Jean Delvare c03983ac9b Spelling fix: explicitly
From: Jean Delvare <khali@linux-fr.org>

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
2007-10-19 23:22:55 +02:00

749 lines
24 KiB
C

#ifndef _ASM_POWERPC_IO_H
#define _ASM_POWERPC_IO_H
#ifdef __KERNEL__
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/* Check of existence of legacy devices */
extern int check_legacy_ioport(unsigned long base_port);
#define I8042_DATA_REG 0x60
#define FDC_BASE 0x3f0
/* only relevant for PReP */
#define _PIDXR 0x279
#define _PNPWRP 0xa79
#define PNPBIOS_BASE 0xf000
#include <linux/compiler.h>
#include <asm/page.h>
#include <asm/byteorder.h>
#include <asm/synch.h>
#include <asm/delay.h>
#include <asm/mmu.h>
#include <asm-generic/iomap.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#define SIO_CONFIG_RA 0x398
#define SIO_CONFIG_RD 0x399
#define SLOW_DOWN_IO
/* 32 bits uses slightly different variables for the various IO
* bases. Most of this file only uses _IO_BASE though which we
* define properly based on the platform
*/
#ifndef CONFIG_PCI
#define _IO_BASE 0
#define _ISA_MEM_BASE 0
#define PCI_DRAM_OFFSET 0
#elif defined(CONFIG_PPC32)
#define _IO_BASE isa_io_base
#define _ISA_MEM_BASE isa_mem_base
#define PCI_DRAM_OFFSET pci_dram_offset
#else
#define _IO_BASE pci_io_base
#define _ISA_MEM_BASE 0
#define PCI_DRAM_OFFSET 0
#endif
extern unsigned long isa_io_base;
extern unsigned long isa_mem_base;
extern unsigned long pci_io_base;
extern unsigned long pci_dram_offset;
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
#error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
#endif
/*
*
* Low level MMIO accessors
*
* This provides the non-bus specific accessors to MMIO. Those are PowerPC
* specific and thus shouldn't be used in generic code. The accessors
* provided here are:
*
* in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
* out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
* _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
*
* Those operate directly on a kernel virtual address. Note that the prototype
* for the out_* accessors has the arguments in opposite order from the usual
* linux PCI accessors. Unlike those, they take the address first and the value
* next.
*
* Note: I might drop the _ns suffix on the stream operations soon as it is
* simply normal for stream operations to not swap in the first place.
*
*/
#ifdef CONFIG_PPC64
#define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
#else
#define IO_SET_SYNC_FLAG()
#endif
#define DEF_MMIO_IN(name, type, insn) \
static inline type name(const volatile type __iomem *addr) \
{ \
type ret; \
__asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \
: "=r" (ret) : "r" (addr), "m" (*addr)); \
return ret; \
}
#define DEF_MMIO_OUT(name, type, insn) \
static inline void name(volatile type __iomem *addr, type val) \
{ \
__asm__ __volatile__("sync;" insn \
: "=m" (*addr) : "r" (val), "r" (addr)); \
IO_SET_SYNC_FLAG(); \
}
#define DEF_MMIO_IN_BE(name, size, insn) \
DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
#define DEF_MMIO_IN_LE(name, size, insn) \
DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
#define DEF_MMIO_OUT_BE(name, size, insn) \
DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
#define DEF_MMIO_OUT_LE(name, size, insn) \
DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
DEF_MMIO_IN_BE(in_8, 8, lbz);
DEF_MMIO_IN_BE(in_be16, 16, lhz);
DEF_MMIO_IN_BE(in_be32, 32, lwz);
DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
DEF_MMIO_OUT_BE(out_8, 8, stb);
DEF_MMIO_OUT_BE(out_be16, 16, sth);
DEF_MMIO_OUT_BE(out_be32, 32, stw);
DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
#ifdef __powerpc64__
DEF_MMIO_OUT_BE(out_be64, 64, std);
DEF_MMIO_IN_BE(in_be64, 64, ld);
/* There is no asm instructions for 64 bits reverse loads and stores */
static inline u64 in_le64(const volatile u64 __iomem *addr)
{
return swab64(in_be64(addr));
}
static inline void out_le64(volatile u64 __iomem *addr, u64 val)
{
out_be64(addr, swab64(val));
}
#endif /* __powerpc64__ */
/*
* Low level IO stream instructions are defined out of line for now
*/
extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
/* The _ns naming is historical and will be removed. For now, just #define
* the non _ns equivalent names
*/
#define _insw _insw_ns
#define _insl _insl_ns
#define _outsw _outsw_ns
#define _outsl _outsl_ns
/*
* memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
*/
extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n);
extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
unsigned long n);
/*
*
* PCI and standard ISA accessors
*
* Those are globally defined linux accessors for devices on PCI or ISA
* busses. They follow the Linux defined semantics. The current implementation
* for PowerPC is as close as possible to the x86 version of these, and thus
* provides fairly heavy weight barriers for the non-raw versions
*
* In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
* allowing the platform to provide its own implementation of some or all
* of the accessors.
