Lokendra Singh 1f4ec585e6 Bluetooth: btintel: Skip reading firmware file version while in bootloader mode
This skips parsing the firmware version information from the firmware
file while controller is in bootloader mode. As in bootloader mode,
we are supposed to patch unconditionally.

Signed-off-by: Lokendra Singh <lokendra.singh@intel.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Tested-by: Tedd Ho-Jeong An <tedd.an@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-03-25 16:11:12 +01:00

1283 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Bluetooth support for Intel devices
*
* Copyright (C) 2015 Intel Corporation
*/
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/regmap.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "btintel.h"
#define VERSION "0.1"
#define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
#define RSA_HEADER_LEN 644
#define CSS_HEADER_OFFSET 8
#define ECDSA_OFFSET 644
#define ECDSA_HEADER_LEN 320
#define CMD_WRITE_BOOT_PARAMS 0xfc0e
struct cmd_write_boot_params {
u32 boot_addr;
u8 fw_build_num;
u8 fw_build_ww;
u8 fw_build_yy;
} __packed;
int btintel_check_bdaddr(struct hci_dev *hdev)
{
struct hci_rp_read_bd_addr *bda;
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
int err = PTR_ERR(skb);
bt_dev_err(hdev, "Reading Intel device address failed (%d)",
err);
return err;
}
if (skb->len != sizeof(*bda)) {
bt_dev_err(hdev, "Intel device address length mismatch");
kfree_skb(skb);
return -EIO;
}
bda = (struct hci_rp_read_bd_addr *)skb->data;
/* For some Intel based controllers, the default Bluetooth device
* address 00:03:19:9E:8B:00 can be found. These controllers are
* fully operational, but have the danger of duplicate addresses
* and that in turn can cause problems with Bluetooth operation.
*/
if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
bt_dev_err(hdev, "Found Intel default device address (%pMR)",
&bda->bdaddr);
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
int btintel_enter_mfg(struct hci_dev *hdev)
{
static const u8 param[] = { 0x01, 0x00 };
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_enter_mfg);
int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
{
u8 param[] = { 0x00, 0x00 };
struct sk_buff *skb;
/* The 2nd command parameter specifies the manufacturing exit method:
* 0x00: Just disable the manufacturing mode (0x00).
* 0x01: Disable manufacturing mode and reset with patches deactivated.
* 0x02: Disable manufacturing mode and reset with patches activated.
*/
if (reset)
param[1] |= patched ? 0x02 : 0x01;
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_exit_mfg);
int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
{
struct sk_buff *skb;
int err;
skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(hdev, "Changing Intel device address failed (%d)",
err);
return err;
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
int btintel_set_diag(struct hci_dev *hdev, bool enable)
{
struct sk_buff *skb;
u8 param[3];
int err;
if (enable) {
param[0] = 0x03;
param[1] = 0x03;
param[2] = 0x03;
} else {
param[0] = 0x00;
param[1] = 0x00;
param[2] = 0x00;
}
skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
if (err == -ENODATA)
goto done;
bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
err);
return err;
}
kfree_skb(skb);
done:
btintel_set_event_mask(hdev, enable);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_diag);
int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
{
int err, ret;
err = btintel_enter_mfg(hdev);
if (err)
return err;
ret = btintel_set_diag(hdev, enable);
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
return ret;
}
EXPORT_SYMBOL_GPL(btintel_set_diag_mfg);
void btintel_hw_error(struct hci_dev *hdev, u8 code)
{
struct sk_buff *skb;
u8 type = 0x00;
bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
PTR_ERR(skb));
return;
}
kfree_skb(skb);
skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
PTR_ERR(skb));
return;
}
if (skb->len != 13) {
bt_dev_err(hdev, "Exception info size mismatch");
kfree_skb(skb);
return;
}
bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(btintel_hw_error);
int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
{
const char *variant;
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (ver->hw_platform != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
ver->hw_platform);
return -EINVAL;
}
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come along.
