mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 17:25:38 +00:00
7ee4ccf574
When a bio's queue supports PCI P2PDMA, set FOLL_PCI_P2PDMA for iov_iter_get_pages_flags(). This allows PCI P2PDMA pages to be passed from userspace and enables the NVMe passthru requests to use P2PDMA pages. Signed-off-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com> Link: https://lore.kernel.org/r/20221021174116.7200-8-logang@deltatee.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
810 lines
18 KiB
C
810 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to mapping data to requests
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/module.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include "blk.h"
|
|
|
|
struct bio_map_data {
|
|
bool is_our_pages : 1;
|
|
bool is_null_mapped : 1;
|
|
struct iov_iter iter;
|
|
struct iovec iov[];
|
|
};
|
|
|
|
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct bio_map_data *bmd;
|
|
|
|
if (data->nr_segs > UIO_MAXIOV)
|
|
return NULL;
|
|
|
|
bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
|
|
if (!bmd)
|
|
return NULL;
|
|
memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
|
|
bmd->iter = *data;
|
|
bmd->iter.iov = bmd->iov;
|
|
return bmd;
|
|
}
|
|
|
|
/**
|
|
* bio_copy_from_iter - copy all pages from iov_iter to bio
|
|
* @bio: The &struct bio which describes the I/O as destination
|
|
* @iter: iov_iter as source
|
|
*
|
|
* Copy all pages from iov_iter to bio.
|
|
* Returns 0 on success, or error on failure.
|
|
*/
|
|
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
ssize_t ret;
|
|
|
|
ret = copy_page_from_iter(bvec->bv_page,
|
|
bvec->bv_offset,
|
|
bvec->bv_len,
|
|
iter);
|
|
|
|
if (!iov_iter_count(iter))
|
|
break;
|
|
|
|
if (ret < bvec->bv_len)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bio_copy_to_iter - copy all pages from bio to iov_iter
|
|
* @bio: The &struct bio which describes the I/O as source
|
|
* @iter: iov_iter as destination
|
|
*
|
|
* Copy all pages from bio to iov_iter.
|
|
* Returns 0 on success, or error on failure.
|
|
*/
|
|
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
ssize_t ret;
|
|
|
|
ret = copy_page_to_iter(bvec->bv_page,
|
|
bvec->bv_offset,
|
|
bvec->bv_len,
|
|
&iter);
|
|
|
|
if (!iov_iter_count(&iter))
|
|
break;
|
|
|
|
if (ret < bvec->bv_len)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bio_uncopy_user - finish previously mapped bio
|
|
* @bio: bio being terminated
|
|
*
|
|
* Free pages allocated from bio_copy_user_iov() and write back data
|
|
* to user space in case of a read.
|
|
*/
|
|
static int bio_uncopy_user(struct bio *bio)
|
|
{
|
|
struct bio_map_data *bmd = bio->bi_private;
|
|
int ret = 0;
|
|
|
|
if (!bmd->is_null_mapped) {
|
|
/*
|
|
* if we're in a workqueue, the request is orphaned, so
|
|
* don't copy into a random user address space, just free
|
|
* and return -EINTR so user space doesn't expect any data.
|
|
*/
|
|
if (!current->mm)
|
|
ret = -EINTR;
|
|
else if (bio_data_dir(bio) == READ)
|
|
ret = bio_copy_to_iter(bio, bmd->iter);
|
|
if (bmd->is_our_pages)
|
|
bio_free_pages(bio);
|
|
}
|
|
kfree(bmd);
|
|
return ret;
|
|
}
|
|
|
|
static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
|
|
struct iov_iter *iter, gfp_t gfp_mask)
|
|
{
|
|
struct bio_map_data *bmd;
|
|
struct page *page;
|
|
struct bio *bio;
|
|
int i = 0, ret;
|
|
int nr_pages;
|
|
unsigned int len = iter->count;
|
|
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
|
|
|
|
bmd = bio_alloc_map_data(iter, gfp_mask);
|
|
if (!bmd)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We need to do a deep copy of the iov_iter including the iovecs.
|
|
* The caller provided iov might point to an on-stack or otherwise
|
|
* shortlived one.
