linux-stable/sound/usb/endpoint.c
Takashi Iwai ab574d1629 ALSA: usb-audio: Don't try to submit URBs after disconnection
USB-audio driver can still submit URBs while the device is being
disconnected, and it may result in spurious error messages like:
  usb 1-2: cannot submit urb (err = -19)
  usb 1-2: Unable to submit urb #0: -19 at snd_usb_queue_pending_output_urbs
  usb 1-2: cannot submit urb 0, error -19: no device
Although those are harmless, they are just ugly.

This patch tries to avoid spewing such error messages when the device
is already at the disconnected state.  It also skips the superfluous
xfer notification, too.

Link: https://lore.kernel.org/r/20230828101924.27107-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2023-08-28 15:03:35 +02:00

1894 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*/
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/ratelimit.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "usbaudio.h"
#include "helper.h"
#include "card.h"
#include "endpoint.h"
#include "pcm.h"
#include "clock.h"
#include "quirks.h"
enum {
EP_STATE_STOPPED,
EP_STATE_RUNNING,
EP_STATE_STOPPING,
};
/* interface refcounting */
struct snd_usb_iface_ref {
unsigned char iface;
bool need_setup;
int opened;
int altset;
struct list_head list;
};
/* clock refcounting */
struct snd_usb_clock_ref {
unsigned char clock;
atomic_t locked;
int opened;
int rate;
bool need_setup;
struct list_head list;
};
/*
* snd_usb_endpoint is a model that abstracts everything related to an
* USB endpoint and its streaming.
*
* There are functions to activate and deactivate the streaming URBs and
* optional callbacks to let the pcm logic handle the actual content of the
* packets for playback and record. Thus, the bus streaming and the audio
* handlers are fully decoupled.
*
* There are two different types of endpoints in audio applications.
*
* SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
* inbound and outbound traffic.
*
* SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
* expect the payload to carry Q10.14 / Q16.16 formatted sync information
* (3 or 4 bytes).
*
* Each endpoint has to be configured prior to being used by calling
* snd_usb_endpoint_set_params().
*
* The model incorporates a reference counting, so that multiple users
* can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
* only the first user will effectively start the URBs, and only the last
* one to stop it will tear the URBs down again.
*/
/*
* convert a sampling rate into our full speed format (fs/1000 in Q16.16)
* this will overflow at approx 524 kHz
*/
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
{
return ((rate << 13) + 62) / 125;
}
/*
* convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
* this will overflow at approx 4 MHz
*/
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
{
return ((rate << 10) + 62) / 125;
}
/*
* release a urb data
*/
static void release_urb_ctx(struct snd_urb_ctx *u)
{
if (u->urb && u->buffer_size)
usb_free_coherent(u->ep->chip->dev, u->buffer_size,
u->urb->transfer_buffer,
u->urb->transfer_dma);
usb_free_urb(u->urb);
u->urb = NULL;
u->buffer_size = 0;
}
static const char *usb_error_string(int err)
{
switch (err) {
case -ENODEV:
return "no device";
case -ENOENT:
return "endpoint not enabled";
case -EPIPE:
return "endpoint stalled";
case -ENOSPC:
return "not enough bandwidth";
case -ESHUTDOWN:
return "device disabled";
case -EHOSTUNREACH:
return "device suspended";
case -EINVAL:
case -EAGAIN:
case -EFBIG:
case -EMSGSIZE:
return "internal error";
default:
return "unknown error";
}
}
static inline bool ep_state_running(struct snd_usb_endpoint *ep)
{
return atomic_read(&ep->state) == EP_STATE_RUNNING;
}
static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new)
{
return atomic_try_cmpxchg(&ep->state, &old, new);
}
/**
* snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
*
* @ep: The snd_usb_endpoint
*
* Determine whether an endpoint is driven by an implicit feedback
* data endpoint source.
*/
int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
{
return ep->implicit_fb_sync && usb_pipeout(ep->pipe);
}
/*
* Return the number of samples to be sent in the next packet
* for streaming based on information derived from sync endpoints
*
* This won't be used for implicit feedback which takes the packet size
* returned from the sync source
*/
static int slave_next_packet_size(struct snd_usb_endpoint *ep,
unsigned int avail)
{
unsigned long flags;
unsigned int phase;
int ret;
if (ep->fill_max)
return ep->maxframesize;
spin_lock_irqsave(&ep->lock, flags);
phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval);
ret = min(phase >> 16, ep->maxframesize);
if (avail && ret >= avail)
ret = -EAGAIN;
else
ep->phase = phase;
spin_unlock_irqrestore(&ep->lock, flags);
return ret;
}
/*
* Return the number of samples to be sent in the next packet
* for adaptive and synchronous endpoints
*/
static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail)
{
unsigned int sample_accum;
int ret;
if (ep->fill_max)
return ep->maxframesize;
sample_accum = ep->sample_accum + ep->sample_rem;
if (sample_accum >= ep->pps) {
sample_accum -= ep->pps;
ret = ep->packsize[1];
} else {
ret = ep->packsize[0];
}
if (avail && ret >= avail)
ret = -EAGAIN;
else
ep->sample_accum = sample_accum;
return ret;
}
/*
* snd_usb_endpoint_next_packet_size: Return the number of samples to be sent
* in the next packet
*
* If the size is equal or exceeds @avail, don't proceed but return -EAGAIN
* Exception: @avail = 0 for skipping the check.