*/
switch (ver->hw_variant) {
case 0x0b: /* SfP */
case 0x0c: /* WsP */
case 0x11: /* JfP */
case 0x12: /* ThP */
case 0x13: /* HrP */
case 0x14: /* CcP */
break;
default:
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
ver->hw_variant);
return -EINVAL;
}
switch (ver->fw_variant) {
case 0x06:
variant = "Bootloader";
break;
case 0x23:
variant = "Firmware";
break;
default:
bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
return -EINVAL;
}
bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
ver->fw_build_num, ver->fw_build_ww,
2000 + ver->fw_build_yy);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_version_info);
int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
const void *param)
{
while (plen > 0) {
struct sk_buff *skb;
u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
cmd_param[0] = fragment_type;
memcpy(cmd_param + 1, param, fragment_len);
skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
cmd_param, HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
plen -= fragment_len;
param += fragment_len;
}
return 0;
}
EXPORT_SYMBOL_GPL(btintel_secure_send);
int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
{
const struct firmware *fw;
struct sk_buff *skb;
const u8 *fw_ptr;
int err;
err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
ddc_name, err);
return err;
}
bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
fw_ptr = fw->data;
/* DDC file contains one or more DDC structure which has
* Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
*/
while (fw->size > fw_ptr - fw->data) {
u8 cmd_plen = fw_ptr[0] + sizeof(u8);
skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
PTR_ERR(skb));
release_firmware(fw);
return PTR_ERR(skb);
}
fw_ptr += cmd_plen;
kfree_skb(skb);
}
release_firmware(fw);
bt_dev_info(hdev, "Applying Intel DDC parameters completed");
return 0;
}
EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
{
u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
struct sk_buff *skb;
int err;
if (debug)
mask[1] |= 0x62;
skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
return err;
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_event_mask);
int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
{
int err, ret;
err = btintel_enter_mfg(hdev);
if (err)
return err;
ret = btintel_set_event_mask(hdev, debug);
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
return ret;
}
EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*ver)) {
bt_dev_err(hdev, "Intel version event size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(ver, skb->data, sizeof(*ver));
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_version);
int btintel_version_info_tlv(struct hci_dev *hdev, struct intel_version_tlv *version)
{
const char *variant;
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
INTEL_HW_PLATFORM(version->cnvi_bt));
return -EINVAL;
}
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come along.
*/
switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
case 0x17: /* TyP */
case 0x18: /* Slr */
case 0x19: /* Slr-F */
break;
default:
bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
INTEL_HW_VARIANT(version->cnvi_bt));
return -EINVAL;
}
switch (version->img_type) {
case 0x01:
variant = "Bootloader";
/* It is required that every single firmware fragment is acknowledged
* with a command complete event. If the boot parameters indicate
* that this bootloader does not send them, then abort the setup.
*/
if (version->limited_cce != 0x00) {
bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
version->limited_cce);
return -EINVAL;
}
/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
if (version->sbe_type > 0x01) {
bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
version->sbe_type);
return -EINVAL;
}
bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
bt_dev_info(hdev, "Secure boot is %s",
version->secure_boot ? "enabled" : "disabled");
bt_dev_info(hdev, "OTP lock is %s",
version->otp_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "API lock is %s",
version->api_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Debug lock is %s",
version->debug_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
version->min_fw_build_nn, version->min_fw_build_cw,
2000 + version->min_fw_build_yy);
break;
case 0x03:
variant = "Firmware";
break;
default:
bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
return -EINVAL;
}
bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
2000 + (version->timestamp >> 8), version->timestamp & 0xff,
version->build_type, version->build_num);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
int btintel_read_version_tlv(struct hci_dev *hdev, struct intel_version_tlv *version)
{
struct sk_buff *skb;
const u8 param[1] = { 0xFF };
if (!version)
return -EINVAL;
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->data[0]) {
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
skb->data[0]);
kfree_skb(skb);
return -EIO;
}
/* Consume Command Complete Status field */
skb_pull(skb, 1);
/* Event parameters contatin multiple TLVs. Read each of them
* and only keep the required data. Also, it use existing legacy
* version field like hw_platform, hw_variant, and fw_variant
* to keep the existing setup flow
*/
while (skb->len) {
struct intel_tlv *tlv;
tlv = (struct intel_tlv *)skb->data;
switch (tlv->type) {
case INTEL_TLV_CNVI_TOP:
version->cnvi_top = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_CNVR_TOP:
version->cnvr_top = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_CNVI_BT:
version->cnvi_bt = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_CNVR_BT:
version->cnvr_bt = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_DEV_REV_ID:
version->dev_rev_id = get_unaligned_le16(tlv->val);
break;
case INTEL_TLV_IMAGE_TYPE:
version->img_type = tlv->val[0];
break;
case INTEL_TLV_TIME_STAMP:
/* If image type is Operational firmware (0x03), then
* running FW Calendar Week and Year information can
* be extracted from Timestamp information
*/
version->min_fw_build_cw = tlv->val[0];
version->min_fw_build_yy = tlv->val[1];
version->timestamp = get_unaligned_le16(tlv->val);
break;
case INTEL_TLV_BUILD_TYPE:
version->build_type = tlv->val[0];
break;
case INTEL_TLV_BUILD_NUM:
/* If image type is Operational firmware (0x03), then
* running FW build number can be extracted from the
* Build information
*/
version->min_fw_build_nn = tlv->val[0];
version->build_num = get_unaligned_le32(tlv->val);
break;
case INTEL_TLV_SECURE_BOOT:
version->secure_boot = tlv->val[0];
break;
case INTEL_TLV_OTP_LOCK:
version->otp_lock = tlv->val[0];
break;
case INTEL_TLV_API_LOCK:
version->api_lock = tlv->val[0];
break;
case INTEL_TLV_DEBUG_LOCK:
version->debug_lock = tlv->val[0];
break;
case INTEL_TLV_MIN_FW:
version->min_fw_build_nn = tlv->val[0];
version->min_fw_build_cw = tlv->val[1];
version->min_fw_build_yy = tlv->val[2];
break;
case INTEL_TLV_LIMITED_CCE:
version->limited_cce = tlv->val[0];
break;
case INTEL_TLV_SBE_TYPE:
version->sbe_type = tlv->val[0];
break;
case INTEL_TLV_OTP_BDADDR:
memcpy(&version->otp_bd_addr, tlv->val, tlv->len);
break;
default:
/* Ignore rest of information */
break;
}
/* consume the current tlv and move to next*/
skb_pull(skb, tlv->len + sizeof(*tlv));
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_version_tlv);
/* ------- REGMAP IBT SUPPORT ------- */
#define IBT_REG_MODE_8BIT 0x00
#define IBT_REG_MODE_16BIT 0x01
#define IBT_REG_MODE_32BIT 0x02
struct regmap_ibt_context {
struct hci_dev *hdev;
__u16 op_write;
__u16 op_read;
};
struct ibt_cp_reg_access {
__le32 addr;
__u8 mode;
__u8 len;
__u8 data[];
} __packed;
struct ibt_rp_reg_access {
__u8 status;
__le32 addr;
__u8 data[];
} __packed;
static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
void *val, size_t val_size)
{
struct regmap_ibt_context *ctx = context;
struct ibt_cp_reg_access cp;
struct ibt_rp_reg_access *rp;
struct sk_buff *skb;
int err = 0;
if (reg_size != sizeof(__le32))
return -EINVAL;
switch (val_size) {
case 1:
cp.mode = IBT_REG_MODE_8BIT;
break;
case 2:
cp.mode = IBT_REG_MODE_16BIT;
break;
case 4:
cp.mode = IBT_REG_MODE_32BIT;
break;
default:
return -EINVAL;
}
/* regmap provides a little-endian formatted addr */
cp.addr = *(__le32 *)addr;
cp.len = val_size;
bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
le32_to_cpu(cp.addr), err);
return err;
}
if (skb->len != sizeof(*rp) + val_size) {
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
le32_to_cpu(cp.addr));
err = -EINVAL;
goto done;
}
rp = (struct ibt_rp_reg_access *)skb->data;
if (rp->addr != cp.addr) {
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
le32_to_cpu(rp->addr));
err = -EINVAL;
goto done;
}
memcpy(val, rp->data, val_size);
done:
kfree_skb(skb);
return err;
}
static int regmap_ibt_gather_write(void *context,
const void *addr, size_t reg_size,
