linux-stable/include/linux/swapops.h
Oscar Salvador ea92809e29 mm,swapops: update check in is_pfn_swap_entry for hwpoison entries
commit 07a57a338a upstream.

Tony reported that the Machine check recovery was broken in v6.9-rc1, as
he was hitting a VM_BUG_ON when injecting uncorrectable memory errors to
DRAM.

After some more digging and debugging on his side, he realized that this
went back to v6.1, with the introduction of 'commit 0d206b5d2e
("mm/swap: add swp_offset_pfn() to fetch PFN from swap entry")'.  That
commit, among other things, introduced swp_offset_pfn(), replacing
hwpoison_entry_to_pfn() in its favour.

The patch also introduced a VM_BUG_ON() check for is_pfn_swap_entry(), but
is_pfn_swap_entry() never got updated to cover hwpoison entries, which
means that we would hit the VM_BUG_ON whenever we would call
swp_offset_pfn() for such entries on environments with CONFIG_DEBUG_VM
set.  Fix this by updating the check to cover hwpoison entries as well,
and update the comment while we are it.

Link: https://lkml.kernel.org/r/20240407130537.16977-1-osalvador@suse.de
Fixes: 0d206b5d2e ("mm/swap: add swp_offset_pfn() to fetch PFN from swap entry")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Tony Luck <tony.luck@intel.com>
Closes: https://lore.kernel.org/all/Zg8kLSl2yAlA3o5D@agluck-desk3/
Tested-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: <stable@vger.kernel.org>	[6.1.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-05-17 11:56:24 +02:00

641 lines
16 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SWAPOPS_H
#define _LINUX_SWAPOPS_H
#include <linux/radix-tree.h>
#include <linux/bug.h>
#include <linux/mm_types.h>
#ifdef CONFIG_MMU
#ifdef CONFIG_SWAP
#include <linux/swapfile.h>
#endif /* CONFIG_SWAP */
/*
* swapcache pages are stored in the swapper_space radix tree. We want to
* get good packing density in that tree, so the index should be dense in
* the low-order bits.
*
* We arrange the `type' and `offset' fields so that `type' is at the six
* high-order bits of the swp_entry_t and `offset' is right-aligned in the
* remaining bits. Although `type' itself needs only five bits, we allow for
* shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
*
* swp_entry_t's are *never* stored anywhere in their arch-dependent format.
*/
#define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
#define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1)
/*
* Definitions only for PFN swap entries (see is_pfn_swap_entry()). To
* store PFN, we only need SWP_PFN_BITS bits. Each of the pfn swap entries
* can use the extra bits to store other information besides PFN.
*/
#ifdef MAX_PHYSMEM_BITS
#define SWP_PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
#else /* MAX_PHYSMEM_BITS */
#define SWP_PFN_BITS min_t(int, \
sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \
SWP_TYPE_SHIFT)
#endif /* MAX_PHYSMEM_BITS */
#define SWP_PFN_MASK (BIT(SWP_PFN_BITS) - 1)
/**
* Migration swap entry specific bitfield definitions. Layout:
*
* |----------+--------------------|
* | swp_type | swp_offset |
* |----------+--------+-+-+-------|
* | | resv |D|A| PFN |
* |----------+--------+-+-+-------|
*
* @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
* @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
*
* Note: A/D bits will be stored in migration entries iff there're enough
* free bits in arch specific swp offset. By default we'll ignore A/D bits
* when migrating a page. Please refer to migration_entry_supports_ad()
* for more information. If there're more bits besides PFN and A/D bits,
* they should be reserved and always be zeros.