*/
int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *ctx, int idx,
unsigned int avail)
{
unsigned int packet;
packet = ctx->packet_size[idx];
if (packet) {
if (avail && packet >= avail)
return -EAGAIN;
return packet;
}
if (ep->sync_source)
return slave_next_packet_size(ep, avail);
else
return next_packet_size(ep, avail);
}
static void call_retire_callback(struct snd_usb_endpoint *ep,
struct urb *urb)
{
struct snd_usb_substream *data_subs;
data_subs = READ_ONCE(ep->data_subs);
if (data_subs && ep->retire_data_urb)
ep->retire_data_urb(data_subs, urb);
}
static void retire_outbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *urb_ctx)
{
call_retire_callback(ep, urb_ctx->urb);
}
static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
struct snd_usb_endpoint *sender,
const struct urb *urb);
static void retire_inbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *urb_ctx)
{
struct urb *urb = urb_ctx->urb;
struct snd_usb_endpoint *sync_sink;
if (unlikely(ep->skip_packets > 0)) {
ep->skip_packets--;
return;
}
sync_sink = READ_ONCE(ep->sync_sink);
if (sync_sink)
snd_usb_handle_sync_urb(sync_sink, ep, urb);
call_retire_callback(ep, urb);
}
static inline bool has_tx_length_quirk(struct snd_usb_audio *chip)
{
return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH;
}
static void prepare_silent_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *ctx)
{
struct urb *urb = ctx->urb;
unsigned int offs = 0;
unsigned int extra = 0;
__le32 packet_length;
int i;
/* For tx_length_quirk, put packet length at start of packet */
if (has_tx_length_quirk(ep->chip))
extra = sizeof(packet_length);
for (i = 0; i < ctx->packets; ++i) {
unsigned int offset;
unsigned int length;
int counts;
counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0);
length = counts * ep->stride; /* number of silent bytes */
offset = offs * ep->stride + extra * i;
urb->iso_frame_desc[i].offset = offset;
urb->iso_frame_desc[i].length = length + extra;
if (extra) {
packet_length = cpu_to_le32(length);
memcpy(urb->transfer_buffer + offset,
&packet_length, sizeof(packet_length));
}
memset(urb->transfer_buffer + offset + extra,
ep->silence_value, length);
offs += counts;
}
urb->number_of_packets = ctx->packets;
urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
ctx->queued = 0;
}
/*
* Prepare a PLAYBACK urb for submission to the bus.
*/
static int prepare_outbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *ctx,
bool in_stream_lock)
{
struct urb *urb = ctx->urb;
unsigned char *cp = urb->transfer_buffer;
struct snd_usb_substream *data_subs;
urb->dev = ep->chip->dev; /* we need to set this at each time */
switch (ep->type) {
case SND_USB_ENDPOINT_TYPE_DATA:
data_subs = READ_ONCE(ep->data_subs);
if (data_subs && ep->prepare_data_urb)
return ep->prepare_data_urb(data_subs, urb, in_stream_lock);
/* no data provider, so send silence */
prepare_silent_urb(ep, ctx);
break;
case SND_USB_ENDPOINT_TYPE_SYNC:
if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
/*
* fill the length and offset of each urb descriptor.
* the fixed 12.13 frequency is passed as 16.16 through the pipe.
*/
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
cp[0] = ep->freqn;
cp[1] = ep->freqn >> 8;
cp[2] = ep->freqn >> 16;
cp[3] = ep->freqn >> 24;
} else {
/*
* fill the length and offset of each urb descriptor.
* the fixed 10.14 frequency is passed through the pipe.
*/
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
cp[0] = ep->freqn >> 2;
cp[1] = ep->freqn >> 10;
cp[2] = ep->freqn >> 18;
}
break;
}
return 0;
}
/*
* Prepare a CAPTURE or SYNC urb for submission to the bus.
*/
static int prepare_inbound_urb(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *urb_ctx)
{
int i, offs;
struct urb *urb = urb_ctx->urb;
urb->dev = ep->chip->dev; /* we need to set this at each time */
switch (ep->type) {
case SND_USB_ENDPOINT_TYPE_DATA:
offs = 0;
for (i = 0; i < urb_ctx->packets; i++) {
urb->iso_frame_desc[i].offset = offs;
urb->iso_frame_desc[i].length = ep->curpacksize;
offs += ep->curpacksize;
}
urb->transfer_buffer_length = offs;
urb->number_of_packets = urb_ctx->packets;
break;
case SND_USB_ENDPOINT_TYPE_SYNC:
urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
urb->iso_frame_desc[0].offset = 0;
break;
}
return 0;
}
/* notify an error as XRUN to the assigned PCM data substream */
static void notify_xrun(struct snd_usb_endpoint *ep)
{
struct snd_usb_substream *data_subs;
data_subs = READ_ONCE(ep->data_subs);
if (data_subs && data_subs->pcm_substream)
snd_pcm_stop_xrun(data_subs->pcm_substream);
}
static struct snd_usb_packet_info *
next_packet_fifo_enqueue(struct snd_usb_endpoint *ep)
{
struct snd_usb_packet_info *p;
p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) %
ARRAY_SIZE(ep->next_packet);
ep->next_packet_queued++;
return p;
}
static struct snd_usb_packet_info *
next_packet_fifo_dequeue(struct snd_usb_endpoint *ep)
{
struct snd_usb_packet_info *p;
p = ep->next_packet + ep->next_packet_head;
ep->next_packet_head++;
ep->next_packet_head %= ARRAY_SIZE(ep->next_packet);
ep->next_packet_queued--;
return p;
}
static void push_back_to_ready_list(struct snd_usb_endpoint *ep,
struct snd_urb_ctx *ctx)
{
unsigned long flags;
spin_lock_irqsave(&ep->lock, flags);
list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
spin_unlock_irqrestore(&ep->lock, flags);
}
/*
* Send output urbs that have been prepared previously. URBs are dequeued
* from ep->ready_playback_urbs and in case there aren't any available
* or there are no packets that have been prepared, this function does
* nothing.
*
* The reason why the functionality of sending and preparing URBs is separated
* is that host controllers don't guarantee the order in which they return
* inbound and outbound packets to their submitters.
*
* This function is used both for implicit feedback endpoints and in low-
* latency playback mode.
