
}
|
|
|
|
int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes,
|
|
u64 disk_num_bytes, int type)
|
|
{
|
|
return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
|
|
num_bytes, disk_num_bytes, type, 1,
|
|
BTRFS_COMPRESS_NONE);
|
|
}
|
|
|
|
int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes,
|
|
u64 disk_num_bytes, int type,
|
|
int compress_type)
|
|
{
|
|
return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
|
|
num_bytes, disk_num_bytes, type, 0,
|
|
compress_type);
|
|
}
|
|
|
|
/*
|
|
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
|
|
* when an ordered extent is finished. If the list covers more than one
|
|
* ordered extent, it is split across multiples.
|
|
*/
|
|
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
|
|
struct btrfs_ordered_sum *sum)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
|
|
tree = &BTRFS_I(entry->inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
list_add_tail(&sum->list, &entry->list);
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* this is used to account for finished IO across a given range
|
|
* of the file. The IO may span ordered extents. If
|
|
* a given ordered_extent is completely done, 1 is returned, otherwise
|
|
* 0.
|
|
*
|
|
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
|
|
* to make sure this function only returns 1 once for a given ordered extent.
|
|
*
|
|
* file_offset is updated to one byte past the range that is recorded as
|
|
* complete. This allows you to walk forward in the file.
|
|
*/
|
|
int btrfs_dec_test_first_ordered_pending(struct inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 *file_offset, u64 io_size, int uptodate)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
int ret;
|
|
unsigned long flags;
|
|
u64 dec_end;
|
|
u64 dec_start;
|
|
u64 to_dec;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
node = tree_search(tree, *file_offset);
|
|
if (!node) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!offset_in_entry(entry, *file_offset)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
dec_start = max(*file_offset, entry->file_offset);
|
|
dec_end = min(*file_offset + io_size,
|
|
entry->file_offset + entry->num_bytes);
|
|
*file_offset = dec_end;
|
|
if (dec_start > dec_end) {
|
|
btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
|
|
dec_start, dec_end);
|
|
}
|
|
to_dec = dec_end - dec_start;
|
|
if (to_dec > entry->bytes_left) {
|
|
btrfs_crit(fs_info,
|
|
"bad ordered accounting left %llu size %llu",
|
|
entry->bytes_left, to_dec);
|
|
}
|
|
entry->bytes_left -= to_dec;
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
if (entry->bytes_left == 0) {
|
|
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
/* test_and_set_bit implies a barrier */
|
|
cond_wake_up_nomb(&entry->wait);
|
|
} else {
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret && cached && entry) {
|
|
*cached = entry;
|
|
refcount_inc(&entry->refs);
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* this is used to account for finished IO across a given range
|
|
* of the file. The IO should not span ordered extents. If
|
|
* a given ordered_extent is completely done, 1 is returned, otherwise
|
|
* 0.
|
|
*
|
|
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
|
|
* to make sure this function only returns 1 once for a given ordered extent.
|
|
*/
|
|
int btrfs_dec_test_ordered_pending(struct inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 file_offset, u64 io_size, int uptodate)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
if (cached && *cached) {
|
|
entry = *cached;
|
|
goto have_entry;
|
|
}
|
|
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
have_entry:
|
|
if (!offset_in_entry(entry, file_offset)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (io_size > entry->bytes_left) {
|
|
btrfs_crit(BTRFS_I(inode)->root->fs_info,
|
|
"bad ordered accounting left %llu size %llu",
|
|
entry->bytes_left, io_size);
|
|
}
|
|
entry->bytes_left -= io_size;
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
if (entry->bytes_left == 0) {
|
|
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
/* test_and_set_bit implies a barrier */
|
|
cond_wake_up_nomb(&entry->wait);
|
|
} else {
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret && cached && entry) {
|
|
*cached = entry;
|
|
refcount_inc(&entry->refs);
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* used to drop a reference on an ordered extent. This will free
|
|
* the extent if the last reference is dropped
|
|
*/
|
|
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
trace_btrfs_ordered_extent_put(entry->inode, entry);
|
|
|
|
if (refcount_dec_and_test(&entry->refs)) {
|
|
ASSERT(list_empty(&entry->log_list));
|
|
ASSERT(list_empty(&entry->trans_list));
|
|
ASSERT(list_empty(&entry->root_extent_list));
|
|
ASSERT(RB_EMPTY_NODE(&entry->rb_node));
|
|
if (entry->inode)
|
|
btrfs_add_delayed_iput(entry->inode);
|
|
while (!list_empty(&entry->list)) {
|
|
cur = entry->list.next;
|
|
sum = list_entry(cur, struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kvfree(sum);
|
|
}
|
|
kmem_cache_free(btrfs_ordered_extent_cache, entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* and waiters are woken up.