*/
#define SWP_MIG_YOUNG_BIT (SWP_PFN_BITS)
#define SWP_MIG_DIRTY_BIT (SWP_PFN_BITS + 1)
#define SWP_MIG_TOTAL_BITS (SWP_PFN_BITS + 2)
#define SWP_MIG_YOUNG BIT(SWP_MIG_YOUNG_BIT)
#define SWP_MIG_DIRTY BIT(SWP_MIG_DIRTY_BIT)
static inline bool is_pfn_swap_entry(swp_entry_t entry);
/* Clear all flags but only keep swp_entry_t related information */
static inline pte_t pte_swp_clear_flags(pte_t pte)
{
if (pte_swp_exclusive(pte))
pte = pte_swp_clear_exclusive(pte);
if (pte_swp_soft_dirty(pte))
pte = pte_swp_clear_soft_dirty(pte);
if (pte_swp_uffd_wp(pte))
pte = pte_swp_clear_uffd_wp(pte);
return pte;
}
/*
* Store a type+offset into a swp_entry_t in an arch-independent format
*/
static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
{
swp_entry_t ret;
ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
return ret;
}
/*
* Extract the `type' field from a swp_entry_t. The swp_entry_t is in
* arch-independent format
*/
static inline unsigned swp_type(swp_entry_t entry)
{
return (entry.val >> SWP_TYPE_SHIFT);
}
/*
* Extract the `offset' field from a swp_entry_t. The swp_entry_t is in
* arch-independent format
*/
static inline pgoff_t swp_offset(swp_entry_t entry)
{
return entry.val & SWP_OFFSET_MASK;
}
/*
* This should only be called upon a pfn swap entry to get the PFN stored
* in the swap entry. Please refers to is_pfn_swap_entry() for definition
* of pfn swap entry.
*/
static inline unsigned long swp_offset_pfn(swp_entry_t entry)
{
VM_BUG_ON(!is_pfn_swap_entry(entry));
return swp_offset(entry) & SWP_PFN_MASK;
}
/* check whether a pte points to a swap entry */
static inline int is_swap_pte(pte_t pte)
{
return !pte_none(pte) && !pte_present(pte);
}
/*
* Convert the arch-dependent pte representation of a swp_entry_t into an
* arch-independent swp_entry_t.
*/
static inline swp_entry_t pte_to_swp_entry(pte_t pte)
{
swp_entry_t arch_entry;
pte = pte_swp_clear_flags(pte);
arch_entry = __pte_to_swp_entry(pte);
return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
}
/*
* Convert the arch-independent representation of a swp_entry_t into the
* arch-dependent pte representation.
*/
static inline pte_t swp_entry_to_pte(swp_entry_t entry)
{
swp_entry_t arch_entry;
arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
return __swp_entry_to_pte(arch_entry);
}
static inline swp_entry_t radix_to_swp_entry(void *arg)
{
swp_entry_t entry;
entry.val = xa_to_value(arg);
return entry;
}
static inline void *swp_to_radix_entry(swp_entry_t entry)
{
return xa_mk_value(entry.val);
}
static inline swp_entry_t make_swapin_error_entry(struct page *page)
{
return swp_entry(SWP_SWAPIN_ERROR, page_to_pfn(page));
}
static inline int is_swapin_error_entry(swp_entry_t entry)
{
return swp_type(entry) == SWP_SWAPIN_ERROR;
}
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
{
return swp_entry(SWP_DEVICE_READ, offset);
}
static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
{
return swp_entry(SWP_DEVICE_WRITE, offset);
}
static inline bool is_device_private_entry(swp_entry_t entry)
{
int type = swp_type(entry);
return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
}
static inline bool is_writable_device_private_entry(swp_entry_t entry)
{
return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
}
static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
{
return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
}
static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
{
return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
}
static inline bool is_device_exclusive_entry(swp_entry_t entry)
{
return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
}
static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
{
return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
}
#else /* CONFIG_DEVICE_PRIVATE */
static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline bool is_device_private_entry(swp_entry_t entry)
{
return false;
}
static inline bool is_writable_device_private_entry(swp_entry_t entry)
{
return false;
}
static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline bool is_device_exclusive_entry(swp_entry_t entry)
{
return false;
}
static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
{
return false;
}
#endif /* CONFIG_DEVICE_PRIVATE */
#ifdef CONFIG_MIGRATION
static inline int is_migration_entry(swp_entry_t entry)
{
return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
swp_type(entry) == SWP_MIGRATION_WRITE);
}
static inline int is_writable_migration_entry(swp_entry_t entry)
{
return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
}
static inline int is_readable_migration_entry(swp_entry_t entry)
{
return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
}
static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
{
return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
}
static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
{
return swp_entry(SWP_MIGRATION_READ, offset);
}
static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
{
return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
}
static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
{
return swp_entry(SWP_MIGRATION_WRITE, offset);
}
/*
* Returns whether the host has large enough swap offset field to support
* carrying over pgtable A/D bits for page migrations. The result is
* pretty much arch specific.