*/
int snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep,
bool in_stream_lock)
{
bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep);
while (ep_state_running(ep)) {
unsigned long flags;
struct snd_usb_packet_info *packet;
struct snd_urb_ctx *ctx = NULL;
int err, i;
spin_lock_irqsave(&ep->lock, flags);
if ((!implicit_fb || ep->next_packet_queued > 0) &&
!list_empty(&ep->ready_playback_urbs)) {
/* take URB out of FIFO */
ctx = list_first_entry(&ep->ready_playback_urbs,
struct snd_urb_ctx, ready_list);
list_del_init(&ctx->ready_list);
if (implicit_fb)
packet = next_packet_fifo_dequeue(ep);
}
spin_unlock_irqrestore(&ep->lock, flags);
if (ctx == NULL)
break;
/* copy over the length information */
if (implicit_fb) {
for (i = 0; i < packet->packets; i++)
ctx->packet_size[i] = packet->packet_size[i];
}
/* call the data handler to fill in playback data */
err = prepare_outbound_urb(ep, ctx, in_stream_lock);
/* can be stopped during prepare callback */
if (unlikely(!ep_state_running(ep)))
break;
if (err < 0) {
/* push back to ready list again for -EAGAIN */
if (err == -EAGAIN) {
push_back_to_ready_list(ep, ctx);
break;
}
if (!in_stream_lock)
notify_xrun(ep);
return -EPIPE;
}
if (!atomic_read(&ep->chip->shutdown))
err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
else
err = -ENODEV;
if (err < 0) {
if (!atomic_read(&ep->chip->shutdown)) {
usb_audio_err(ep->chip,
"Unable to submit urb #%d: %d at %s\n",
ctx->index, err, __func__);
if (!in_stream_lock)
notify_xrun(ep);
}
return -EPIPE;
}
set_bit(ctx->index, &ep->active_mask);
atomic_inc(&ep->submitted_urbs);
}
return 0;
}
/*
* complete callback for urbs
*/
static void snd_complete_urb(struct urb *urb)
{
struct snd_urb_ctx *ctx = urb->context;
struct snd_usb_endpoint *ep = ctx->ep;
int err;
if (unlikely(urb->status == -ENOENT || /* unlinked */
urb->status == -ENODEV || /* device removed */
urb->status == -ECONNRESET || /* unlinked */
urb->status == -ESHUTDOWN)) /* device disabled */
goto exit_clear;
/* device disconnected */
if (unlikely(atomic_read(&ep->chip->shutdown)))
goto exit_clear;
if (unlikely(!ep_state_running(ep)))
goto exit_clear;
if (usb_pipeout(ep->pipe)) {
retire_outbound_urb(ep, ctx);
/* can be stopped during retire callback */
if (unlikely(!ep_state_running(ep)))
goto exit_clear;
/* in low-latency and implicit-feedback modes, push back the
* URB to ready list at first, then process as much as possible
*/
if (ep->lowlatency_playback ||
snd_usb_endpoint_implicit_feedback_sink(ep)) {
push_back_to_ready_list(ep, ctx);
clear_bit(ctx->index, &ep->active_mask);
snd_usb_queue_pending_output_urbs(ep, false);
atomic_dec(&ep->submitted_urbs); /* decrement at last */
return;
}
/* in non-lowlatency mode, no error handling for prepare */
prepare_outbound_urb(ep, ctx, false);
/* can be stopped during prepare callback */
if (unlikely(!ep_state_running(ep)))
goto exit_clear;
} else {
retire_inbound_urb(ep, ctx);
/* can be stopped during retire callback */
if (unlikely(!ep_state_running(ep)))
goto exit_clear;
prepare_inbound_urb(ep, ctx);
}
if (!atomic_read(&ep->chip->shutdown))
err = usb_submit_urb(urb, GFP_ATOMIC);
else
err = -ENODEV;
if (err == 0)
return;
if (!atomic_read(&ep->chip->shutdown)) {
usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
notify_xrun(ep);
}
exit_clear:
clear_bit(ctx->index, &ep->active_mask);
atomic_dec(&ep->submitted_urbs);
}
/*
* Find or create a refcount object for the given interface
*
* The objects are released altogether in snd_usb_endpoint_free_all()
*/
static struct snd_usb_iface_ref *
iface_ref_find(struct snd_usb_audio *chip, int iface)
{
struct snd_usb_iface_ref *ip;
list_for_each_entry(ip, &chip->iface_ref_list, list)
if (ip->iface == iface)
return ip;
ip = kzalloc(sizeof(*ip), GFP_KERNEL);
if (!ip)
return NULL;
ip->iface = iface;
list_add_tail(&ip->list, &chip->iface_ref_list);
return ip;
}
/* Similarly, a refcount object for clock */
static struct snd_usb_clock_ref *
clock_ref_find(struct snd_usb_audio *chip, int clock)
{
struct snd_usb_clock_ref *ref;
list_for_each_entry(ref, &chip->clock_ref_list, list)
if (ref->clock == clock)
return ref;
ref = kzalloc(sizeof(*ref), GFP_KERNEL);
if (!ref)
return NULL;
ref->clock = clock;
atomic_set(&ref->locked, 0);
list_add_tail(&ref->list, &chip->clock_ref_list);
return ref;
}
/*
* Get the existing endpoint object corresponding EP
* Returns NULL if not present.
*/
struct snd_usb_endpoint *
snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num)
{
struct snd_usb_endpoint *ep;
list_for_each_entry(ep, &chip->ep_list, list) {
if (ep->ep_num == ep_num)
return ep;
}
return NULL;
}
#define ep_type_name(type) \
(type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync")
/**
* snd_usb_add_endpoint: Add an endpoint to an USB audio chip
*
* @chip: The chip
* @ep_num: The number of the endpoint to use
* @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
*
* If the requested endpoint has not been added to the given chip before,
* a new instance is created.
*
* Returns zero on success or a negative error code.
*
* New endpoints will be added to chip->ep_list and freed by
* calling snd_usb_endpoint_free_all().
*
* For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
* bNumEndpoints > 1 beforehand.
