mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
ca9984c5f0
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.
This is particularly bad since accessing ingress_ifindex, e.g.
SEC("xdp")
int prog(struct xdp_md *pkt)
{
return bpf_redirect_map(&dev_redirect_map, 0, 0);
}
SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
bpf_printk("ifindex %i", pkt->ingress_ifindex);
return XDP_PASS;
}
depends on access to rxq, so a NULL pointer gets dereferenced:
<1>[ 574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[ 574.475188] #PF: supervisor read access in kernel mode
<1>[ 574.475194] #PF: error_code(0x0000) - not-present page
<6>[ 574.475199] PGD 0 P4D 0
<4>[ 574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[ 574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[ 574.475231] Workqueue: mld mld_ifc_work
<4>[ 574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[ 574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[ 574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[ 574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[ 574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[ 574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[ 574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[ 574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[ 574.475289] FS: 0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[ 574.475294] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[ 574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[ 574.475303] PKRU: 55555554
<4>[ 574.475306] Call Trace:
<4>[ 574.475313] <IRQ>
<4>[ 574.475318] ? __die+0x23/0x70
<4>[ 574.475329] ? page_fault_oops+0x180/0x4c0
<4>[ 574.475339] ? skb_pp_cow_data+0x34c/0x490
<4>[ 574.475346] ? kmem_cache_free+0x257/0x280
<4>[ 574.475357] ? exc_page_fault+0x67/0x150
<4>[ 574.475368] ? asm_exc_page_fault+0x26/0x30
<4>[ 574.475381] ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[ 574.475386] bq_xmit_all+0x158/0x420
<4>[ 574.475397] __dev_flush+0x30/0x90
<4>[ 574.475407] veth_poll+0x216/0x250 [veth]
<4>[ 574.475421] __napi_poll+0x28/0x1c0
<4>[ 574.475430] net_rx_action+0x32d/0x3a0
<4>[ 574.475441] handle_softirqs+0xcb/0x2c0
<4>[ 574.475451] do_softirq+0x40/0x60
<4>[ 574.475458] </IRQ>
<4>[ 574.475461] <TASK>
<4>[ 574.475464] __local_bh_enable_ip+0x66/0x70
<4>[ 574.475471] __dev_queue_xmit+0x268/0xe40
<4>[ 574.475480] ? selinux_ip_postroute+0x213/0x420
<4>[ 574.475491] ? alloc_skb_with_frags+0x4a/0x1d0
<4>[ 574.475502] ip6_finish_output2+0x2be/0x640
<4>[ 574.475512] ? nf_hook_slow+0x42/0xf0
<4>[ 574.475521] ip6_finish_output+0x194/0x300
<4>[ 574.475529] ? __pfx_ip6_finish_output+0x10/0x10
<4>[ 574.475538] mld_sendpack+0x17c/0x240
<4>[ 574.475548] mld_ifc_work+0x192/0x410
<4>[ 574.475557] process_one_work+0x15d/0x380
<4>[ 574.475566] worker_thread+0x29d/0x3a0
<4>[ 574.475573] ? __pfx_worker_thread+0x10/0x10
<4>[ 574.475580] ? __pfx_worker_thread+0x10/0x10
<4>[ 574.475587] kthread+0xcd/0x100
<4>[ 574.475597] ? __pfx_kthread+0x10/0x10
<4>[ 574.475606] ret_from_fork+0x31/0x50
<4>[ 574.475615] ? __pfx_kthread+0x10/0x10
<4>[ 574.475623] ret_from_fork_asm+0x1a/0x30
<4>[ 574.475635] </TASK>
<4>[ 574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[ 574.475662] CR2: 0000000000000000
<4>[ 574.475668] ---[ end trace 0000000000000000 ]---
Therefore, provide it to the program by setting rxq properly.