|
|
*/
|
|
bmd->is_our_pages = !map_data;
|
|
bmd->is_null_mapped = (map_data && map_data->null_mapped);
|
|
|
|
nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
|
|
|
|
ret = -ENOMEM;
|
|
bio = bio_kmalloc(nr_pages, gfp_mask);
|
|
if (!bio)
|
|
goto out_bmd;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
|
|
|
|
if (map_data) {
|
|
nr_pages = 1U << map_data->page_order;
|
|
i = map_data->offset / PAGE_SIZE;
|
|
}
|
|
while (len) {
|
|
unsigned int bytes = PAGE_SIZE;
|
|
|
|
bytes -= offset;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
if (map_data) {
|
|
if (i == map_data->nr_entries * nr_pages) {
|
|
ret = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
page = map_data->pages[i / nr_pages];
|
|
page += (i % nr_pages);
|
|
|
|
i++;
|
|
} else {
|
|
page = alloc_page(GFP_NOIO | gfp_mask);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
|
|
if (!map_data)
|
|
__free_page(page);
|
|
break;
|
|
}
|
|
|
|
len -= bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
if (map_data)
|
|
map_data->offset += bio->bi_iter.bi_size;
|
|
|
|
/*
|
|
* success
|
|
*/
|
|
if ((iov_iter_rw(iter) == WRITE &&
|
|
(!map_data || !map_data->null_mapped)) ||
|
|
(map_data && map_data->from_user)) {
|
|
ret = bio_copy_from_iter(bio, iter);
|
|
if (ret)
|
|
goto cleanup;
|
|
} else {
|
|
if (bmd->is_our_pages)
|
|
zero_fill_bio(bio);
|
|
iov_iter_advance(iter, bio->bi_iter.bi_size);
|
|
}
|
|
|
|
bio->bi_private = bmd;
|
|
|
|
ret = blk_rq_append_bio(rq, bio);
|
|
if (ret)
|
|
goto cleanup;
|
|
return 0;
|
|
cleanup:
|
|
if (!map_data)
|
|
bio_free_pages(bio);
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
out_bmd:
|
|
kfree(bmd);
|
|
return ret;
|
|
}
|
|
|
|
static void blk_mq_map_bio_put(struct bio *bio)
|
|
{
|
|
if (bio->bi_opf & REQ_ALLOC_CACHE) {
|
|
bio_put(bio);
|
|
} else {
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
}
|
|
}
|
|
|
|
static struct bio *blk_rq_map_bio_alloc(struct request *rq,
|
|
unsigned int nr_vecs, gfp_t gfp_mask)
|
|
{
|
|
struct bio *bio;
|
|
|
|
if (rq->cmd_flags & REQ_POLLED) {
|
|
blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE;
|
|
|
|
bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask,
|
|
&fs_bio_set);
|
|
if (!bio)
|
|
return NULL;
|
|
} else {
|
|
bio = bio_kmalloc(nr_vecs, gfp_mask);
|
|
if (!bio)
|
|
return NULL;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
|
|
}
|
|
return bio;
|
|
}
|
|
|
|
static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
|
|
gfp_t gfp_mask)
|
|
{
|
|
unsigned int max_sectors = queue_max_hw_sectors(rq->q);
|
|
unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
|
|
unsigned int gup_flags = 0;
|
|
struct bio *bio;
|
|
int ret;
|
|
int j;
|
|
|
|
if (!iov_iter_count(iter))
|
|
return -EINVAL;
|
|
|
|
bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
|
|
if (bio == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (blk_queue_pci_p2pdma(rq->q))
|
|
gup_flags |= FOLL_PCI_P2PDMA;
|
|
|
|
while (iov_iter_count(iter)) {
|
|
struct page **pages, *stack_pages[UIO_FASTIOV];
|
|
ssize_t bytes;
|
|
size_t offs;
|
|
int npages;
|
|
|
|
if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
|
|
pages = stack_pages;
|
|
bytes = iov_iter_get_pages(iter, pages, LONG_MAX,
|
|
nr_vecs, &offs, gup_flags);
|
|
} else {
|
|
bytes = iov_iter_get_pages_alloc(iter, &pages,
|
|
LONG_MAX, &offs, gup_flags);
|
|
}
|
|
if (unlikely(bytes <= 0)) {
|
|
ret = bytes ? bytes : -EFAULT;
|
|
goto out_unmap;
|
|
}
|
|
|
|
npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
|
|
|
|
if (unlikely(offs & queue_dma_alignment(rq->q)))
|
|
j = 0;
|
|
else {
|
|
for (j = 0; j < npages; j++) {
|
|
struct page *page = pages[j];
|
|
unsigned int n = PAGE_SIZE - offs;
|
|
bool same_page = false;
|
|
|
|
if (n > bytes)
|
|
n = bytes;
|
|
|
|
if (!bio_add_hw_page(rq->q, bio, page, n, offs,
|
|
max_sectors, &same_page)) {
|
|
if (same_page)
|
|
put_page(page);
|
|
break;
|
|
}
|
|
|
|
bytes -= n;
|
|
offs = 0;
|
|
}
|
|
}
|
|
/*
|
|
* release the pages we didn't map into the bio, if any
|
|
*/
|
|
while (j < npages)
|
|
put_page(pages[j++]);
|
|
if (pages != stack_pages)
|
|
kvfree(pages);
|
|
/* couldn't stuff something into bio? */
|
|
if (bytes) {
|
|