const void *val, size_t val_size)
{
struct regmap_ibt_context *ctx = context;
struct ibt_cp_reg_access *cp;
struct sk_buff *skb;
int plen = sizeof(*cp) + val_size;
u8 mode;
int err = 0;
if (reg_size != sizeof(__le32))
return -EINVAL;
switch (val_size) {
case 1:
mode = IBT_REG_MODE_8BIT;
break;
case 2:
mode = IBT_REG_MODE_16BIT;
break;
case 4:
mode = IBT_REG_MODE_32BIT;
break;
default:
return -EINVAL;
}
cp = kmalloc(plen, GFP_KERNEL);
if (!cp)
return -ENOMEM;
/* regmap provides a little-endian formatted addr/value */
cp->addr = *(__le32 *)addr;
cp->mode = mode;
cp->len = val_size;
memcpy(&cp->data, val, val_size);
bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
le32_to_cpu(cp->addr), err);
goto done;
}
kfree_skb(skb);
done:
kfree(cp);
return err;
}
static int regmap_ibt_write(void *context, const void *data, size_t count)
{
/* data contains register+value, since we only support 32bit addr,
* minimum data size is 4 bytes.
*/
if (WARN_ONCE(count < 4, "Invalid register access"))
return -EINVAL;
return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
}
static void regmap_ibt_free_context(void *context)
{
kfree(context);
}
static struct regmap_bus regmap_ibt = {
.read = regmap_ibt_read,
.write = regmap_ibt_write,
.gather_write = regmap_ibt_gather_write,
.free_context = regmap_ibt_free_context,
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
};
/* Config is the same for all register regions */
static const struct regmap_config regmap_ibt_cfg = {
.name = "btintel_regmap",
.reg_bits = 32,
.val_bits = 32,
};
struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
u16 opcode_write)
{
struct regmap_ibt_context *ctx;
bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
opcode_write);
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
ctx->op_read = opcode_read;
ctx->op_write = opcode_write;
ctx->hdev = hdev;
return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
}
EXPORT_SYMBOL_GPL(btintel_regmap_init);
int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
{
struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
struct sk_buff *skb;
params.boot_param = cpu_to_le32(boot_param);
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Failed to send Intel Reset command");
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
int btintel_read_boot_params(struct hci_dev *hdev,
struct intel_boot_params *params)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*params)) {
bt_dev_err(hdev, "Intel boot parameters size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(params, skb->data, sizeof(*params));
kfree_skb(skb);
if (params->status) {
bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
params->status);
return -bt_to_errno(params->status);
}
bt_dev_info(hdev, "Device revision is %u",
le16_to_cpu(params->dev_revid));
bt_dev_info(hdev, "Secure boot is %s",
params->secure_boot ? "enabled" : "disabled");
bt_dev_info(hdev, "OTP lock is %s",
params->otp_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "API lock is %s",
params->api_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Debug lock is %s",
params->debug_lock ? "enabled" : "disabled");
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
params->min_fw_build_nn, params->min_fw_build_cw,
2000 + params->min_fw_build_yy);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_boot_params);
static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
const struct firmware *fw)
{
int err;
/* Start the firmware download transaction with the Init fragment
* represented by the 128 bytes of CSS header.
*/
err = btintel_secure_send(hdev, 0x00, 128, fw->data);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
goto done;
}
/* Send the 256 bytes of public key information from the firmware
* as the PKey fragment.
*/
err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
goto done;
}
/* Send the 256 bytes of signature information from the firmware
* as the Sign fragment.
*/
err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
goto done;
}
done:
return err;
}
static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
const struct firmware *fw)
{
int err;
/* Start the firmware download transaction with the Init fragment
* represented by the 128 bytes of CSS header.
*/
err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
return err;
}
/* Send the 96 bytes of public key information from the firmware
* as the PKey fragment.