Fixes: cb261b594b
("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Florian Kauer <florian.kauer@linutronix.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/20240911-devel-koalo-fix-ingress-ifindex-v4-1-5c643ae10258@linutronix.de
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
1171 lines
30 KiB
C
1171 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
|
|
*/
|
|
|
|
/* Devmaps primary use is as a backend map for XDP BPF helper call
|
|
* bpf_redirect_map(). Because XDP is mostly concerned with performance we
|
|
* spent some effort to ensure the datapath with redirect maps does not use
|
|
* any locking. This is a quick note on the details.
|
|
*
|
|
* We have three possible paths to get into the devmap control plane bpf
|
|
* syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
|
|
* will invoke an update, delete, or lookup operation. To ensure updates and
|
|
* deletes appear atomic from the datapath side xchg() is used to modify the
|
|
* netdev_map array. Then because the datapath does a lookup into the netdev_map
|
|
* array (read-only) from an RCU critical section we use call_rcu() to wait for
|
|
* an rcu grace period before free'ing the old data structures. This ensures the
|
|
* datapath always has a valid copy. However, the datapath does a "flush"
|
|
* operation that pushes any pending packets in the driver outside the RCU
|
|
* critical section. Each bpf_dtab_netdev tracks these pending operations using
|
|
* a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
|
|
* this list is empty, indicating outstanding flush operations have completed.
|
|
*
|
|
* BPF syscalls may race with BPF program calls on any of the update, delete
|
|
* or lookup operations. As noted above the xchg() operation also keep the
|
|
* netdev_map consistent in this case. From the devmap side BPF programs
|
|
* calling into these operations are the same as multiple user space threads
|
|
* making system calls.
|
|
*
|
|
* Finally, any of the above may race with a netdev_unregister notifier. The
|
|
* unregister notifier must search for net devices in the map structure that
|
|
* contain a reference to the net device and remove them. This is a two step
|
|
* process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
|
|
* check to see if the ifindex is the same as the net_device being removed.
|
|
* When removing the dev a cmpxchg() is used to ensure the correct dev is
|
|
* removed, in the case of a concurrent update or delete operation it is
|
|
* possible that the initially referenced dev is no longer in the map. As the
|
|
* notifier hook walks the map we know that new dev references can not be
|
|
* added by the user because core infrastructure ensures dev_get_by_index()
|
|
* calls will fail at this point.
|
|
*
|
|
* The devmap_hash type is a map type which interprets keys as ifindexes and
|
|
* indexes these using a hashmap. This allows maps that use ifindex as key to be
|
|
* densely packed instead of having holes in the lookup array for unused
|
|
* ifindexes. The setup and packet enqueue/send code is shared between the two
|
|
* types of devmap; only the lookup and insertion is different.
|
|
*/
|
|
#include <linux/bpf.h>
|
|
#include <net/xdp.h>
|
|
#include <linux/filter.h>
|
|
#include <trace/events/xdp.h>
|
|
#include <linux/btf_ids.h>
|
|
|
|
#define DEV_CREATE_FLAG_MASK \
|
|
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
|
|
|
|
struct xdp_dev_bulk_queue {
|
|
struct xdp_frame *q[DEV_MAP_BULK_SIZE];
|
|
struct list_head flush_node;
|
|
struct net_device *dev;
|
|
struct net_device *dev_rx;
|
|
struct bpf_prog *xdp_prog;
|
|
unsigned int count;
|
|
};
|
|
|
|
struct bpf_dtab_netdev {
|
|
struct net_device *dev; /* must be first member, due to tracepoint */
|
|
struct hlist_node index_hlist;
|
|
struct bpf_prog *xdp_prog;
|
|
struct rcu_head rcu;
|
|
unsigned int idx;
|
|
struct bpf_devmap_val val;
|
|
};
|
|
|
|
struct bpf_dtab {
|
|
struct bpf_map map;
|
|
struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */
|
|
struct list_head list;
|
|
|
|
/* these are only used for DEVMAP_HASH type maps */
|
|
struct hlist_head *dev_index_head;
|
|
spinlock_t index_lock;
|
|
unsigned int items;
|
|
u32 n_buckets;
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(dev_map_lock);
|
|
static LIST_HEAD(dev_map_list);
|
|
|
|
static struct hlist_head *dev_map_create_hash(unsigned int entries,
|
|
int numa_node)
|
|
{
|
|
int i;
|
|
struct hlist_head *hash;
|
|
|
|
hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
|
|
if (hash != NULL)
|
|
for (i = 0; i < entries; i++)
|
|
INIT_HLIST_HEAD(&hash[i]);
|
|
|
|
return hash;
|
|
}
|
|
|
|
static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