|
|
*/
|
|
void btrfs_remove_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
struct rb_node *node;
|
|
|
|
/* This is paired with btrfs_add_ordered_extent. */
|
|
spin_lock(&btrfs_inode->lock);
|
|
btrfs_mod_outstanding_extents(btrfs_inode, -1);
|
|
spin_unlock(&btrfs_inode->lock);
|
|
if (root != fs_info->tree_root)
|
|
btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
|
|
false);
|
|
|
|
if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
|
|
percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
tree = &btrfs_inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = &entry->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
RB_CLEAR_NODE(node);
|
|
if (tree->last == node)
|
|
tree->last = NULL;
|
|
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_del_init(&entry->root_extent_list);
|
|
root->nr_ordered_extents--;
|
|
|
|
trace_btrfs_ordered_extent_remove(inode, entry);
|
|
|
|
if (!root->nr_ordered_extents) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(list_empty(&root->ordered_root));
|
|
list_del_init(&root->ordered_root);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
wake_up(&entry->wait);
|
|
}
|
|
|
|
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
|
|
btrfs_start_ordered_extent(ordered->inode, ordered, 1);
|
|
complete(&ordered->completion);
|
|
}
|
|
|
|
/*
|
|
* wait for all the ordered extents in a root. This is done when balancing
|
|
* space between drives.
|
|
*/
|
|
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
|
|
const u64 range_start, const u64 range_len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
LIST_HEAD(splice);
|
|
LIST_HEAD(skipped);
|
|
LIST_HEAD(works);
|
|
struct btrfs_ordered_extent *ordered, *next;
|
|
u64 count = 0;
|
|
const u64 range_end = range_start + range_len;
|
|
|
|
mutex_lock(&root->ordered_extent_mutex);
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_splice_init(&root->ordered_extents, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
|
|
if (range_end <= ordered->disk_bytenr ||
|
|
ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
|
|
list_move_tail(&ordered->root_extent_list, &skipped);
|
|
cond_resched_lock(&root->ordered_extent_lock);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&ordered->root_extent_list,
|
|
&root->ordered_extents);
|
|
refcount_inc(&ordered->refs);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
btrfs_init_work(&ordered->flush_work,
|
|
btrfs_run_ordered_extent_work, NULL, NULL);
|
|
list_add_tail(&ordered->work_list, &works);
|
|
btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
|
|
|
|
cond_resched();
|
|
spin_lock(&root->ordered_extent_lock);
|
|
if (nr != U64_MAX)
|
|
nr--;
|
|
count++;
|
|
}
|
|
list_splice_tail(&skipped, &root->ordered_extents);
|
|
list_splice_tail(&splice, &root->ordered_extents);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
list_for_each_entry_safe(ordered, next, &works, work_list) {
|
|
list_del_init(&ordered->work_list);
|
|
wait_for_completion(&ordered->completion);
|
|
btrfs_put_ordered_extent(ordered);
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&root->ordered_extent_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
|
|
const u64 range_start, const u64 range_len)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
u64 done;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&fs_info->ordered_operations_mutex);
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
root = btrfs_grab_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
done = btrfs_wait_ordered_extents(root, nr,
|
|
range_start, range_len);
|
|
btrfs_put_root(root);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
if (nr != U64_MAX) {
|
|
nr -= done;
|
|
}
|
|
}
|
|
list_splice_tail(&splice, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
mutex_unlock(&fs_info->ordered_operations_mutex);
|
|
}
|
|
|
|
/*
|
|
* Used to start IO or wait for a given ordered extent to finish.
|
|
*
|
|
* If wait is one, this effectively waits on page writeback for all the pages
|
|
* in the extent, and it waits on the io completion code to insert
|
|
* metadata into the btree corresponding to the extent
|
|
*/
|
|
void btrfs_start_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry,
|
|
int wait)
|
|
{
|
|
u64 start = entry->file_offset;
|
|
u64 end = start + entry->num_bytes - 1;
|
|
|
|
trace_btrfs_ordered_extent_start(inode, entry);
|
|
|
|
/*
|
|
* pages in the range can be dirty, clean or writeback. We
|
|
* start IO on any dirty ones so the wait doesn't stall waiting
|
|
* for the flusher thread to find them
|
|
*/
|
|
if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
|
|
filemap_fdatawrite_range(inode->i_mapping, start, end);
|
|
if (wait) {
|
|
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
|
|
&entry->flags));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used to wait on ordered extents across a large range of bytes.
|
|
*/
|
|
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
|
|
{
|
|
int ret = 0;
|
|
int ret_wb = 0;
|
|
u64 end;
|
|
u64 orig_end;
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (start + len < start) {
|
|
orig_end = INT_LIMIT(loff_t);
|
|
} else {
|
|
orig_end = start + len - 1;
|
|
if (orig_end > INT_LIMIT(loff_t))
|
|
orig_end = INT_LIMIT(loff_t);
|
|
}
|
|
|
|
/* start IO across the range first to instantiate any delalloc
|
|
* extents
|
|
*/
|
|
ret = btrfs_fdatawrite_range(inode, start, orig_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If we have a writeback error don't return immediately. Wait first
|
|
* for any ordered extents that haven't completed yet. This is to make
|
|
* sure no one can dirty the same page ranges and call writepages()
|
|
* before the ordered extents complete - to avoid failures (-EEXIST)
|
|
* when adding the new ordered extents to the ordered tree.