*/
err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
return err;
}
/* Send the 96 bytes of signature information from the firmware
* as the Sign fragment
*/
err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware signature (%d)",
err);
return err;
}
return 0;
}
static int btintel_download_firmware_payload(struct hci_dev *hdev,
const struct firmware *fw,
size_t offset)
{
int err;
const u8 *fw_ptr;
u32 frag_len;
fw_ptr = fw->data + offset;
frag_len = 0;
err = -EINVAL;
while (fw_ptr - fw->data < fw->size) {
struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
frag_len += sizeof(*cmd) + cmd->plen;
/* The parameter length of the secure send command requires
* a 4 byte alignment. It happens so that the firmware file
* contains proper Intel_NOP commands to align the fragments
* as needed.
*
* Send set of commands with 4 byte alignment from the
* firmware data buffer as a single Data fragement.
*/
if (!(frag_len % 4)) {
err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
if (err < 0) {
bt_dev_err(hdev,
"Failed to send firmware data (%d)",
err);
goto done;
}
fw_ptr += frag_len;
frag_len = 0;
}
}
done:
return err;
}
static bool btintel_firmware_version(struct hci_dev *hdev,
u8 num, u8 ww, u8 yy,
const struct firmware *fw,
u32 *boot_addr)
{
const u8 *fw_ptr;
fw_ptr = fw->data;
while (fw_ptr - fw->data < fw->size) {
struct hci_command_hdr *cmd = (void *)(fw_ptr);
/* Each SKU has a different reset parameter to use in the
* HCI_Intel_Reset command and it is embedded in the firmware
* data. So, instead of using static value per SKU, check
* the firmware data and save it for later use.
*/
if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
struct cmd_write_boot_params *params;
params = (void *)(fw_ptr + sizeof(*cmd));
bt_dev_info(hdev, "Boot Address: 0x%x",
le32_to_cpu(params->boot_addr));
bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
params->fw_build_num, params->fw_build_ww,
params->fw_build_yy);
return (num == params->fw_build_num &&
ww == params->fw_build_ww &&
yy == params->fw_build_yy);
}
fw_ptr += sizeof(*cmd) + cmd->plen;
}
return false;
}
int btintel_download_firmware(struct hci_dev *hdev,
struct intel_version *ver,
const struct firmware *fw,
u32 *boot_param)
{
int err;
/* SfP and WsP don't seem to update the firmware version on file
* so version checking is currently not possible.
*/
switch (ver->hw_variant) {
case 0x0b: /* SfP */
case 0x0c: /* WsP */
/* Skip version checking */
break;
default:
/* Skip reading firmware file version in bootloader mode */
if (ver->fw_variant == 0x06)
break;
/* Skip download if firmware has the same version */
if (btintel_firmware_version(hdev, ver->fw_build_num,
ver->fw_build_ww, ver->fw_build_yy,
fw, boot_param)) {
bt_dev_info(hdev, "Firmware already loaded");
/* Return -EALREADY to indicate that the firmware has
* already been loaded.
*/
return -EALREADY;
}
}
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x06 identifies
* the bootloader and the value 0x23 identifies the operational
* firmware.
*
* If the firmware version has changed that means it needs to be reset
* to bootloader when operational so the new firmware can be loaded.
*/
if (ver->fw_variant == 0x23)
return -EINVAL;
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
if (err)
return err;
return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
}
EXPORT_SYMBOL_GPL(btintel_download_firmware);
int btintel_download_firmware_newgen(struct hci_dev *hdev,
struct intel_version_tlv *ver,
const struct firmware *fw, u32 *boot_param,
u8 hw_variant, u8 sbe_type)
{
int err;
u32 css_header_ver;
/* Skip reading firmware file version in bootloader mode */
if (ver->img_type != 0x01) {
/* Skip download if firmware has the same version */
if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
ver->min_fw_build_cw,
ver->min_fw_build_yy,
fw, boot_param)) {
bt_dev_info(hdev, "Firmware already loaded");
/* Return -EALREADY to indicate that firmware has
* already been loaded.
*/
return -EALREADY;
}
}
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x01 identifies
* the bootloader and the value 0x03 identifies the operational
* firmware.
*
* If the firmware version has changed that means it needs to be reset
* to bootloader when operational so the new firmware can be loaded.