|
|
int idx)
|
|
{
|
|
return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
|
|
}
|
|
|
|
static int dev_map_alloc_check(union bpf_attr *attr)
|
|
{
|
|
u32 valsize = attr->value_size;
|
|
|
|
/* check sanity of attributes. 2 value sizes supported:
|
|
* 4 bytes: ifindex
|
|
* 8 bytes: ifindex + prog fd
|
|
*/
|
|
if (attr->max_entries == 0 || attr->key_size != 4 ||
|
|
(valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
|
|
valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
|
|
attr->map_flags & ~DEV_CREATE_FLAG_MASK)
|
|
return -EINVAL;
|
|
|
|
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
/* Hash table size must be power of 2; roundup_pow_of_two()
|
|
* can overflow into UB on 32-bit arches
|
|
*/
|
|
if (attr->max_entries > 1UL << 31)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
|
|
{
|
|
/* Lookup returns a pointer straight to dev->ifindex, so make sure the
|
|
* verifier prevents writes from the BPF side
|
|
*/
|
|
attr->map_flags |= BPF_F_RDONLY_PROG;
|
|
bpf_map_init_from_attr(&dtab->map, attr);
|
|
|
|
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
/* Hash table size must be power of 2 */
|
|
dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
|
|
dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
|
|
dtab->map.numa_node);
|
|
if (!dtab->dev_index_head)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&dtab->index_lock);
|
|
} else {
|
|
dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
|
|
sizeof(struct bpf_dtab_netdev *),
|
|
dtab->map.numa_node);
|
|
if (!dtab->netdev_map)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_dtab *dtab;
|
|
int err;
|
|
|
|
dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE);
|
|
if (!dtab)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = dev_map_init_map(dtab, attr);
|
|
if (err) {
|
|
bpf_map_area_free(dtab);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
spin_lock(&dev_map_lock);
|
|
list_add_tail_rcu(&dtab->list, &dev_map_list);
|
|
spin_unlock(&dev_map_lock);
|
|
|
|
return &dtab->map;
|
|
}
|
|
|
|
static void dev_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
int i;
|
|
|
|
/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
|
|
* so the programs (can be more than one that used this map) were
|
|
* disconnected from events. The following synchronize_rcu() guarantees
|
|
* both rcu read critical sections complete and waits for
|
|
* preempt-disable regions (NAPI being the relevant context here) so we
|
|
* are certain there will be no further reads against the netdev_map and
|
|
* all flush operations are complete. Flush operations can only be done
|
|
* from NAPI context for this reason.
|
|
*/
|
|
|
|
spin_lock(&dev_map_lock);
|
|
list_del_rcu(&dtab->list);
|
|
spin_unlock(&dev_map_lock);
|
|
|
|
/* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map()
|
|
* during NAPI callback and cleared after the XDP redirect. There is no
|
|
* explicit RCU read section which protects bpf_redirect_info->map but
|
|
* local_bh_disable() also marks the beginning an RCU section. This
|
|
* makes the complete softirq callback RCU protected. Thus after
|
|
* following synchronize_rcu() there no bpf_redirect_info->map == map
|
|
* assignment.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
/* Make sure prior __dev_map_entry_free() have completed. */
|
|
rcu_barrier();
|
|
|
|
if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
for (i = 0; i < dtab->n_buckets; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
|
|
head = dev_map_index_hash(dtab, i);
|
|
|
|
hlist_for_each_entry_safe(dev, next, head, index_hlist) {
|
|
hlist_del_rcu(&dev->index_hlist);
|
|
if (dev->xdp_prog)
|
|
bpf_prog_put(dev->xdp_prog);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
}
|
|
|
|
bpf_map_area_free(dtab->dev_index_head);
|
|
} else {
|
|
for (i = 0; i < dtab->map.max_entries; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = rcu_dereference_raw(dtab->netdev_map[i]);
|
|
if (!dev)
|
|
continue;
|
|
|
|
if (dev->xdp_prog)
|
|
bpf_prog_put(dev->xdp_prog);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
|
|
bpf_map_area_free(dtab->netdev_map);
|
|
}
|
|
|
|
bpf_map_area_free(dtab);
|
|
}
|
|
|
|
static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
u32 index = key ? *(u32 *)key : U32_MAX;
|
|
u32 *next = next_key;
|
|
|
|
if (index >= dtab->map.max_entries) {
|
|
*next = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (index == dtab->map.max_entries - 1)
|
|
return -ENOENT;
|
|
*next = index + 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
|
|
* by local_bh_disable() (from XDP calls inside NAPI). The
|
|
* rcu_read_lock_bh_held() below makes lockdep accept both.