iov_iter_revert(iter, bytes);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = blk_rq_append_bio(rq, bio);
|
|
if (ret)
|
|
goto out_unmap;
|
|
return 0;
|
|
|
|
out_unmap:
|
|
bio_release_pages(bio, false);
|
|
blk_mq_map_bio_put(bio);
|
|
return ret;
|
|
}
|
|
|
|
static void bio_invalidate_vmalloc_pages(struct bio *bio)
|
|
{
|
|
#ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
|
|
if (bio->bi_private && !op_is_write(bio_op(bio))) {
|
|
unsigned long i, len = 0;
|
|
|
|
for (i = 0; i < bio->bi_vcnt; i++)
|
|
len += bio->bi_io_vec[i].bv_len;
|
|
invalidate_kernel_vmap_range(bio->bi_private, len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void bio_map_kern_endio(struct bio *bio)
|
|
{
|
|
bio_invalidate_vmalloc_pages(bio);
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
}
|
|
|
|
/**
|
|
* bio_map_kern - map kernel address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @data: pointer to buffer to map
|
|
* @len: length in bytes
|
|
* @gfp_mask: allocation flags for bio allocation
|
|
*
|
|
* Map the kernel address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
static struct bio *bio_map_kern(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
unsigned long kaddr = (unsigned long)data;
|
|
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = kaddr >> PAGE_SHIFT;
|
|
const int nr_pages = end - start;
|
|
bool is_vmalloc = is_vmalloc_addr(data);
|
|
struct page *page;
|
|
int offset, i;
|
|
struct bio *bio;
|
|
|
|
bio = bio_kmalloc(nr_pages, gfp_mask);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
|
|
|
|
if (is_vmalloc) {
|
|
flush_kernel_vmap_range(data, len);
|
|
bio->bi_private = data;
|
|
}
|
|
|
|
offset = offset_in_page(kaddr);
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned int bytes = PAGE_SIZE - offset;
|
|
|
|
if (len <= 0)
|
|
break;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
if (!is_vmalloc)
|
|
page = virt_to_page(data);
|
|
else
|
|
page = vmalloc_to_page(data);
|
|
if (bio_add_pc_page(q, bio, page, bytes,
|
|
offset) < bytes) {
|
|
/* we don't support partial mappings */
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
data += bytes;
|
|
len -= bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
bio->bi_end_io = bio_map_kern_endio;
|
|
return bio;
|
|
}
|
|
|
|
static void bio_copy_kern_endio(struct bio *bio)
|
|
{
|
|
bio_free_pages(bio);
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
}
|
|
|
|
static void bio_copy_kern_endio_read(struct bio *bio)
|
|
{
|
|
char *p = bio->bi_private;
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
memcpy_from_bvec(p, bvec);
|
|
p += bvec->bv_len;
|
|
}
|
|
|
|
bio_copy_kern_endio(bio);
|
|
}
|
|
|
|
/**
|
|
* bio_copy_kern - copy kernel address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @data: pointer to buffer to copy
|
|
* @len: length in bytes
|
|
* @gfp_mask: allocation flags for bio and page allocation
|
|
* @reading: data direction is READ
|
|
*
|
|
* copy the kernel address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
static struct bio *bio_copy_kern(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask, int reading)
|
|
{
|
|
unsigned long kaddr = (unsigned long)data;
|
|
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = kaddr >> PAGE_SHIFT;
|
|
struct bio *bio;
|
|
void *p = data;
|
|
int nr_pages = 0;
|
|
|
|
/*
|
|
* Overflow, abort
|
|
*/
|
|
if (end < start)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
nr_pages = end - start;
|
|
bio = bio_kmalloc(nr_pages, gfp_mask);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
|
|
|
|
while (len) {
|
|
struct page *page;
|
|
unsigned int bytes = PAGE_SIZE;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
|
|
if (!page)
|
|
goto cleanup;
|
|
|
|
if (!reading)
|
|
memcpy(page_address(page), p, bytes);
|
|
|
|
if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
|
|
break;
|
|
|
|
len -= bytes;
|
|
p += bytes;
|
|
}
|
|
|
|
if (reading) {
|
|
bio->bi_end_io = bio_copy_kern_endio_read;
|
|
bio->bi_private = data;
|
|
} else {
|
|
bio->bi_end_io = bio_copy_kern_endio;
|
|
}
|
|
|
|
return bio;
|
|
|
|
cleanup:
|
|
bio_free_pages(bio);
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Append a bio to a passthrough request. Only works if the bio can be merged
|
|
* into the request based on the driver constraints.
