linux-stable/drivers/edac/fsl_ddr_edac.c
Rob Herring 408d808893 EDAC: Explicitly include correct DT includes
The DT of_device.h and of_platform.h date back to the separate
of_platform_bus_type before it was merged into the regular platform bus.
As part of that merge prepping Arm DT support 13 years ago, they
"temporarily" include each other. They also include platform_device.h
and of.h. As a result, there's a pretty much random mix of those include
files used throughout the tree. In order to detangle these headers and
replace the implicit includes with struct declarations, users need to
explicitly include the correct includes.

Link: https://lore.kernel.org/r/20230714174434.4054728-1-robh@kernel.org
Signed-off-by: Rob Herring <robh@kernel.org>
2023-08-28 13:31:01 -05:00

634 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Freescale Memory Controller kernel module
*
* Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
* ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
* split out from mpc85xx_edac EDAC driver.
*
* Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
*
* Author: Dave Jiang <djiang@mvista.com>
*
* 2006-2007 (c) MontaVista Software, Inc.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/edac.h>
#include <linux/smp.h>
#include <linux/gfp.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include "edac_module.h"
#include "fsl_ddr_edac.h"
#define EDAC_MOD_STR "fsl_ddr_edac"
static int edac_mc_idx;
static u32 orig_ddr_err_disable;
static u32 orig_ddr_err_sbe;
static bool little_endian;
static inline u32 ddr_in32(void __iomem *addr)
{
return little_endian ? ioread32(addr) : ioread32be(addr);
}
static inline void ddr_out32(void __iomem *addr, u32 value)
{
if (little_endian)
iowrite32(value, addr);
else
iowrite32be(value, addr);
}
#ifdef CONFIG_EDAC_DEBUG
/************************ MC SYSFS parts ***********************************/
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
}
static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
}
static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
}
static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
unsigned long val;
int rc;
if (isdigit(*data)) {
rc = kstrtoul(data, 0, &val);
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
return count;
}
return 0;
}
static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
unsigned long val;
int rc;
if (isdigit(*data)) {
rc = kstrtoul(data, 0, &val);
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
return count;
}
return 0;
}
static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
unsigned long val;
int rc;
if (isdigit(*data)) {
rc = kstrtoul(data, 0, &val);
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
return count;
}
return 0;
}
static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
#endif /* CONFIG_EDAC_DEBUG */
static struct attribute *fsl_ddr_dev_attrs[] = {
#ifdef CONFIG_EDAC_DEBUG
&dev_attr_inject_data_hi.attr,
&dev_attr_inject_data_lo.attr,
&dev_attr_inject_ctrl.attr,
#endif
NULL
};
ATTRIBUTE_GROUPS(fsl_ddr_dev);
/**************************** MC Err device ***************************/
/*
* Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
* MPC8572 User's Manual. Each line represents a syndrome bit column as a
* 64-bit value, but split into an upper and lower 32-bit chunk. The labels
* below correspond to Freescale's manuals.
*/
static unsigned int ecc_table[16] = {
/* MSB LSB */
/* [0:31] [32:63] */
0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
0x00ff00ff, 0x00fff0ff,
0x0f0f0f0f, 0x0f0fff00,
0x11113333, 0x7777000f,
0x22224444, 0x8888222f,
0x44448888, 0xffff4441,
0x8888ffff, 0x11118882,
0xffff1111, 0x22221114, /* Syndrome bit 0 */
};
/*
* Calculate the correct ECC value for a 64-bit value specified by high:low
*/
static u8 calculate_ecc(u32 high, u32 low)
{
u32 mask_low;
u32 mask_high;
int bit_cnt;
u8 ecc = 0;
int i;
int j;
for (i = 0; i < 8; i++) {
mask_high = ecc_table[i * 2];
mask_low = ecc_table[i * 2 + 1];
bit_cnt = 0;
for (j = 0; j < 32; j++) {
if ((mask_high >> j) & 1)
bit_cnt ^= (high >> j) & 1;
if ((mask_low >> j) & 1)
bit_cnt ^= (low >> j) & 1;
}
ecc |= bit_cnt << i;
}
return ecc;
}
/*
* Create the syndrome code which is generated if the data line specified by
* 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
* User's Manual and 9-61 in the MPC8572 User's Manual.