|
|
*/
|
|
static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct hlist_head *head = dev_map_index_hash(dtab, key);
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
hlist_for_each_entry_rcu(dev, head, index_hlist,
|
|
lockdep_is_held(&dtab->index_lock))
|
|
if (dev->idx == key)
|
|
return dev;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
|
|
void *next_key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
u32 idx, *next = next_key;
|
|
struct bpf_dtab_netdev *dev, *next_dev;
|
|
struct hlist_head *head;
|
|
int i = 0;
|
|
|
|
if (!key)
|
|
goto find_first;
|
|
|
|
idx = *(u32 *)key;
|
|
|
|
dev = __dev_map_hash_lookup_elem(map, idx);
|
|
if (!dev)
|
|
goto find_first;
|
|
|
|
next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
|
|
struct bpf_dtab_netdev, index_hlist);
|
|
|
|
if (next_dev) {
|
|
*next = next_dev->idx;
|
|
return 0;
|
|
}
|
|
|
|
i = idx & (dtab->n_buckets - 1);
|
|
i++;
|
|
|
|
find_first:
|
|
for (; i < dtab->n_buckets; i++) {
|
|
head = dev_map_index_hash(dtab, i);
|
|
|
|
next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
|
|
struct bpf_dtab_netdev,
|
|
index_hlist);
|
|
if (next_dev) {
|
|
*next = next_dev->idx;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog,
|
|
struct xdp_frame **frames, int n,
|
|
struct net_device *tx_dev,
|
|
struct net_device *rx_dev)
|
|
{
|
|
struct xdp_txq_info txq = { .dev = tx_dev };
|
|
struct xdp_rxq_info rxq = { .dev = rx_dev };
|
|
struct xdp_buff xdp;
|
|
int i, nframes = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
struct xdp_frame *xdpf = frames[i];
|
|
u32 act;
|
|
int err;
|
|
|
|
xdp_convert_frame_to_buff(xdpf, &xdp);
|
|
xdp.txq = &txq;
|
|
xdp.rxq = &rxq;
|
|
|
|
act = bpf_prog_run_xdp(xdp_prog, &xdp);
|
|
switch (act) {
|
|
case XDP_PASS:
|
|
err = xdp_update_frame_from_buff(&xdp, xdpf);
|
|
if (unlikely(err < 0))
|
|
xdp_return_frame_rx_napi(xdpf);
|
|
else
|
|
frames[nframes++] = xdpf;
|
|
break;
|
|
default:
|
|
bpf_warn_invalid_xdp_action(NULL, xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_ABORTED:
|
|
trace_xdp_exception(tx_dev, xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_DROP:
|
|
xdp_return_frame_rx_napi(xdpf);
|
|
break;
|
|
}
|
|
}
|
|
return nframes; /* sent frames count */
|
|
}
|
|
|
|
static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
|
|
{
|
|
struct net_device *dev = bq->dev;
|
|
unsigned int cnt = bq->count;
|
|
int sent = 0, err = 0;
|
|
int to_send = cnt;
|
|
int i;
|
|
|
|
if (unlikely(!cnt))
|
|
return;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
struct xdp_frame *xdpf = bq->q[i];
|
|
|
|
prefetch(xdpf);
|
|
}
|
|
|
|
if (bq->xdp_prog) {
|
|
to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx);
|
|
if (!to_send)
|
|
goto out;
|
|
}
|
|
|
|
sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags);
|
|
if (sent < 0) {
|
|
/* If ndo_xdp_xmit fails with an errno, no frames have
|
|
* been xmit'ed.
|
|
*/
|
|
err = sent;
|
|
sent = 0;
|
|
}
|
|
|
|
/* If not all frames have been transmitted, it is our
|
|
* responsibility to free them
|
|
*/
|
|
for (i = sent; unlikely(i < to_send); i++)
|
|
xdp_return_frame_rx_napi(bq->q[i]);
|
|
|
|
out:
|
|
bq->count = 0;
|
|
trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err);
|
|
}
|
|
|
|
/* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the
|
|
* driver before returning from its napi->poll() routine. See the comment above
|
|
* xdp_do_flush() in filter.c.
|
|
*/
|
|
void __dev_flush(struct list_head *flush_list)
|
|
{
|
|
struct xdp_dev_bulk_queue *bq, *tmp;
|
|
|
|
list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
|
|
bq_xmit_all(bq, XDP_XMIT_FLUSH);
|
|
bq->dev_rx = NULL;
|
|
bq->xdp_prog = NULL;
|
|
__list_del_clearprev(&bq->flush_node);
|
|
}
|
|
}
|
|
|
|
/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
|
|
* by local_bh_disable() (from XDP calls inside NAPI). The
|
|
* rcu_read_lock_bh_held() below makes lockdep accept both.