|
|
*/
|
|
int blk_rq_append_bio(struct request *rq, struct bio *bio)
|
|
{
|
|
struct bvec_iter iter;
|
|
struct bio_vec bv;
|
|
unsigned int nr_segs = 0;
|
|
|
|
bio_for_each_bvec(bv, bio, iter)
|
|
nr_segs++;
|
|
|
|
if (!rq->bio) {
|
|
blk_rq_bio_prep(rq, bio, nr_segs);
|
|
} else {
|
|
if (!ll_back_merge_fn(rq, bio, nr_segs))
|
|
return -EINVAL;
|
|
rq->biotail->bi_next = bio;
|
|
rq->biotail = bio;
|
|
rq->__data_len += (bio)->bi_iter.bi_size;
|
|
bio_crypt_free_ctx(bio);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_append_bio);
|
|
|
|
/* Prepare bio for passthrough IO given ITER_BVEC iter */
|
|
static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
size_t nr_iter = iov_iter_count(iter);
|
|
size_t nr_segs = iter->nr_segs;
|
|
struct bio_vec *bvecs, *bvprvp = NULL;
|
|
const struct queue_limits *lim = &q->limits;
|
|
unsigned int nsegs = 0, bytes = 0;
|
|
struct bio *bio;
|
|
size_t i;
|
|
|
|
if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
|
|
return -EINVAL;
|
|
if (nr_segs > queue_max_segments(q))
|
|
return -EINVAL;
|
|
|
|
/* no iovecs to alloc, as we already have a BVEC iterator */
|
|
bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
|
|
if (bio == NULL)
|
|
return -ENOMEM;
|
|
|
|
bio_iov_bvec_set(bio, (struct iov_iter *)iter);
|
|
blk_rq_bio_prep(rq, bio, nr_segs);
|
|
|
|
/* loop to perform a bunch of sanity checks */
|
|
bvecs = (struct bio_vec *)iter->bvec;
|
|
for (i = 0; i < nr_segs; i++) {
|
|
struct bio_vec *bv = &bvecs[i];
|
|
|
|
/*
|
|
* If the queue doesn't support SG gaps and adding this
|
|
* offset would create a gap, fallback to copy.
|
|
*/
|
|
if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
|
|
blk_mq_map_bio_put(bio);
|
|
return -EREMOTEIO;
|
|
}
|
|
/* check full condition */
|
|
if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
|
|
goto put_bio;
|
|
if (bytes + bv->bv_len > nr_iter)
|
|
goto put_bio;
|
|
if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
|
|
goto put_bio;
|
|
|
|
nsegs++;
|
|
bytes += bv->bv_len;
|
|
bvprvp = bv;
|
|
}
|
|
return 0;
|
|
put_bio:
|
|
blk_mq_map_bio_put(bio);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* blk_rq_map_user_iov - map user data to a request, for passthrough requests
|
|
* @q: request queue where request should be inserted
|
|
* @rq: request to map data to
|
|
* @map_data: pointer to the rq_map_data holding pages (if necessary)
|
|
* @iter: iovec iterator
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Description:
|
|
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
|
|
* a kernel bounce buffer is used.
|
|
*
|
|
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
|
|
* still in process context.