*/
int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type)
{
struct snd_usb_endpoint *ep;
bool is_playback;
ep = snd_usb_get_endpoint(chip, ep_num);
if (ep)
return 0;
usb_audio_dbg(chip, "Creating new %s endpoint #%x\n",
ep_type_name(type),
ep_num);
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->chip = chip;
spin_lock_init(&ep->lock);
ep->type = type;
ep->ep_num = ep_num;
INIT_LIST_HEAD(&ep->ready_playback_urbs);
atomic_set(&ep->submitted_urbs, 0);
is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
ep_num &= USB_ENDPOINT_NUMBER_MASK;
if (is_playback)
ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
else
ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
list_add_tail(&ep->list, &chip->ep_list);
return 0;
}
/* Set up syncinterval and maxsyncsize for a sync EP */
static void endpoint_set_syncinterval(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep)
{
struct usb_host_interface *alts;
struct usb_endpoint_descriptor *desc;
alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting);
if (!alts)
return;
desc = get_endpoint(alts, ep->ep_idx);
if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
desc->bRefresh >= 1 && desc->bRefresh <= 9)
ep->syncinterval = desc->bRefresh;
else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
ep->syncinterval = 1;
else if (desc->bInterval >= 1 && desc->bInterval <= 16)
ep->syncinterval = desc->bInterval - 1;
else
ep->syncinterval = 3;
ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize);
}
static bool endpoint_compatible(struct snd_usb_endpoint *ep,
const struct audioformat *fp,
const struct snd_pcm_hw_params *params)
{
if (!ep->opened)
return false;
if (ep->cur_audiofmt != fp)
return false;
if (ep->cur_rate != params_rate(params) ||
ep->cur_format != params_format(params) ||
ep->cur_period_frames != params_period_size(params) ||
ep->cur_buffer_periods != params_periods(params))
return false;
return true;
}
/*
* Check whether the given fp and hw params are compatible with the current
* setup of the target EP for implicit feedback sync
*/
bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep,
const struct audioformat *fp,
const struct snd_pcm_hw_params *params)
{
bool ret;
mutex_lock(&chip->mutex);
ret = endpoint_compatible(ep, fp, params);
mutex_unlock(&chip->mutex);
return ret;
}
/*
* snd_usb_endpoint_open: Open the endpoint
*
* Called from hw_params to assign the endpoint to the substream.
* It's reference-counted, and only the first opener is allowed to set up
* arbitrary parameters. The later opener must be compatible with the
* former opened parameters.
* The endpoint needs to be closed via snd_usb_endpoint_close() later.
*
* Note that this function doesn't configure the endpoint. The substream
* needs to set it up later via snd_usb_endpoint_set_params() and
* snd_usb_endpoint_prepare().
*/
struct snd_usb_endpoint *
snd_usb_endpoint_open(struct snd_usb_audio *chip,
const struct audioformat *fp,
const struct snd_pcm_hw_params *params,
bool is_sync_ep,
bool fixed_rate)
{
struct snd_usb_endpoint *ep;
int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint;
mutex_lock(&chip->mutex);
ep = snd_usb_get_endpoint(chip, ep_num);
if (!ep) {
usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num);
goto unlock;
}
if (!ep->opened) {
if (is_sync_ep) {
ep->iface = fp->sync_iface;
ep->altsetting = fp->sync_altsetting;
ep->ep_idx = fp->sync_ep_idx;
} else {
ep->iface = fp->iface;
ep->altsetting = fp->altsetting;
ep->ep_idx = fp->ep_idx;
}
usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n",
ep_num, ep->iface, ep->altsetting, ep->ep_idx);
ep->iface_ref = iface_ref_find(chip, ep->iface);
if (!ep->iface_ref) {
ep = NULL;
goto unlock;
}
if (fp->protocol != UAC_VERSION_1) {
ep->clock_ref = clock_ref_find(chip, fp->clock);
if (!ep->clock_ref) {
ep = NULL;
goto unlock;
}
ep->clock_ref->opened++;
}
ep->cur_audiofmt = fp;
ep->cur_channels = fp->channels;
ep->cur_rate = params_rate(params);
ep->cur_format = params_format(params);
ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) *
ep->cur_channels / 8;
ep->cur_period_frames = params_period_size(params);
ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes;
ep->cur_buffer_periods = params_periods(params);
if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC)
endpoint_set_syncinterval(chip, ep);
ep->implicit_fb_sync = fp->implicit_fb;
ep->need_setup = true;
ep->need_prepare = true;
ep->fixed_rate = fixed_rate;
usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n",
ep->cur_channels, ep->cur_rate,
snd_pcm_format_name(ep->cur_format),
ep->cur_period_bytes, ep->cur_buffer_periods,
ep->implicit_fb_sync);
} else {
if (WARN_ON(!ep->iface_ref)) {
ep = NULL;
goto unlock;
}
if (!endpoint_compatible(ep, fp, params)) {
usb_audio_err(chip, "Incompatible EP setup for 0x%x\n",
ep_num);
ep = NULL;
goto unlock;
}
usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n",
ep_num, ep->opened);
}
if (!ep->iface_ref->opened++)
ep->iface_ref->need_setup = true;
ep->opened++;
unlock:
mutex_unlock(&chip->mutex);
return ep;
}
/*
* snd_usb_endpoint_set_sync: Link data and sync endpoints
*
* Pass NULL to sync_ep to unlink again
*/
void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip,
struct snd_usb_endpoint *data_ep,
struct snd_usb_endpoint *sync_ep)
{
data_ep->sync_source = sync_ep;
}
/*
* Set data endpoint callbacks and the assigned data stream
*
* Called at PCM trigger and cleanups.
* Pass NULL to deactivate each callback.
*/
void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep,
int (*prepare)(struct snd_usb_substream *subs,
struct urb *urb,
bool in_stream_lock),
void (*retire)(struct snd_usb_substream *subs,
struct urb *urb),
struct snd_usb_substream *data_subs)
{
ep->prepare_data_urb = prepare;
ep->retire_data_urb = retire;
if (data_subs)
ep->lowlatency_playback = data_subs->lowlatency_playback;
else
ep->lowlatency_playback = false;
WRITE_ONCE(ep->data_subs, data_subs);
}
static int endpoint_set_interface(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep,
bool set)
{
int altset = set ? ep->altsetting : 0;
int err;
if (ep->iface_ref->altset == altset)
return 0;
usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n",
ep->iface, altset, ep->ep_num);
err = usb_set_interface(chip->dev, ep->iface, altset);
if (err < 0) {
usb_audio_err_ratelimited(
chip, "%d:%d: usb_set_interface failed (%d)\n",
ep->iface, altset, err);
return err;
}
if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY)
msleep(50);
ep->iface_ref->altset = altset;
return 0;
}
/*
* snd_usb_endpoint_close: Close the endpoint
*
* Unreference the already opened endpoint via snd_usb_endpoint_open().