|
|
*/
|
|
static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *obj;
|
|
|
|
if (key >= map->max_entries)
|
|
return NULL;
|
|
|
|
obj = rcu_dereference_check(dtab->netdev_map[key],
|
|
rcu_read_lock_bh_held());
|
|
return obj;
|
|
}
|
|
|
|
/* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu
|
|
* variable access, and map elements stick around. See comment above
|
|
* xdp_do_flush() in filter.c.
|
|
*/
|
|
static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
|
|
struct net_device *dev_rx, struct bpf_prog *xdp_prog)
|
|
{
|
|
struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
|
|
|
|
if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
|
|
bq_xmit_all(bq, 0);
|
|
|
|
/* Ingress dev_rx will be the same for all xdp_frame's in
|
|
* bulk_queue, because bq stored per-CPU and must be flushed
|
|
* from net_device drivers NAPI func end.
|
|
*
|
|
* Do the same with xdp_prog and flush_list since these fields
|
|
* are only ever modified together.
|
|
*/
|
|
if (!bq->dev_rx) {
|
|
struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list();
|
|
|
|
bq->dev_rx = dev_rx;
|
|
bq->xdp_prog = xdp_prog;
|
|
list_add(&bq->flush_node, flush_list);
|
|
}
|
|
|
|
bq->q[bq->count++] = xdpf;
|
|
}
|
|
|
|
static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
|
|
struct net_device *dev_rx,
|
|
struct bpf_prog *xdp_prog)
|
|
{
|
|
int err;
|
|
|
|
if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
|
|
xdp_frame_has_frags(xdpf)))
|
|
return -EOPNOTSUPP;
|
|
|
|
err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
bq_enqueue(dev, xdpf, dev_rx, xdp_prog);
|
|
return 0;
|
|
}
|
|
|
|
static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst)
|
|
{
|
|
struct xdp_txq_info txq = { .dev = dst->dev };
|
|
struct xdp_buff xdp;
|
|
u32 act;
|
|
|
|
if (!dst->xdp_prog)
|
|
return XDP_PASS;
|
|
|
|
__skb_pull(skb, skb->mac_len);
|
|
xdp.txq = &txq;
|
|
|
|
act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog);
|
|
switch (act) {
|
|
case XDP_PASS:
|
|
__skb_push(skb, skb->mac_len);
|
|
break;
|
|
default:
|
|
bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_ABORTED:
|
|
trace_xdp_exception(dst->dev, dst->xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_DROP:
|
|
kfree_skb(skb);
|
|
break;
|
|
}
|
|
|
|
return act;
|
|
}
|
|
|
|
int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
|
|
struct net_device *dev_rx)
|
|
{
|
|
return __xdp_enqueue(dev, xdpf, dev_rx, NULL);
|
|
}
|
|
|
|
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
|
|
struct net_device *dev_rx)
|
|
{
|
|
struct net_device *dev = dst->dev;
|
|
|
|
return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog);
|
|
}
|
|
|
|
static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf)
|
|
{
|
|
if (!obj)
|
|
return false;
|
|
|
|
if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
|
|
return false;
|
|
|
|
if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
|
|
xdp_frame_has_frags(xdpf)))
|
|
return false;
|
|
|
|
if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj,
|
|
struct net_device *dev_rx,
|
|
struct xdp_frame *xdpf)
|
|
{
|
|
struct xdp_frame *nxdpf;
|
|
|
|
nxdpf = xdpf_clone(xdpf);
|
|
if (!nxdpf)
|
|
return -ENOMEM;
|
|
|
|
bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex)
|
|
{
|
|
while (num_excluded--) {
|
|
if (ifindex == excluded[num_excluded])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Get ifindex of each upper device. 'indexes' must be able to hold at
|
|
* least MAX_NEST_DEV elements.
|
|
* Returns the number of ifindexes added.