*/
static inline bool migration_entry_supports_ad(void)
{
#ifdef CONFIG_SWAP
return swap_migration_ad_supported;
#else /* CONFIG_SWAP */
return false;
#endif /* CONFIG_SWAP */
}
static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
{
if (migration_entry_supports_ad())
return swp_entry(swp_type(entry),
swp_offset(entry) | SWP_MIG_YOUNG);
return entry;
}
static inline bool is_migration_entry_young(swp_entry_t entry)
{
if (migration_entry_supports_ad())
return swp_offset(entry) & SWP_MIG_YOUNG;
/* Keep the old behavior of aging page after migration */
return false;
}
static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
{
if (migration_entry_supports_ad())
return swp_entry(swp_type(entry),
swp_offset(entry) | SWP_MIG_DIRTY);
return entry;
}
static inline bool is_migration_entry_dirty(swp_entry_t entry)
{
if (migration_entry_supports_ad())
return swp_offset(entry) & SWP_MIG_DIRTY;
/* Keep the old behavior of clean page after migration */
return false;
}
extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
spinlock_t *ptl);
extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address);
#ifdef CONFIG_HUGETLB_PAGE
extern void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl);
extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte);
#endif /* CONFIG_HUGETLB_PAGE */
#else /* CONFIG_MIGRATION */
static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
{
return swp_entry(0, 0);
}
static inline int is_migration_entry(swp_entry_t swp)
{
return 0;
}
static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
spinlock_t *ptl) { }
static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address) { }
#ifdef CONFIG_HUGETLB_PAGE
static inline void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) { }
static inline void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) { }
#endif /* CONFIG_HUGETLB_PAGE */
static inline int is_writable_migration_entry(swp_entry_t entry)
{
return 0;
}
static inline int is_readable_migration_entry(swp_entry_t entry)
{
return 0;
}
static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
{
return entry;
}
static inline bool is_migration_entry_young(swp_entry_t entry)
{
return false;
}
static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
{
return entry;
}
static inline bool is_migration_entry_dirty(swp_entry_t entry)
{
return false;
}
#endif /* CONFIG_MIGRATION */
#ifdef CONFIG_MEMORY_FAILURE
extern atomic_long_t num_poisoned_pages __read_mostly;
/*
* Support for hardware poisoned pages
*/
static inline swp_entry_t make_hwpoison_entry(struct page *page)
{
BUG_ON(!PageLocked(page));
return swp_entry(SWP_HWPOISON, page_to_pfn(page));
}
static inline int is_hwpoison_entry(swp_entry_t entry)
{
return swp_type(entry) == SWP_HWPOISON;
}
static inline void num_poisoned_pages_inc(void)
{
atomic_long_inc(&num_poisoned_pages);
}
static inline void num_poisoned_pages_sub(long i)
{
atomic_long_sub(i, &num_poisoned_pages);
}
#else /* CONFIG_MEMORY_FAILURE */
static inline swp_entry_t make_hwpoison_entry(struct page *page)
{
return swp_entry(0, 0);
}
static inline int is_hwpoison_entry(swp_entry_t swp)
{
return 0;
}
static inline void num_poisoned_pages_inc(void)
{
}
static inline void num_poisoned_pages_sub(long i)
{
}
#endif /* CONFIG_MEMORY_FAILURE */
typedef unsigned long pte_marker;
#define PTE_MARKER_UFFD_WP BIT(0)
#define PTE_MARKER_MASK (PTE_MARKER_UFFD_WP)
#ifdef CONFIG_PTE_MARKER
static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
{
return swp_entry(SWP_PTE_MARKER, marker);
}
static inline bool is_pte_marker_entry(swp_entry_t entry)
{
return swp_type(entry) == SWP_PTE_MARKER;
}
static inline pte_marker pte_marker_get(swp_entry_t entry)
{
return swp_offset(entry) & PTE_MARKER_MASK;
}
static inline bool is_pte_marker(pte_t pte)
{