|
|
*/
|
|
ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
|
|
|
|
end = orig_end;
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, end);
|
|
if (!ordered)
|
|
break;
|
|
if (ordered->file_offset > orig_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered->file_offset + ordered->num_bytes <= start) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
end = ordered->file_offset;
|
|
/*
|
|
* If the ordered extent had an error save the error but don't
|
|
* exit without waiting first for all other ordered extents in
|
|
* the range to complete.
|
|
*/
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
|
|
ret = -EIO;
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (end == 0 || end == start)
|
|
break;
|
|
end--;
|
|
}
|
|
return ret_wb ? ret_wb : ret;
|
|
}
|
|
|
|
/*
|
|
* find an ordered extent corresponding to file_offset. return NULL if
|
|
* nothing is found, otherwise take a reference on the extent and return it
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!offset_in_entry(entry, file_offset))
|
|
entry = NULL;
|
|
if (entry)
|
|
refcount_inc(&entry->refs);
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/* Since the DIO code tries to lock a wide area we need to look for any ordered
|
|
* extents that exist in the range, rather than just the start of the range.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 len)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
node = tree_search(tree, file_offset + len);
|
|
if (!node)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
break;
|
|
|
|
if (entry->file_offset >= file_offset + len) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
entry = NULL;
|
|
node = rb_next(node);
|
|
if (!node)
|
|
break;
|
|
}
|
|
out:
|
|
if (entry)
|
|
refcount_inc(&entry->refs);
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* lookup and return any extent before 'file_offset'. NULL is returned
|
|
* if none is found
|
|
*/
|
|
struct btrfs_ordered_extent *
|
|
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
refcount_inc(&entry->refs);
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* search the ordered extents for one corresponding to 'offset' and
|
|
* try to find a checksum. This is used because we allow pages to
|
|
* be reclaimed before their checksum is actually put into the btree
|
|
*/
|
|
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
|
|
u8 *sum, int len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ordered_sum *ordered_sum;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
unsigned long num_sectors;
|
|
unsigned long i;
|
|
u32 sectorsize = btrfs_inode_sectorsize(inode);
|
|
const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
int index = 0;
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, offset);
|
|
if (!ordered)
|
|
return 0;
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
|
|
if (disk_bytenr >= ordered_sum->bytenr &&
|
|
disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
|
|
i = (disk_bytenr - ordered_sum->bytenr) >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
num_sectors = ordered_sum->len >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
num_sectors = min_t(int, len - index, num_sectors - i);
|
|
memcpy(sum + index, ordered_sum->sums + i * csum_size,
|
|
num_sectors * csum_size);
|
|
|
|
index += (int)num_sectors * csum_size;
|
|
if (index == len)
|
|
goto out;
|
|
disk_bytenr += num_sectors * sectorsize;
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
btrfs_put_ordered_extent(ordered);
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* btrfs_flush_ordered_range - Lock the passed range and ensures all pending
|
|
* ordered extents in it are run to completion.
|
|
*
|
|
* @inode: Inode whose ordered tree is to be searched
|
|
* @start: Beginning of range to flush
|
|
* @end: Last byte of range to lock
|
|
* @cached_state: If passed, will return the extent state responsible for the
|
|
* locked range. It's the caller's responsibility to free the cached state.
|
|
*
|
|
* This function always returns with the given range locked, ensuring after it's
|
|
* called no order extent can be pending.
|
|
*/
|
|
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
|
|
u64 end,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cache = NULL;
|
|
struct extent_state **cachedp = &cache;
|
|
|
|
if (cached_state)
|
|
cachedp = cached_state;
|
|
|
|
while (1) {
|
|
lock_extent_bits(&inode->io_tree, start, end, cachedp);
|
|
ordered = btrfs_lookup_ordered_range(inode, start,
|
|
end - start + 1);
|
|
if (!ordered) {
|
|
/*
|
|
* If no external cached_state has been passed then
|
|
* decrement the extra ref taken for cachedp since we
|
|
* aren't exposing it outside of this function
|
|
*/
|
|
if (!cached_state)
|
|
refcount_dec(&cache->refs);
|
|
break;
|
|
}
|
|
unlock_extent_cached(&inode->io_tree, start, end, cachedp);
|
|
btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
|
|
int __init ordered_data_init(void)
|
|
{
|
|
btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
|
|
sizeof(struct btrfs_ordered_extent), 0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_ordered_extent_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cold ordered_data_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_ordered_extent_cache);
|
|
}
|