*/
void snd_usb_endpoint_close(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep)
{
mutex_lock(&chip->mutex);
usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n",
ep->ep_num, ep->opened);
if (!--ep->iface_ref->opened &&
!(chip->quirk_flags & QUIRK_FLAG_IFACE_SKIP_CLOSE))
endpoint_set_interface(chip, ep, false);
if (!--ep->opened) {
if (ep->clock_ref) {
if (!--ep->clock_ref->opened)
ep->clock_ref->rate = 0;
}
ep->iface = 0;
ep->altsetting = 0;
ep->cur_audiofmt = NULL;
ep->cur_rate = 0;
ep->iface_ref = NULL;
ep->clock_ref = NULL;
usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num);
}
mutex_unlock(&chip->mutex);
}
/* Prepare for suspening EP, called from the main suspend handler */
void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep)
{
ep->need_prepare = true;
if (ep->iface_ref)
ep->iface_ref->need_setup = true;
if (ep->clock_ref)
ep->clock_ref->rate = 0;
}
/*
* wait until all urbs are processed.
*/
static int wait_clear_urbs(struct snd_usb_endpoint *ep)
{
unsigned long end_time = jiffies + msecs_to_jiffies(1000);
int alive;
if (atomic_read(&ep->state) != EP_STATE_STOPPING)
return 0;
do {
alive = atomic_read(&ep->submitted_urbs);
if (!alive)
break;
schedule_timeout_uninterruptible(1);
} while (time_before(jiffies, end_time));
if (alive)
usb_audio_err(ep->chip,
"timeout: still %d active urbs on EP #%x\n",
alive, ep->ep_num);
if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) {
ep->sync_sink = NULL;
snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL);
}
return 0;
}
/* sync the pending stop operation;
* this function itself doesn't trigger the stop operation
*/
void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
{
if (ep)
wait_clear_urbs(ep);
}
/*
* Stop active urbs
*
* This function moves the EP to STOPPING state if it's being RUNNING.
*/
static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending)
{
unsigned int i;
unsigned long flags;
if (!force && atomic_read(&ep->running))
return -EBUSY;
if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING))
return 0;
spin_lock_irqsave(&ep->lock, flags);
INIT_LIST_HEAD(&ep->ready_playback_urbs);
ep->next_packet_head = 0;
ep->next_packet_queued = 0;
spin_unlock_irqrestore(&ep->lock, flags);
if (keep_pending)
return 0;
for (i = 0; i < ep->nurbs; i++) {
if (test_bit(i, &ep->active_mask)) {
if (!test_and_set_bit(i, &ep->unlink_mask)) {
struct urb *u = ep->urb[i].urb;
usb_unlink_urb(u);
}
}
}
return 0;
}
/*
* release an endpoint's urbs
*/
static int release_urbs(struct snd_usb_endpoint *ep, bool force)
{
int i, err;
/* route incoming urbs to nirvana */
snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL);
/* stop and unlink urbs */
err = stop_urbs(ep, force, false);
if (err)
return err;
wait_clear_urbs(ep);
for (i = 0; i < ep->nurbs; i++)
release_urb_ctx(&ep->urb[i]);
usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
ep->syncbuf, ep->sync_dma);
ep->syncbuf = NULL;
ep->nurbs = 0;
return 0;
}
/*
* configure a data endpoint
*/
static int data_ep_set_params(struct snd_usb_endpoint *ep)
{
struct snd_usb_audio *chip = ep->chip;
unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
unsigned int max_packs_per_period, urbs_per_period, urb_packs;
unsigned int max_urbs, i;
const struct audioformat *fmt = ep->cur_audiofmt;
int frame_bits = ep->cur_frame_bytes * 8;
int tx_length_quirk = (has_tx_length_quirk(chip) &&
usb_pipeout(ep->pipe));
usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n",
ep->ep_num, ep->pipe);
if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
/*
* When operating in DSD DOP mode, the size of a sample frame
* in hardware differs from the actual physical format width
* because we need to make room for the DOP markers.
*/
frame_bits += ep->cur_channels << 3;
}
ep->datainterval = fmt->datainterval;
ep->stride = frame_bits >> 3;
switch (ep->cur_format) {
case SNDRV_PCM_FORMAT_U8:
ep->silence_value = 0x80;
break;
case SNDRV_PCM_FORMAT_DSD_U8:
case SNDRV_PCM_FORMAT_DSD_U16_LE:
case SNDRV_PCM_FORMAT_DSD_U32_LE:
case SNDRV_PCM_FORMAT_DSD_U16_BE:
case SNDRV_PCM_FORMAT_DSD_U32_BE:
ep->silence_value = 0x69;
break;
default:
ep->silence_value = 0;
}
/* assume max. frequency is 50% higher than nominal */
ep->freqmax = ep->freqn + (ep->freqn >> 1);
/* Round up freqmax to nearest integer in order to calculate maximum
* packet size, which must represent a whole number of frames.
* This is accomplished by adding 0x0.ffff before converting the
* Q16.16 format into integer.
* In order to accurately calculate the maximum packet size when
* the data interval is more than 1 (i.e. ep->datainterval > 0),
* multiply by the data interval prior to rounding. For instance,
* a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
* frames with a data interval of 1, but 11 (10.25) frames with a
* data interval of 2.
* (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
* maximum datainterval value of 3, at USB full speed, higher for
* USB high speed, noting that ep->freqmax is in units of
* frames per packet in Q16.16 format.)
*/
maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
(frame_bits >> 3);
if (tx_length_quirk)
maxsize += sizeof(__le32); /* Space for length descriptor */
/* but wMaxPacketSize might reduce this */
if (ep->maxpacksize && ep->maxpacksize < maxsize) {
/* whatever fits into a max. size packet */
unsigned int data_maxsize = maxsize = ep->maxpacksize;
if (tx_length_quirk)
/* Need to remove the length descriptor to calc freq */
data_maxsize -= sizeof(__le32);
ep->freqmax = (data_maxsize / (frame_bits >> 3))
<< (16 - ep->datainterval);
}
if (ep->fill_max)
ep->curpacksize = ep->maxpacksize;
else
ep->curpacksize = maxsize;
if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) {
packs_per_ms = 8 >> ep->datainterval;
max_packs_per_urb = MAX_PACKS_HS;
} else {
packs_per_ms = 1;
max_packs_per_urb = MAX_PACKS;
}
if (ep->sync_source && !ep->implicit_fb_sync)
max_packs_per_urb = min(max_packs_per_urb,
1U << ep->sync_source->syncinterval);
max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
/*
* Capture endpoints need to use small URBs because there's no way
* to tell in advance where the next period will end, and we don't
* want the next URB to complete much after the period ends.