*/
/*
* Include the EEH definitions when EEH is enabled only so they don't get
* in the way when building for 32 bits
*/
#ifdef CONFIG_EEH
#include <asm/eeh.h>
#endif
/* Shortcut to the MMIO argument pointer */
#define PCI_IO_ADDR volatile void __iomem *
/* Indirect IO address tokens:
*
* When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
* on all IOs. (Note that this is all 64 bits only for now)
*
* To help platforms who may need to differenciate MMIO addresses in
* their hooks, a bitfield is reserved for use by the platform near the
* top of MMIO addresses (not PIO, those have to cope the hard way).
*
* This bit field is 12 bits and is at the top of the IO virtual
* addresses PCI_IO_INDIRECT_TOKEN_MASK.
*
* The kernel virtual space is thus:
*
* 0xD000000000000000 : vmalloc
* 0xD000080000000000 : PCI PHB IO space
* 0xD000080080000000 : ioremap
* 0xD0000fffffffffff : end of ioremap region
*
* Since the top 4 bits are reserved as the region ID, we use thus
* the next 12 bits and keep 4 bits available for the future if the
* virtual address space is ever to be extended.
*
* The direct IO mapping operations will then mask off those bits
* before doing the actual access, though that only happen when
* CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
* mechanism
*/
#ifdef CONFIG_PPC_INDIRECT_IO
#define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
#define PCI_IO_IND_TOKEN_SHIFT 48
#define PCI_FIX_ADDR(addr) \
((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
#define PCI_GET_ADDR_TOKEN(addr) \
(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
PCI_IO_IND_TOKEN_SHIFT)
#define PCI_SET_ADDR_TOKEN(addr, token) \
do { \
unsigned long __a = (unsigned long)(addr); \
__a &= ~PCI_IO_IND_TOKEN_MASK; \
__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
(addr) = (void __iomem *)__a; \
} while(0)
#else
#define PCI_FIX_ADDR(addr) (addr)
#endif
/*
* Non ordered and non-swapping "raw" accessors
*/
static inline unsigned char __raw_readb(const volatile void __iomem *addr)
{
return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
}
static inline unsigned short __raw_readw(const volatile void __iomem *addr)
{
return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
}
static inline unsigned int __raw_readl(const volatile void __iomem *addr)
{
return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
}
static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
{
*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
}
static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
{
*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
}
static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
{
*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
}
#ifdef __powerpc64__
static inline unsigned long __raw_readq(const volatile void __iomem *addr)
{
return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
}
static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
{
*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
}
#endif /* __powerpc64__ */
/*
*
* PCI PIO and MMIO accessors.
*
*
* On 32 bits, PIO operations have a recovery mechanism in case they trigger
* machine checks (which they occasionally do when probing non existing
* IO ports on some platforms, like PowerMac and 8xx).
* I always found it to be of dubious reliability and I am tempted to get
* rid of it one of these days. So if you think it's important to keep it,
* please voice up asap. We never had it for 64 bits and I do not intend
* to port it over
*/
#ifdef CONFIG_PPC32
#define __do_in_asm(name, op) \
static inline unsigned int name(unsigned int port) \
{ \
unsigned int x; \
__asm__ __volatile__( \
"sync\n" \
"0:" op " %0,0,%1\n" \
"1: twi 0,%0,0\n" \
"2: isync\n" \
"3: nop\n" \
"4:\n" \
".section .fixup,\"ax\"\n" \
"5: li %0,-1\n" \
" b 4b\n" \
".previous\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 0b,5b\n" \
" .long 1b,5b\n" \
" .long 2b,5b\n" \
" .long 3b,5b\n" \
".previous" \
: "=&r" (x) \
: "r" (port + _IO_BASE)); \
return x; \
}
#define __do_out_asm(name, op) \
static inline void name(unsigned int val, unsigned int port) \
{ \
__asm__ __volatile__( \
"sync\n" \
"0:" op " %0,0,%1\n" \
"1: sync\n" \
"2:\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 0b,2b\n" \
" .long 1b,2b\n" \
".previous" \
: : "r" (val), "r" (port + _IO_BASE)); \
}
__do_in_asm(_rec_inb, "lbzx")
__do_in_asm(_rec_inw, "lhbrx")
__do_in_asm(_rec_inl, "lwbrx")
__do_out_asm(_rec_outb, "stbx")
__do_out_asm(_rec_outw, "sthbrx")
__do_out_asm(_rec_outl, "stwbrx")
#endif /* CONFIG_PPC32 */
/* The "__do_*" operations below provide the actual "base" implementation
* for each of the defined acccessor. Some of them use the out_* functions
* directly, some of them still use EEH, though we might change that in the
* future. Those macros below provide the necessary argument swapping and
* handling of the IO base for PIO.