*/
if (ver->img_type == 0x03)
return -EINVAL;
/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
* only RSA secure boot engine. Hence, the corresponding sfi file will
* have RSA header of 644 bytes followed by Command Buffer.
*
* iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
* secure boot engine. As a result, the corresponding sfi file will
* have RSA header of 644, ECDSA header of 320 bytes followed by
* Command Buffer.
*
* CSS Header byte positions 0x08 to 0x0B represent the CSS Header
* version: RSA(0x00010000) , ECDSA (0x00020000)
*/
css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
if (css_header_ver != 0x00010000) {
bt_dev_err(hdev, "Invalid CSS Header version");
return -EINVAL;
}
if (hw_variant <= 0x14) {
if (sbe_type != 0x00) {
bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
hw_variant);
return -EINVAL;
}
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
if (err)
return err;
err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
if (err)
return err;
} else if (hw_variant >= 0x17) {
/* Check if CSS header for ECDSA follows the RSA header */
if (fw->data[ECDSA_OFFSET] != 0x06)
return -EINVAL;
/* Check if the CSS Header version is ECDSA(0x00020000) */
css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
if (css_header_ver != 0x00020000) {
bt_dev_err(hdev, "Invalid CSS Header version");
return -EINVAL;
}
if (sbe_type == 0x00) {
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
if (err)
return err;
err = btintel_download_firmware_payload(hdev, fw,
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
if (err)
return err;
} else if (sbe_type == 0x01) {
err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
if (err)
return err;
err = btintel_download_firmware_payload(hdev, fw,
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
if (err)
return err;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(btintel_download_firmware_newgen);
void btintel_reset_to_bootloader(struct hci_dev *hdev)
{
struct intel_reset params;
struct sk_buff *skb;
/* Send Intel Reset command. This will result in
* re-enumeration of BT controller.
*
* Intel Reset parameter description:
* reset_type : 0x00 (Soft reset),
* 0x01 (Hard reset)
* patch_enable : 0x00 (Do not enable),
* 0x01 (Enable)
* ddc_reload : 0x00 (Do not reload),
* 0x01 (Reload)
* boot_option: 0x00 (Current image),
* 0x01 (Specified boot address)
* boot_param: Boot address
*
*/
params.reset_type = 0x01;
params.patch_enable = 0x01;
params.ddc_reload = 0x01;
params.boot_option = 0x00;
params.boot_param = cpu_to_le32(0x00000000);
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
&params, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "FW download error recovery failed (%ld)",
PTR_ERR(skb));
return;
}
bt_dev_info(hdev, "Intel reset sent to retry FW download");
kfree_skb(skb);
/* Current Intel BT controllers(ThP/JfP) hold the USB reset
* lines for 2ms when it receives Intel Reset in bootloader mode.
* Whereas, the upcoming Intel BT controllers will hold USB reset
* for 150ms. To keep the delay generic, 150ms is chosen here.
*/
msleep(150);
}
EXPORT_SYMBOL_GPL(btintel_reset_to_bootloader);
int btintel_read_debug_features(struct hci_dev *hdev,
struct intel_debug_features *features)
{
struct sk_buff *skb;
u8 page_no = 1;
/* Intel controller supports two pages, each page is of 128-bit
* feature bit mask. And each bit defines specific feature support
*/
skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading supported features failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != (sizeof(features->page1) + 3)) {
bt_dev_err(hdev, "Supported features event size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(features->page1, skb->data + 3, sizeof(features->page1));
/* Read the supported features page2 if required in future.
*/
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_debug_features);
int btintel_set_debug_features(struct hci_dev *hdev,
const struct intel_debug_features *features)
{
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00 };
struct sk_buff *skb;
if (!features)
return -EINVAL;
if (!(features->page1[0] & 0x3f)) {
bt_dev_info(hdev, "Telemetry exception format not supported");
return 0;
}
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_debug_features);
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("intel/ibt-11-5.sfi");
MODULE_FIRMWARE("intel/ibt-11-5.ddc");
MODULE_FIRMWARE("intel/ibt-12-16.sfi");
MODULE_FIRMWARE("intel/ibt-12-16.ddc");