*
* Playback endpoints with implicit sync much use the same parameters
* as their corresponding capture endpoint.
*/
if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) {
/* make capture URBs <= 1 ms and smaller than a period */
urb_packs = min(max_packs_per_urb, packs_per_ms);
while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes)
urb_packs >>= 1;
ep->nurbs = MAX_URBS;
/*
* Playback endpoints without implicit sync are adjusted so that
* a period fits as evenly as possible in the smallest number of
* URBs. The total number of URBs is adjusted to the size of the
* ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
*/
} else {
/* determine how small a packet can be */
minsize = (ep->freqn >> (16 - ep->datainterval)) *
(frame_bits >> 3);
/* with sync from device, assume it can be 12% lower */
if (ep->sync_source)
minsize -= minsize >> 3;
minsize = max(minsize, 1u);
/* how many packets will contain an entire ALSA period? */
max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize);
/* how many URBs will contain a period? */
urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
max_packs_per_urb);
/* how many packets are needed in each URB? */
urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
/* limit the number of frames in a single URB */
ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames,
urbs_per_period);
/* try to use enough URBs to contain an entire ALSA buffer */
max_urbs = min((unsigned) MAX_URBS,
MAX_QUEUE * packs_per_ms / urb_packs);
ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods);
}
/* allocate and initialize data urbs */
for (i = 0; i < ep->nurbs; i++) {
struct snd_urb_ctx *u = &ep->urb[i];
u->index = i;
u->ep = ep;
u->packets = urb_packs;
u->buffer_size = maxsize * u->packets;
if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
u->packets++; /* for transfer delimiter */
u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
if (!u->urb)
goto out_of_memory;
u->urb->transfer_buffer =
usb_alloc_coherent(chip->dev, u->buffer_size,
GFP_KERNEL, &u->urb->transfer_dma);
if (!u->urb->transfer_buffer)
goto out_of_memory;
u->urb->pipe = ep->pipe;
u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
u->urb->interval = 1 << ep->datainterval;
u->urb->context = u;
u->urb->complete = snd_complete_urb;
INIT_LIST_HEAD(&u->ready_list);
}
return 0;
out_of_memory:
release_urbs(ep, false);
return -ENOMEM;
}
/*
* configure a sync endpoint
*/
static int sync_ep_set_params(struct snd_usb_endpoint *ep)
{
struct snd_usb_audio *chip = ep->chip;
int i;
usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n",
ep->ep_num, ep->pipe);
ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4,
GFP_KERNEL, &ep->sync_dma);
if (!ep->syncbuf)
return -ENOMEM;
ep->nurbs = SYNC_URBS;
for (i = 0; i < SYNC_URBS; i++) {
struct snd_urb_ctx *u = &ep->urb[i];
u->index = i;
u->ep = ep;
u->packets = 1;
u->urb = usb_alloc_urb(1, GFP_KERNEL);
if (!u->urb)
goto out_of_memory;
u->urb->transfer_buffer = ep->syncbuf + i * 4;
u->urb->transfer_dma = ep->sync_dma + i * 4;
u->urb->transfer_buffer_length = 4;
u->urb->pipe = ep->pipe;
u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
u->urb->number_of_packets = 1;
u->urb->interval = 1 << ep->syncinterval;
u->urb->context = u;
u->urb->complete = snd_complete_urb;
}
return 0;
out_of_memory:
release_urbs(ep, false);
return -ENOMEM;
}
/* update the rate of the referred clock; return the actual rate */
static int update_clock_ref_rate(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep)
{
struct snd_usb_clock_ref *clock = ep->clock_ref;
int rate = ep->cur_rate;
if (!clock || clock->rate == rate)
return rate;
if (clock->rate) {
if (atomic_read(&clock->locked))
return clock->rate;
if (clock->rate != rate) {
usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n",
clock->rate, rate, ep->ep_num);
return clock->rate;
}
}
clock->rate = rate;
clock->need_setup = true;
return rate;
}
/*
* snd_usb_endpoint_set_params: configure an snd_usb_endpoint
*
* It's called either from hw_params callback.
* Determine the number of URBs to be used on this endpoint.
* An endpoint must be configured before it can be started.
* An endpoint that is already running can not be reconfigured.
*/
int snd_usb_endpoint_set_params(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep)
{
const struct audioformat *fmt = ep->cur_audiofmt;
int err = 0;
mutex_lock(&chip->mutex);
if (!ep->need_setup)
goto unlock;
/* release old buffers, if any */
err = release_urbs(ep, false);
if (err < 0)
goto unlock;
ep->datainterval = fmt->datainterval;
ep->maxpacksize = fmt->maxpacksize;
ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) {
ep->freqn = get_usb_full_speed_rate(ep->cur_rate);
ep->pps = 1000 >> ep->datainterval;
} else {
ep->freqn = get_usb_high_speed_rate(ep->cur_rate);
ep->pps = 8000 >> ep->datainterval;
}
ep->sample_rem = ep->cur_rate % ep->pps;
ep->packsize[0] = ep->cur_rate / ep->pps;
ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps;
/* calculate the frequency in 16.16 format */
ep->freqm = ep->freqn;
ep->freqshift = INT_MIN;
ep->phase = 0;
switch (ep->type) {
case SND_USB_ENDPOINT_TYPE_DATA:
err = data_ep_set_params(ep);
break;
case SND_USB_ENDPOINT_TYPE_SYNC:
err = sync_ep_set_params(ep);
break;
default:
err = -EINVAL;
}
usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err);
if (err < 0)
goto unlock;
/* some unit conversions in runtime */
ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes;
ep->curframesize = ep->curpacksize / ep->cur_frame_bytes;
err = update_clock_ref_rate(chip, ep);
if (err >= 0) {
ep->need_setup = false;
err = 0;
}
unlock:
mutex_unlock(&chip->mutex);
return err;
}
static int init_sample_rate(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep)
{
struct snd_usb_clock_ref *clock = ep->clock_ref;
int rate, err;
rate = update_clock_ref_rate(chip, ep);
if (rate < 0)
return rate;
if (clock && !clock->need_setup)
return 0;
if (!ep->fixed_rate) {
err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate);
if (err < 0) {
if (clock)
clock->rate = 0; /* reset rate */
return err;
}
}
if (clock)
clock->need_setup = false;
return 0;
}
/*
* snd_usb_endpoint_prepare: Prepare the endpoint
*
* This function sets up the EP to be fully usable state.