*
* They are themselves used by the macros that define the actual accessors
* and can be used by the hooks if any.
*
* Note that PIO operations are always defined in terms of their corresonding
* MMIO operations. That allows platforms like iSeries who want to modify the
* behaviour of both to only hook on the MMIO version and get both. It's also
* possible to hook directly at the toplevel PIO operation if they have to
* be handled differently
*/
#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
#ifdef CONFIG_EEH
#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
#else /* CONFIG_EEH */
#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
#endif /* !defined(CONFIG_EEH) */
#ifdef CONFIG_PPC32
#define __do_outb(val, port) _rec_outb(val, port)
#define __do_outw(val, port) _rec_outw(val, port)
#define __do_outl(val, port) _rec_outl(val, port)
#define __do_inb(port) _rec_inb(port)
#define __do_inw(port) _rec_inw(port)
#define __do_inl(port) _rec_inl(port)
#else /* CONFIG_PPC32 */
#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
#endif /* !CONFIG_PPC32 */
#ifdef CONFIG_EEH
#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
#else /* CONFIG_EEH */
#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
#endif /* !CONFIG_EEH */
#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
#define __do_memset_io(addr, c, n) \
_memset_io(PCI_FIX_ADDR(addr), c, n)
#define __do_memcpy_toio(dst, src, n) \
_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
#ifdef CONFIG_EEH
#define __do_memcpy_fromio(dst, src, n) \
eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
#else /* CONFIG_EEH */
#define __do_memcpy_fromio(dst, src, n) \
_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
#endif /* !CONFIG_EEH */
#ifdef CONFIG_PPC_INDIRECT_IO
#define DEF_PCI_HOOK(x) x
#else
#define DEF_PCI_HOOK(x) NULL
#endif
/* Structure containing all the hooks */
extern struct ppc_pci_io {
#define DEF_PCI_AC_RET(name, ret, at, al) ret (*name) at;
#define DEF_PCI_AC_NORET(name, at, al) void (*name) at;
#include <asm/io-defs.h>
#undef DEF_PCI_AC_RET
#undef DEF_PCI_AC_NORET
} ppc_pci_io;
/* The inline wrappers */
#define DEF_PCI_AC_RET(name, ret, at, al) \
static inline ret name at \
{ \
if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
return ppc_pci_io.name al; \
return __do_##name al; \
}
#define DEF_PCI_AC_NORET(name, at, al) \
static inline void name at \
{ \
if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
ppc_pci_io.name al; \
else \
__do_##name al; \
}
#include <asm/io-defs.h>
#undef DEF_PCI_AC_RET
#undef DEF_PCI_AC_NORET
/* Some drivers check for the presence of readq & writeq with
* a #ifdef, so we make them happy here.
*/
#ifdef __powerpc64__
#define readq readq
#define writeq writeq
#endif
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
/*
* We don't do relaxed operations yet, at least not with this semantic
*/
#define readb_relaxed(addr) readb(addr)
#define readw_relaxed(addr) readw(addr)
#define readl_relaxed(addr) readl(addr)
#define readq_relaxed(addr) readq(addr)
#ifdef CONFIG_PPC32
#define mmiowb()
#else
/*
* Enforce synchronisation of stores vs. spin_unlock
* (this does it explicitly, though our implementation of spin_unlock
* does it implicitely too)
*/
static inline void mmiowb(void)
{
unsigned long tmp;
__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
: "memory");
}
#endif /* !CONFIG_PPC32 */
static inline void iosync(void)
{
__asm__ __volatile__ ("sync" : : : "memory");
}
/* Enforce in-order execution of data I/O.
* No distinction between read/write on PPC; use eieio for all three.
* Those are fairly week though. They don't provide a barrier between
* MMIO and cacheable storage nor do they provide a barrier vs. locks,
* they only provide barriers between 2 __raw MMIO operations and
* possibly break write combining.
*/
#define iobarrier_rw() eieio()
#define iobarrier_r() eieio()
#define iobarrier_w() eieio()
/*
* output pause versions need a delay at least for the
* w83c105 ide controller in a p610.