return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
}
#else /* CONFIG_PTE_MARKER */
static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
{
/* This should never be called if !CONFIG_PTE_MARKER */
WARN_ON_ONCE(1);
return swp_entry(0, 0);
}
static inline bool is_pte_marker_entry(swp_entry_t entry)
{
return false;
}
static inline pte_marker pte_marker_get(swp_entry_t entry)
{
return 0;
}
static inline bool is_pte_marker(pte_t pte)
{
return false;
}
#endif /* CONFIG_PTE_MARKER */
static inline pte_t make_pte_marker(pte_marker marker)
{
return swp_entry_to_pte(make_pte_marker_entry(marker));
}
/*
* This is a special version to check pte_none() just to cover the case when
* the pte is a pte marker. It existed because in many cases the pte marker
* should be seen as a none pte; it's just that we have stored some information
* onto the none pte so it becomes not-none any more.
*
* It should be used when the pte is file-backed, ram-based and backing
* userspace pages, like shmem. It is not needed upon pgtables that do not
* support pte markers at all. For example, it's not needed on anonymous
* memory, kernel-only memory (including when the system is during-boot),
* non-ram based generic file-system. It's fine to be used even there, but the
* extra pte marker check will be pure overhead.
*
* For systems configured with !CONFIG_PTE_MARKER this will be automatically
* optimized to pte_none().
*/
static inline int pte_none_mostly(pte_t pte)
{
return pte_none(pte) || is_pte_marker(pte);
}
static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
{
struct page *p = pfn_to_page(swp_offset_pfn(entry));
/*
* Any use of migration entries may only occur while the
* corresponding page is locked
*/
BUG_ON(is_migration_entry(entry) && !PageLocked(p));
return p;
}
/*
* A pfn swap entry is a special type of swap entry that always has a pfn stored
* in the swap offset. They can either be used to represent unaddressable device
* memory, to restrict access to a page undergoing migration or to represent a
* pfn which has been hwpoisoned and unmapped.
*/
static inline bool is_pfn_swap_entry(swp_entry_t entry)
{
/* Make sure the swp offset can always store the needed fields */
BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
return is_migration_entry(entry) || is_device_private_entry(entry) ||
is_device_exclusive_entry(entry) || is_hwpoison_entry(entry);
}
struct page_vma_mapped_walk;
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
struct page *page);
extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
struct page *new);
extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
{
swp_entry_t arch_entry;
if (pmd_swp_soft_dirty(pmd))
pmd = pmd_swp_clear_soft_dirty(pmd);
if (pmd_swp_uffd_wp(pmd))
pmd = pmd_swp_clear_uffd_wp(pmd);
arch_entry = __pmd_to_swp_entry(pmd);
return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
}
static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
{
swp_entry_t arch_entry;
arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
return __swp_entry_to_pmd(arch_entry);
}
static inline int is_pmd_migration_entry(pmd_t pmd)
{
return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
}
#else /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
struct page *page)
{
BUILD_BUG();
}
static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
struct page *new)
{
BUILD_BUG();
}
static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
{
return swp_entry(0, 0);
}
static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
{
return __pmd(0);
}
static inline int is_pmd_migration_entry(pmd_t pmd)
{
return 0;
}
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
static inline int non_swap_entry(swp_entry_t entry)
{
return swp_type(entry) >= MAX_SWAPFILES;
}
#endif /* CONFIG_MMU */
#endif /* _LINUX_SWAPOPS_H */