* It's called either from prepare callback.
* The function checks need_setup flag, and performs nothing unless needed,
* so it's safe to call this multiple times.
*
* This returns zero if unchanged, 1 if the configuration has changed,
* or a negative error code.
*/
int snd_usb_endpoint_prepare(struct snd_usb_audio *chip,
struct snd_usb_endpoint *ep)
{
bool iface_first;
int err = 0;
mutex_lock(&chip->mutex);
if (WARN_ON(!ep->iface_ref))
goto unlock;
if (!ep->need_prepare)
goto unlock;
/* If the interface has been already set up, just set EP parameters */
if (!ep->iface_ref->need_setup) {
/* sample rate setup of UAC1 is per endpoint, and we need
* to update at each EP configuration
*/
if (ep->cur_audiofmt->protocol == UAC_VERSION_1) {
err = init_sample_rate(chip, ep);
if (err < 0)
goto unlock;
}
goto done;
}
/* Need to deselect altsetting at first */
endpoint_set_interface(chip, ep, false);
/* Some UAC1 devices (e.g. Yamaha THR10) need the host interface
* to be set up before parameter setups
*/
iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1;
/* Workaround for devices that require the interface setup at first like UAC1 */
if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST)
iface_first = true;
if (iface_first) {
err = endpoint_set_interface(chip, ep, true);
if (err < 0)
goto unlock;
}
err = snd_usb_init_pitch(chip, ep->cur_audiofmt);
if (err < 0)
goto unlock;
err = init_sample_rate(chip, ep);
if (err < 0)
goto unlock;
err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt);
if (err < 0)
goto unlock;
/* for UAC2/3, enable the interface altset here at last */
if (!iface_first) {
err = endpoint_set_interface(chip, ep, true);
if (err < 0)
goto unlock;
}
ep->iface_ref->need_setup = false;
done:
ep->need_prepare = false;
err = 1;
unlock:
mutex_unlock(&chip->mutex);
return err;
}
/* get the current rate set to the given clock by any endpoint */
int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock)
{
struct snd_usb_clock_ref *ref;
int rate = 0;
if (!clock)
return 0;
mutex_lock(&chip->mutex);
list_for_each_entry(ref, &chip->clock_ref_list, list) {
if (ref->clock == clock) {
rate = ref->rate;
break;
}
}
mutex_unlock(&chip->mutex);
return rate;
}
/**
* snd_usb_endpoint_start: start an snd_usb_endpoint
*
* @ep: the endpoint to start
*
* A call to this function will increment the running count of the endpoint.
* In case it is not already running, the URBs for this endpoint will be
* submitted. Otherwise, this function does nothing.
*
* Must be balanced to calls of snd_usb_endpoint_stop().
*
* Returns an error if the URB submission failed, 0 in all other cases.
*/
int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
{
bool is_playback = usb_pipeout(ep->pipe);
int err;
unsigned int i;
if (atomic_read(&ep->chip->shutdown))
return -EBADFD;
if (ep->sync_source)
WRITE_ONCE(ep->sync_source->sync_sink, ep);
usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n",
ep_type_name(ep->type), ep->ep_num,
atomic_read(&ep->running));
/* already running? */
if (atomic_inc_return(&ep->running) != 1)
return 0;
if (ep->clock_ref)
atomic_inc(&ep->clock_ref->locked);
ep->active_mask = 0;
ep->unlink_mask = 0;
ep->phase = 0;
ep->sample_accum = 0;
snd_usb_endpoint_start_quirk(ep);
/*
* If this endpoint has a data endpoint as implicit feedback source,
* don't start the urbs here. Instead, mark them all as available,
* wait for the record urbs to return and queue the playback urbs
* from that context.
*/
if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING))
goto __error;
if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
!(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) {
usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n");
i = 0;
goto fill_rest;
}
for (i = 0; i < ep->nurbs; i++) {
struct urb *urb = ep->urb[i].urb;
if (snd_BUG_ON(!urb))
goto __error;
if (is_playback)
err = prepare_outbound_urb(ep, urb->context, true);
else
err = prepare_inbound_urb(ep, urb->context);
if (err < 0) {
/* stop filling at applptr */
if (err == -EAGAIN)
break;
usb_audio_dbg(ep->chip,
"EP 0x%x: failed to prepare urb: %d\n",
ep->ep_num, err);
goto __error;
}
if (!atomic_read(&ep->chip->shutdown))
err = usb_submit_urb(urb, GFP_ATOMIC);
else
err = -ENODEV;
if (err < 0) {
if (!atomic_read(&ep->chip->shutdown))
usb_audio_err(ep->chip,
"cannot submit urb %d, error %d: %s\n",
i, err, usb_error_string(err));
goto __error;
}
set_bit(i, &ep->active_mask);
atomic_inc(&ep->submitted_urbs);
}
if (!i) {
usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n",
ep->ep_num);
goto __error;
}
usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n",
i, ep->ep_num);
fill_rest:
/* put the remaining URBs to ready list */
if (is_playback) {
for (; i < ep->nurbs; i++)
push_back_to_ready_list(ep, ep->urb + i);
}
return 0;
__error:
snd_usb_endpoint_stop(ep, false);
return -EPIPE;
}
/**
* snd_usb_endpoint_stop: stop an snd_usb_endpoint
*
* @ep: the endpoint to stop (may be NULL)
* @keep_pending: keep in-flight URBs
*
* A call to this function will decrement the running count of the endpoint.
* In case the last user has requested the endpoint stop, the URBs will
* actually be deactivated.
*
* Must be balanced to calls of snd_usb_endpoint_start().