*/
#define inb_p(port) inb(port)
#define outb_p(val, port) (udelay(1), outb((val), (port)))
#define inw_p(port) inw(port)
#define outw_p(val, port) (udelay(1), outw((val), (port)))
#define inl_p(port) inl(port)
#define outl_p(val, port) (udelay(1), outl((val), (port)))
#define IO_SPACE_LIMIT ~(0UL)
/**
* ioremap - map bus memory into CPU space
* @address: bus address of the memory
* @size: size of the resource to map
*
* ioremap performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* We provide a few variations of it:
*
* * ioremap is the standard one and provides non-cacheable guarded mappings
* and can be hooked by the platform via ppc_md
*
* * ioremap_flags allows to specify the page flags as an argument and can
* also be hooked by the platform via ppc_md
*
* * ioremap_nocache is identical to ioremap
*
* * iounmap undoes such a mapping and can be hooked
*
* * __ioremap_at (and the pending __iounmap_at) are low level functions to
* create hand-made mappings for use only by the PCI code and cannot
* currently be hooked. Must be page aligned.
*
* * __ioremap is the low level implementation used by ioremap and
* ioremap_flags and cannot be hooked (but can be used by a hook on one
* of the previous ones)
*
* * __iounmap, is the low level implementation used by iounmap and cannot
* be hooked (but can be used by a hook on iounmap)
*
*/
extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
unsigned long flags);
#define ioremap_nocache(addr, size) ioremap((addr), (size))
extern void iounmap(volatile void __iomem *addr);
extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
unsigned long flags);
extern void __iounmap(volatile void __iomem *addr);
extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
unsigned long size, unsigned long flags);
extern void __iounmap_at(void *ea, unsigned long size);
/*
* When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
* which needs some additional definitions here. They basically allow PIO
* space overall to be 1GB. This will work as long as we never try to use
* iomap to map MMIO below 1GB which should be fine on ppc64
*/
#define HAVE_ARCH_PIO_SIZE 1
#define PIO_OFFSET 0x00000000UL
#define PIO_MASK (FULL_IO_SIZE - 1)
#define PIO_RESERVED (FULL_IO_SIZE)
#define mmio_read16be(addr) readw_be(addr)
#define mmio_read32be(addr) readl_be(addr)
#define mmio_write16be(val, addr) writew_be(val, addr)
#define mmio_write32be(val, addr) writel_be(val, addr)
#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
#define mmio_outsb(addr, src, count) writesb(addr, src, count)
#define mmio_outsw(addr, src, count) writesw(addr, src, count)
#define mmio_outsl(addr, src, count) writesl(addr, src, count)
/**
* virt_to_phys - map virtual addresses to physical
* @address: address to remap
*
* The returned physical address is the physical (CPU) mapping for
* the memory address given. It is only valid to use this function on
* addresses directly mapped or allocated via kmalloc.
*
* This function does not give bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline unsigned long virt_to_phys(volatile void * address)
{
return __pa((unsigned long)address);
}
/**
* phys_to_virt - map physical address to virtual
* @address: address to remap
*
* The returned virtual address is a current CPU mapping for
* the memory address given. It is only valid to use this function on
* addresses that have a kernel mapping
*
* This function does not handle bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline void * phys_to_virt(unsigned long address)
{
return (void *)__va(address);
}
/*
* Change "struct page" to physical address.
*/
#define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT)
/* We do NOT want virtual merging, it would put too much pressure on
* our iommu allocator. Instead, we want drivers to be smart enough
* to coalesce sglists that happen to have been mapped in a contiguous
* way by the iommu
*/
#define BIO_VMERGE_BOUNDARY 0
/*
* 32 bits still uses virt_to_bus() for it's implementation of DMA
* mappings se we have to keep it defined here. We also have some old
* drivers (shame shame shame) that use bus_to_virt() and haven't been
* fixed yet so I need to define it here.
*/
#ifdef CONFIG_PPC32
static inline unsigned long virt_to_bus(volatile void * address)
{
if (address == NULL)
return 0;
return __pa(address) + PCI_DRAM_OFFSET;
}
static inline void * bus_to_virt(unsigned long address)
{
if (address == 0)
return NULL;
return __va(address - PCI_DRAM_OFFSET);
}
#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
#endif /* CONFIG_PPC32 */
/* access ports */
#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
/* Clear and set bits in one shot. These macros can be used to clear and
* set multiple bits in a register using a single read-modify-write. These
* macros can also be used to set a multiple-bit bit pattern using a mask,
* by specifying the mask in the 'clear' parameter and the new bit pattern
* in the 'set' parameter.
*/
#define clrsetbits(type, addr, clear, set) \
out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
#ifdef __powerpc64__
#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
#endif
#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
#define clrsetbits_le16(addr, clear, set) clrsetbits(le32, addr, clear, set)
#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_IO_H */