mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 21:53:44 +00:00
cb9f753a37
Thanks to commit 4b3ef9daa4
("mm/swap: split swap cache into 64MB
trunks"), after swapoff the address_space associated with the swap
device will be freed. So page_mapping() users which may touch the
address_space need some kind of mechanism to prevent the address_space
from being freed during accessing.
The dcache flushing functions (flush_dcache_page(), etc) in architecture
specific code may access the address_space of swap device for anonymous
pages in swap cache via page_mapping() function. But in some cases
there are no mechanisms to prevent the swap device from being swapoff,
for example,
CPU1 CPU2
__get_user_pages() swapoff()
flush_dcache_page()
mapping = page_mapping()
... exit_swap_address_space()
... kvfree(spaces)
mapping_mapped(mapping)
The address space may be accessed after being freed.
But from cachetlb.txt and Russell King, flush_dcache_page() only care
about file cache pages, for anonymous pages, flush_anon_page() should be
used. The implementation of flush_dcache_page() in all architectures
follows this too. They will check whether page_mapping() is NULL and
whether mapping_mapped() is true to determine whether to flush the
dcache immediately. And they will use interval tree (mapping->i_mmap)
to find all user space mappings. While mapping_mapped() and
mapping->i_mmap isn't used by anonymous pages in swap cache at all.
So, to fix the race between swapoff and flush dcache, __page_mapping()
is add to return the address_space for file cache pages and NULL
otherwise. All page_mapping() invoking in flush dcache functions are
replaced with page_mapping_file().
[akpm@linux-foundation.org: simplify page_mapping_file(), per Mike]
Link: http://lkml.kernel.org/r/20180305083634.15174-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
302 lines
6.5 KiB
C
302 lines
6.5 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* arch/sparc64/mm/tlb.c
|
|
*
|
|
* Copyright (C) 2004 David S. Miller <davem@redhat.com>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/preempt.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlb.h>
|
|
|
|
/* Heavily inspired by the ppc64 code. */
|
|
|
|
static DEFINE_PER_CPU(struct tlb_batch, tlb_batch);
|
|
|
|
void flush_tlb_pending(void)
|
|
{
|
|
struct tlb_batch *tb = &get_cpu_var(tlb_batch);
|
|
struct mm_struct *mm = tb->mm;
|
|
|
|
if (!tb->tlb_nr)
|
|
goto out;
|
|
|
|
flush_tsb_user(tb);
|
|
|
|
if (CTX_VALID(mm->context)) {
|
|
if (tb->tlb_nr == 1) {
|
|
global_flush_tlb_page(mm, tb->vaddrs[0]);
|
|
} else {
|
|
#ifdef CONFIG_SMP
|
|
smp_flush_tlb_pending(tb->mm, tb->tlb_nr,
|
|
&tb->vaddrs[0]);
|
|
#else
|
|
__flush_tlb_pending(CTX_HWBITS(tb->mm->context),
|
|
tb->tlb_nr, &tb->vaddrs[0]);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
tb->tlb_nr = 0;
|
|
|
|
out:
|
|
put_cpu_var(tlb_batch);
|
|
}
|
|
|
|
void arch_enter_lazy_mmu_mode(void)
|
|
{
|
|
struct tlb_batch *tb = this_cpu_ptr(&tlb_batch);
|
|
|
|
tb->active = 1;
|
|
}
|
|
|
|
void arch_leave_lazy_mmu_mode(void)
|
|
{
|
|
struct tlb_batch *tb = this_cpu_ptr(&tlb_batch);
|
|
|
|
if (tb->tlb_nr)
|
|
flush_tlb_pending();
|
|
tb->active = 0;
|
|
}
|
|
|
|
static void tlb_batch_add_one(struct mm_struct *mm, unsigned long vaddr,
|
|
bool exec, unsigned int hugepage_shift)
|
|
{
|
|
struct tlb_batch *tb = &get_cpu_var(tlb_batch);
|
|
unsigned long nr;
|
|
|
|
vaddr &= PAGE_MASK;
|
|
if (exec)
|
|
vaddr |= 0x1UL;
|
|
|
|
nr = tb->tlb_nr;
|
|
|
|
if (unlikely(nr != 0 && mm != tb->mm)) {
|
|
flush_tlb_pending();
|
|
nr = 0;
|
|
}
|
|
|
|
if (!tb->active) {
|
|
flush_tsb_user_page(mm, vaddr, hugepage_shift);
|
|
global_flush_tlb_page(mm, vaddr);
|
|
goto out;
|
|
}
|
|
|
|
if (nr == 0) {
|
|
tb->mm = mm;
|
|
tb->hugepage_shift = hugepage_shift;
|
|
}
|
|
|
|
if (tb->hugepage_shift != hugepage_shift) {
|
|
flush_tlb_pending();
|
|
tb->hugepage_shift = hugepage_shift;
|
|
nr = 0;
|
|
}
|
|
|
|
tb->vaddrs[nr] = vaddr;
|
|
tb->tlb_nr = ++nr;
|
|
if (nr >= TLB_BATCH_NR)
|
|
flush_tlb_pending();
|
|
|
|
out:
|
|
put_cpu_var(tlb_batch);
|
|
}
|
|
|
|
void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
|
|
pte_t *ptep, pte_t orig, int fullmm,
|
|
unsigned int hugepage_shift)
|
|
{
|
|
if (tlb_type != hypervisor &&
|
|
pte_dirty(orig)) {
|
|
unsigned long paddr, pfn = pte_pfn(orig);
|
|
struct address_space *mapping;
|
|
struct page *page;
|
|
|
|
if (!pfn_valid(pfn))
|
|
goto no_cache_flush;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (PageReserved(page))
|
|
goto no_cache_flush;
|
|
|
|
/* A real file page? */
|
|
mapping = page_mapping_file(page);
|
|
if (!mapping)
|
|
goto no_cache_flush;
|
|
|
|
paddr = (unsigned long) page_address(page);
|
|
if ((paddr ^ vaddr) & (1 << 13))
|
|
flush_dcache_page_all(mm, page);
|
|
}
|
|
|
|
no_cache_flush:
|
|
if (!fullmm)
|
|
tlb_batch_add_one(mm, vaddr, pte_exec(orig), hugepage_shift);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static void tlb_batch_pmd_scan(struct mm_struct *mm, unsigned long vaddr,
|
|
pmd_t pmd)
|
|
{
|
|
unsigned long end;
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_map(&pmd, vaddr);
|
|
end = vaddr + HPAGE_SIZE;
|
|
while (vaddr < end) {
|
|
if (pte_val(*pte) & _PAGE_VALID) {
|
|
bool exec = pte_exec(*pte);
|
|
|
|
tlb_batch_add_one(mm, vaddr, exec, PAGE_SHIFT);
|
|
}
|
|
pte++;
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
pte_unmap(pte);
|
|
}
|
|
|
|
|
|
static void __set_pmd_acct(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t orig, pmd_t pmd)
|
|
{
|
|
if (mm == &init_mm)
|
|
return;
|
|
|
|
if ((pmd_val(pmd) ^ pmd_val(orig)) & _PAGE_PMD_HUGE) {
|
|
/*
|
|
* Note that this routine only sets pmds for THP pages.