*/
static u8 syndrome_from_bit(unsigned int bit) {
int i;
u8 syndrome = 0;
/*
* Cycle through the upper or lower 32-bit portion of each value in
* ecc_table depending on if 'bit' is in the upper or lower half of
* 64-bit data.
*/
for (i = bit < 32; i < 16; i += 2)
syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
return syndrome;
}
/*
* Decode data and ecc syndrome to determine what went wrong
* Note: This can only decode single-bit errors
*/
static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
int *bad_data_bit, int *bad_ecc_bit)
{
int i;
u8 syndrome;
*bad_data_bit = -1;
*bad_ecc_bit = -1;
/*
* Calculate the ECC of the captured data and XOR it with the captured
* ECC to find an ECC syndrome value we can search for
*/
syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
/* Check if a data line is stuck... */
for (i = 0; i < 64; i++) {
if (syndrome == syndrome_from_bit(i)) {
*bad_data_bit = i;
return;
}
}
/* If data is correct, check ECC bits for errors... */
for (i = 0; i < 8; i++) {
if ((syndrome >> i) & 0x1) {
*bad_ecc_bit = i;
return;
}
}
}
#define make64(high, low) (((u64)(high) << 32) | (low))
static void fsl_mc_check(struct mem_ctl_info *mci)
{
struct fsl_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
u32 bus_width;
u32 err_detect;
u32 syndrome;
u64 err_addr;
u32 pfn;
int row_index;
u32 cap_high;
u32 cap_low;
int bad_data_bit;
int bad_ecc_bit;
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
if (!err_detect)
return;
fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
err_detect);
/* no more processing if not ECC bit errors */
if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
return;
}
syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
/* Mask off appropriate bits of syndrome based on bus width */
bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
DSC_DBW_MASK) ? 32 : 64;
if (bus_width == 64)
syndrome &= 0xff;
else
syndrome &= 0xffff;
err_addr = make64(
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
pfn = err_addr >> PAGE_SHIFT;
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
csrow = mci->csrows[row_index];
if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
break;
}
cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
/*
* Analyze single-bit errors on 64-bit wide buses
* TODO: Add support for 32-bit wide buses
*/
if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
sbe_ecc_decode(cap_high, cap_low, syndrome,
&bad_data_bit, &bad_ecc_bit);
if (bad_data_bit != -1)
fsl_mc_printk(mci, KERN_ERR,
"Faulty Data bit: %d\n", bad_data_bit);
if (bad_ecc_bit != -1)
fsl_mc_printk(mci, KERN_ERR,
"Faulty ECC bit: %d\n", bad_ecc_bit);
fsl_mc_printk(mci, KERN_ERR,
"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high ^ (1 << (bad_data_bit - 32)),
cap_low ^ (1 << bad_data_bit),
syndrome ^ (1 << bad_ecc_bit));
}
fsl_mc_printk(mci, KERN_ERR,
"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high, cap_low, syndrome);
fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
/* we are out of range */
if (row_index == mci->nr_csrows)
fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
if (err_detect & DDR_EDE_SBE)
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
pfn, err_addr & ~PAGE_MASK, syndrome,
row_index, 0, -1,
mci->ctl_name, "");
if (err_detect & DDR_EDE_MBE)
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
pfn, err_addr & ~PAGE_MASK, syndrome,
row_index, 0, -1,
mci->ctl_name, "");
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
}
static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct fsl_mc_pdata *pdata = mci->pvt_info;
u32 err_detect;
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
if (!err_detect)
return IRQ_NONE;
fsl_mc_check(mci);
return IRQ_HANDLED;
}
static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
{
struct fsl_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
struct dimm_info *dimm;
u32 sdram_ctl;
u32 sdtype;
enum mem_type mtype;
u32 cs_bnds;
int index;
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
sdtype = sdram_ctl & DSC_SDTYPE_MASK;
if (sdram_ctl & DSC_RD_EN) {
switch (sdtype) {
case 0x02000000:
mtype = MEM_RDDR;
break;
case 0x03000000:
mtype = MEM_RDDR2;
break;
case 0x07000000:
mtype = MEM_RDDR3;
break;
case 0x05000000:
mtype = MEM_RDDR4;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
} else {
switch (sdtype) {
case 0x02000000:
mtype = MEM_DDR;
break;
case 0x03000000:
mtype = MEM_DDR2;
break;
case 0x07000000:
mtype = MEM_DDR3;
break;
case 0x05000000:
mtype = MEM_DDR4;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
}
for (index = 0; index < mci->nr_csrows; index++) {
u32 start;
u32 end;
csrow = mci->csrows[index];
dimm = csrow->channels[0]->dimm;
cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
(index * FSL_MC_CS_BNDS_OFS));
start = (cs_bnds & 0xffff0000) >> 16;
end = (cs_bnds & 0x0000ffff);
if (start == end)
continue; /* not populated */
start <<= (24 - PAGE_SHIFT);
end <<= (24 - PAGE_SHIFT);
end |= (1 << (24 - PAGE_SHIFT)) - 1;
csrow->first_page = start;
csrow->last_page = end;
dimm->nr_pages = end + 1 - start;
dimm->grain = 8;
dimm->mtype = mtype;
dimm->dtype = DEV_UNKNOWN;
if (sdram_ctl & DSC_X32_EN)
dimm->dtype = DEV_X32;
dimm->edac_mode = EDAC_SECDED;
}
}
int fsl_mc_err_probe(struct platform_device *op)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct fsl_mc_pdata *pdata;
struct resource r;
u32 sdram_ctl;
int res;
if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
return -ENOMEM;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = 4;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = 1;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
sizeof(*pdata));
if (!mci) {
devres_release_group(&op->dev, fsl_mc_err_probe);
return -ENOMEM;
}
pdata = mci->pvt_info;
pdata->name = "fsl_mc_err";
mci->pdev = &op->dev;
pdata->edac_idx = edac_mc_idx++;
dev_set_drvdata(mci->pdev, mci);
mci->ctl_name = pdata->name;
mci->dev_name = pdata->name;
/*
* Get the endianness of DDR controller registers.
* Default is big endian.
*/
little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
res = of_address_to_resource(op->dev.of_node, 0, &r);
if (res) {
pr_err("%s: Unable to get resource for MC err regs\n",
__func__);
goto err;
}
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
pdata->name)) {
pr_err("%s: Error while requesting mem region\n",
__func__);
res = -EBUSY;
goto err;
}
pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
if (!pdata->mc_vbase) {
pr_err("%s: Unable to setup MC err regs\n", __func__);
res = -ENOMEM;
goto err;
}
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
if (!(sdram_ctl & DSC_ECC_EN)) {
/* no ECC */
pr_warn("%s: No ECC DIMMs discovered\n", __func__);
res = -ENODEV;
goto err;
}
edac_dbg(3, "init mci\n");
mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = fsl_mc_check;
mci->ctl_page_to_phys = NULL;
mci->scrub_mode = SCRUB_SW_SRC;
fsl_ddr_init_csrows(mci);
/* store the original error disable bits */
orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
/* clear all error bits */
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
if (res) {
edac_dbg(3, "failed edac_mc_add_mc()\n");
goto err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
DDR_EIE_MBEE | DDR_EIE_SBEE);
/* store the original error management threshold */
orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
FSL_MC_ERR_SBE) & 0xff0000;
/* set threshold to 1 error per interrupt */
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
/* register interrupts */
pdata->irq = platform_get_irq(op, 0);
res = devm_request_irq(&op->dev, pdata->irq,
fsl_mc_isr,
IRQF_SHARED,
"[EDAC] MC err", mci);
if (res < 0) {
pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
__func__, pdata->irq);
res = -ENODEV;
goto err2;
}
pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
pdata->irq);
}
devres_remove_group(&op->dev, fsl_mc_err_probe);
edac_dbg(3, "success\n");
pr_info(EDAC_MOD_STR " MC err registered\n");
return 0;
err2:
edac_mc_del_mc(&op->dev);
err:
devres_release_group(&op->dev, fsl_mc_err_probe);
edac_mc_free(mci);
return res;
}
int fsl_mc_err_remove(struct platform_device *op)
{
struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
edac_dbg(0, "\n");
if (edac_op_state == EDAC_OPSTATE_INT) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
}
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
orig_ddr_err_disable);
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
edac_mc_del_mc(&op->dev);
edac_mc_free(mci);
return 0;
}