*
* The caller needs to synchronize the pending stop operation via
* snd_usb_endpoint_sync_pending_stop().
*/
void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending)
{
if (!ep)
return;
usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n",
ep_type_name(ep->type), ep->ep_num,
atomic_read(&ep->running));
if (snd_BUG_ON(!atomic_read(&ep->running)))
return;
if (!atomic_dec_return(&ep->running)) {
if (ep->sync_source)
WRITE_ONCE(ep->sync_source->sync_sink, NULL);
stop_urbs(ep, false, keep_pending);
if (ep->clock_ref)
atomic_dec(&ep->clock_ref->locked);
if (ep->chip->quirk_flags & QUIRK_FLAG_FORCE_IFACE_RESET &&
usb_pipeout(ep->pipe)) {
ep->need_prepare = true;
if (ep->iface_ref)
ep->iface_ref->need_setup = true;
}
}
}
/**
* snd_usb_endpoint_release: Tear down an snd_usb_endpoint
*
* @ep: the endpoint to release
*
* This function does not care for the endpoint's running count but will tear
* down all the streaming URBs immediately.
*/
void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
{
release_urbs(ep, true);
}
/**
* snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint
* @chip: The chip
*
* This free all endpoints and those resources
*/
void snd_usb_endpoint_free_all(struct snd_usb_audio *chip)
{
struct snd_usb_endpoint *ep, *en;
struct snd_usb_iface_ref *ip, *in;
struct snd_usb_clock_ref *cp, *cn;
list_for_each_entry_safe(ep, en, &chip->ep_list, list)
kfree(ep);
list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list)
kfree(ip);
list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list)
kfree(cp);
}
/*
* snd_usb_handle_sync_urb: parse an USB sync packet
*
* @ep: the endpoint to handle the packet
* @sender: the sending endpoint
* @urb: the received packet
*
* This function is called from the context of an endpoint that received
* the packet and is used to let another endpoint object handle the payload.
*/
static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
struct snd_usb_endpoint *sender,
const struct urb *urb)
{
int shift;
unsigned int f;
unsigned long flags;
snd_BUG_ON(ep == sender);
/*
* In case the endpoint is operating in implicit feedback mode, prepare
* a new outbound URB that has the same layout as the received packet
* and add it to the list of pending urbs. queue_pending_output_urbs()
* will take care of them later.
*/
if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
atomic_read(&ep->running)) {
/* implicit feedback case */
int i, bytes = 0;
struct snd_urb_ctx *in_ctx;
struct snd_usb_packet_info *out_packet;
in_ctx = urb->context;
/* Count overall packet size */
for (i = 0; i < in_ctx->packets; i++)
if (urb->iso_frame_desc[i].status == 0)
bytes += urb->iso_frame_desc[i].actual_length;
/*
* skip empty packets. At least M-Audio's Fast Track Ultra stops
* streaming once it received a 0-byte OUT URB
*/
if (bytes == 0)
return;
spin_lock_irqsave(&ep->lock, flags);
if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) {
spin_unlock_irqrestore(&ep->lock, flags);
usb_audio_err(ep->chip,
"next package FIFO overflow EP 0x%x\n",
ep->ep_num);
notify_xrun(ep);
return;
}
out_packet = next_packet_fifo_enqueue(ep);
/*
* Iterate through the inbound packet and prepare the lengths
* for the output packet. The OUT packet we are about to send
* will have the same amount of payload bytes per stride as the
* IN packet we just received. Since the actual size is scaled
* by the stride, use the sender stride to calculate the length
* in case the number of channels differ between the implicitly
* fed-back endpoint and the synchronizing endpoint.
*/
out_packet->packets = in_ctx->packets;
for (i = 0; i < in_ctx->packets; i++) {
if (urb->iso_frame_desc[i].status == 0)
out_packet->packet_size[i] =
urb->iso_frame_desc[i].actual_length / sender->stride;
else
out_packet->packet_size[i] = 0;
}
spin_unlock_irqrestore(&ep->lock, flags);
snd_usb_queue_pending_output_urbs(ep, false);
return;
}
/*
* process after playback sync complete
*
* Full speed devices report feedback values in 10.14 format as samples
* per frame, high speed devices in 16.16 format as samples per
* microframe.
*
* Because the Audio Class 1 spec was written before USB 2.0, many high
* speed devices use a wrong interpretation, some others use an
* entirely different format.
*
* Therefore, we cannot predict what format any particular device uses
* and must detect it automatically.
*/
if (urb->iso_frame_desc[0].status != 0 ||
urb->iso_frame_desc[0].actual_length < 3)
return;
f = le32_to_cpup(urb->transfer_buffer);
if (urb->iso_frame_desc[0].actual_length == 3)
f &= 0x00ffffff;
else
f &= 0x0fffffff;
if (f == 0)
return;
if (unlikely(sender->tenor_fb_quirk)) {
/*
* Devices based on Tenor 8802 chipsets (TEAC UD-H01
* and others) sometimes change the feedback value
* by +/- 0x1.0000.
*/
if (f < ep->freqn - 0x8000)
f += 0xf000;
else if (f > ep->freqn + 0x8000)
f -= 0xf000;
} else if (unlikely(ep->freqshift == INT_MIN)) {
/*
* The first time we see a feedback value, determine its format
* by shifting it left or right until it matches the nominal
* frequency value. This assumes that the feedback does not
* differ from the nominal value more than +50% or -25%.
*/
shift = 0;
while (f < ep->freqn - ep->freqn / 4) {
f <<= 1;
shift++;
}
while (f > ep->freqn + ep->freqn / 2) {
f >>= 1;
shift--;
}
ep->freqshift = shift;
} else if (ep->freqshift >= 0)
f <<= ep->freqshift;
else
f >>= -ep->freqshift;
if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
/*
* If the frequency looks valid, set it.
* This value is referred to in prepare_playback_urb().
*/
spin_lock_irqsave(&ep->lock, flags);
ep->freqm = f;
spin_unlock_irqrestore(&ep->lock, flags);
} else {
/*
* Out of range; maybe the shift value is wrong.
* Reset it so that we autodetect again the next time.
*/
ep->freqshift = INT_MIN;
}
}