|
|
* Hugetlb pages are handled elsewhere. We need to check
|
|
* for huge zero page. Huge zero pages are like hugetlb
|
|
* pages in that there is no RSS, but there is the need
|
|
* for TSB entries. So, huge zero page counts go into
|
|
* hugetlb_pte_count.
|
|
*/
|
|
if (pmd_val(pmd) & _PAGE_PMD_HUGE) {
|
|
if (is_huge_zero_page(pmd_page(pmd)))
|
|
mm->context.hugetlb_pte_count++;
|
|
else
|
|
mm->context.thp_pte_count++;
|
|
} else {
|
|
if (is_huge_zero_page(pmd_page(orig)))
|
|
mm->context.hugetlb_pte_count--;
|
|
else
|
|
mm->context.thp_pte_count--;
|
|
}
|
|
|
|
/* Do not try to allocate the TSB hash table if we
|
|
* don't have one already. We have various locks held
|
|
* and thus we'll end up doing a GFP_KERNEL allocation
|
|
* in an atomic context.
|
|
*
|
|
* Instead, we let the first TLB miss on a hugepage
|
|
* take care of this.
|
|
*/
|
|
}
|
|
|
|
if (!pmd_none(orig)) {
|
|
addr &= HPAGE_MASK;
|
|
if (pmd_trans_huge(orig)) {
|
|
pte_t orig_pte = __pte(pmd_val(orig));
|
|
bool exec = pte_exec(orig_pte);
|
|
|
|
tlb_batch_add_one(mm, addr, exec, REAL_HPAGE_SHIFT);
|
|
tlb_batch_add_one(mm, addr + REAL_HPAGE_SIZE, exec,
|
|
REAL_HPAGE_SHIFT);
|
|
} else {
|
|
tlb_batch_pmd_scan(mm, addr, orig);
|
|
}
|
|
}
|
|
}
|
|
|
|
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
pmd_t orig = *pmdp;
|
|
|
|
*pmdp = pmd;
|
|
__set_pmd_acct(mm, addr, orig, pmd);
|
|
}
|
|
|
|
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
pmd_t old;
|
|
|
|
do {
|
|
old = *pmdp;
|
|
} while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
|
|
__set_pmd_acct(vma->vm_mm, address, old, pmd);
|
|
|
|
return old;
|
|
}
|
|
|
|
/*
|
|
* This routine is only called when splitting a THP
|
|
*/
|
|
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_t old, entry;
|
|
|
|
entry = __pmd(pmd_val(*pmdp) & ~_PAGE_VALID);
|
|
old = pmdp_establish(vma, address, pmdp, entry);
|
|
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
|
|
/*
|
|
* set_pmd_at() will not be called in a way to decrement
|
|
* thp_pte_count when splitting a THP, so do it now.
|
|
* Sanity check pmd before doing the actual decrement.
|
|
*/
|
|
if ((pmd_val(entry) & _PAGE_PMD_HUGE) &&
|
|
!is_huge_zero_page(pmd_page(entry)))
|
|
(vma->vm_mm)->context.thp_pte_count--;
|
|
|
|
return old;
|
|
}
|
|
|
|
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct list_head *lh = (struct list_head *) pgtable;
|
|
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
|
|
/* FIFO */
|
|
if (!pmd_huge_pte(mm, pmdp))
|
|
INIT_LIST_HEAD(lh);
|
|
else
|
|
list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
|
|
pmd_huge_pte(mm, pmdp) = pgtable;
|
|
}
|
|
|
|
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
|
|
{
|
|
struct list_head *lh;
|
|
pgtable_t pgtable;
|
|
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
|
|
/* FIFO */
|
|
pgtable = pmd_huge_pte(mm, pmdp);
|
|
lh = (struct list_head *) pgtable;
|
|
if (list_empty(lh))
|
|
pmd_huge_pte(mm, pmdp) = NULL;
|
|
else {
|
|
pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
|
|
list_del(lh);
|
|
}
|
|
pte_val(pgtable[0]) = 0;
|
|
pte_val(pgtable[1]) = 0;
|
|
|
|
return pgtable;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|