|
|
*/
|
|
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
|
|
struct rq_map_data *map_data,
|
|
const struct iov_iter *iter, gfp_t gfp_mask)
|
|
{
|
|
bool copy = false, map_bvec = false;
|
|
unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
|
|
struct bio *bio = NULL;
|
|
struct iov_iter i;
|
|
int ret = -EINVAL;
|
|
|
|
if (map_data)
|
|
copy = true;
|
|
else if (blk_queue_may_bounce(q))
|
|
copy = true;
|
|
else if (iov_iter_alignment(iter) & align)
|
|
copy = true;
|
|
else if (iov_iter_is_bvec(iter))
|
|
map_bvec = true;
|
|
else if (!iter_is_iovec(iter))
|
|
copy = true;
|
|
else if (queue_virt_boundary(q))
|
|
copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
|
|
|
|
if (map_bvec) {
|
|
ret = blk_rq_map_user_bvec(rq, iter);
|
|
if (!ret)
|
|
return 0;
|
|
if (ret != -EREMOTEIO)
|
|
goto fail;
|
|
/* fall back to copying the data on limits mismatches */
|
|
copy = true;
|
|
}
|
|
|
|
i = *iter;
|
|
do {
|
|
if (copy)
|
|
ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
|
|
else
|
|
ret = bio_map_user_iov(rq, &i, gfp_mask);
|
|
if (ret)
|
|
goto unmap_rq;
|
|
if (!bio)
|
|
bio = rq->bio;
|
|
} while (iov_iter_count(&i));
|
|
|
|
return 0;
|
|
|
|
unmap_rq:
|
|
blk_rq_unmap_user(bio);
|
|
fail:
|
|
rq->bio = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_user_iov);
|
|
|
|
int blk_rq_map_user(struct request_queue *q, struct request *rq,
|
|
struct rq_map_data *map_data, void __user *ubuf,
|
|
unsigned long len, gfp_t gfp_mask)
|
|
{
|
|
struct iovec iov;
|
|
struct iov_iter i;
|
|
int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
|
|
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_user);
|
|
|
|
int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
|
|
void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
|
|
bool vec, int iov_count, bool check_iter_count, int rw)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (vec) {
|
|
struct iovec fast_iov[UIO_FASTIOV];
|
|
struct iovec *iov = fast_iov;
|
|
struct iov_iter iter;
|
|
|
|
ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
|
|
UIO_FASTIOV, &iov, &iter);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (iov_count) {
|
|
/* SG_IO howto says that the shorter of the two wins */
|
|
iov_iter_truncate(&iter, buf_len);
|
|
if (check_iter_count && !iov_iter_count(&iter)) {
|
|
kfree(iov);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
|
|
gfp_mask);
|
|
kfree(iov);
|
|
} else if (buf_len) {
|
|
ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
|
|
gfp_mask);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_user_io);
|
|
|
|
/**
|
|
* blk_rq_unmap_user - unmap a request with user data
|
|
* @bio: start of bio list
|
|
*
|
|
* Description:
|
|
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
|
|
* supply the original rq->bio from the blk_rq_map_user() return, since
|
|
* the I/O completion may have changed rq->bio.
|
|
*/
|
|
int blk_rq_unmap_user(struct bio *bio)
|
|
{
|
|
struct bio *next_bio;
|
|
int ret = 0, ret2;
|
|
|
|
while (bio) {
|
|
if (bio->bi_private) {
|
|
ret2 = bio_uncopy_user(bio);
|
|
if (ret2 && !ret)
|
|
ret = ret2;
|
|
} else {
|
|
bio_release_pages(bio, bio_data_dir(bio) == READ);
|
|
}
|
|
|
|
next_bio = bio;
|
|
bio = bio->bi_next;
|
|
blk_mq_map_bio_put(next_bio);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_unmap_user);
|
|
|
|
/**
|
|
* blk_rq_map_kern - map kernel data to a request, for passthrough requests
|
|
* @q: request queue where request should be inserted
|
|
* @rq: request to fill
|
|
* @kbuf: the kernel buffer
|
|
* @len: length of user data
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Description:
|
|
* Data will be mapped directly if possible. Otherwise a bounce
|
|
* buffer is used. Can be called multiple times to append multiple
|
|
* buffers.
|
|
*/
|
|
int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
int reading = rq_data_dir(rq) == READ;
|
|
unsigned long addr = (unsigned long) kbuf;
|
|
struct bio *bio;
|
|
int ret;
|
|
|
|
if (len > (queue_max_hw_sectors(q) << 9))
|
|
return -EINVAL;
|
|
if (!len || !kbuf)
|
|
return -EINVAL;
|
|
|
|
if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
|
|
blk_queue_may_bounce(q))
|
|
bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
|
|
else
|
|
bio = bio_map_kern(q, kbuf, len, gfp_mask);
|
|
|
|
if (IS_ERR(bio))
|
|
return PTR_ERR(bio);
|
|
|
|
bio->bi_opf &= ~REQ_OP_MASK;
|
|
bio->bi_opf |= req_op(rq);
|
|
|
|
ret = blk_rq_append_bio(rq, bio);
|
|
if (unlikely(ret)) {
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_kern);
|