|
|
*/
|
|
static int get_upper_ifindexes(struct net_device *dev, int *indexes)
|
|
{
|
|
struct net_device *upper;
|
|
struct list_head *iter;
|
|
int n = 0;
|
|
|
|
netdev_for_each_upper_dev_rcu(dev, upper, iter) {
|
|
indexes[n++] = upper->ifindex;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
|
|
struct bpf_map *map, bool exclude_ingress)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *dst, *last_dst = NULL;
|
|
int excluded_devices[1+MAX_NEST_DEV];
|
|
struct hlist_head *head;
|
|
int num_excluded = 0;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
if (exclude_ingress) {
|
|
num_excluded = get_upper_ifindexes(dev_rx, excluded_devices);
|
|
excluded_devices[num_excluded++] = dev_rx->ifindex;
|
|
}
|
|
|
|
if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
|
|
for (i = 0; i < map->max_entries; i++) {
|
|
dst = rcu_dereference_check(dtab->netdev_map[i],
|
|
rcu_read_lock_bh_held());
|
|
if (!is_valid_dst(dst, xdpf))
|
|
continue;
|
|
|
|
if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
|
|
continue;
|
|
|
|
/* we only need n-1 clones; last_dst enqueued below */
|
|
if (!last_dst) {
|
|
last_dst = dst;
|
|
continue;
|
|
}
|
|
|
|
err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
|
|
if (err)
|
|
return err;
|
|
|
|
last_dst = dst;
|
|
}
|
|
} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
|
|
for (i = 0; i < dtab->n_buckets; i++) {
|
|
head = dev_map_index_hash(dtab, i);
|
|
hlist_for_each_entry_rcu(dst, head, index_hlist,
|
|
lockdep_is_held(&dtab->index_lock)) {
|
|
if (!is_valid_dst(dst, xdpf))
|
|
continue;
|
|
|
|
if (is_ifindex_excluded(excluded_devices, num_excluded,
|
|
dst->dev->ifindex))
|
|
continue;
|
|
|
|
/* we only need n-1 clones; last_dst enqueued below */
|
|
if (!last_dst) {
|
|
last_dst = dst;
|
|
continue;
|
|
}
|
|
|
|
err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
|
|
if (err)
|
|
return err;
|
|
|
|
last_dst = dst;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* consume the last copy of the frame */
|
|
if (last_dst)
|
|
bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog);
|
|
else
|
|
xdp_return_frame_rx_napi(xdpf); /* dtab is empty */
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
|
|
struct bpf_prog *xdp_prog)
|
|
{
|
|
int err;
|
|
|
|
err = xdp_ok_fwd_dev(dst->dev, skb->len);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
/* Redirect has already succeeded semantically at this point, so we just
|
|
* return 0 even if packet is dropped. Helper below takes care of
|
|
* freeing skb.
|
|
*/
|
|
if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS)
|
|
return 0;
|
|
|
|
skb->dev = dst->dev;
|
|
generic_xdp_tx(skb, xdp_prog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst,
|
|
struct sk_buff *skb,
|
|
struct bpf_prog *xdp_prog)
|
|
{
|
|
struct sk_buff *nskb;
|
|
int err;
|
|
|
|
nskb = skb_clone(skb, GFP_ATOMIC);
|
|
if (!nskb)
|
|
return -ENOMEM;
|
|
|
|
err = dev_map_generic_redirect(dst, nskb, xdp_prog);
|
|
if (unlikely(err)) {
|
|
consume_skb(nskb);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
|
|
struct bpf_prog *xdp_prog, struct bpf_map *map,
|
|
bool exclude_ingress)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *dst, *last_dst = NULL;
|
|
int excluded_devices[1+MAX_NEST_DEV];
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
int num_excluded = 0;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
if (exclude_ingress) {
|
|
num_excluded = get_upper_ifindexes(dev, excluded_devices);
|
|
excluded_devices[num_excluded++] = dev->ifindex;
|
|
}
|
|
|
|
if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
|
|
for (i = 0; i < map->max_entries; i++) {
|
|
dst = rcu_dereference_check(dtab->netdev_map[i],
|
|
rcu_read_lock_bh_held());
|
|
if (!dst)
|
|
continue;
|
|
|
|
if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
|
|
continue;
|
|
|
|
/* we only need n-1 clones; last_dst enqueued below */
|
|
if (!last_dst) {
|
|
last_dst = dst;
|
|
continue;
|
|
}
|
|
|
|
err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
|
|
if (err)
|
|
return err;
|
|
|
|
last_dst = dst;
|
|
|
|
}
|
|
} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
|
|
for (i = 0; i < dtab->n_buckets; i++) {
|
|
head = dev_map_index_hash(dtab, i);
|
|
hlist_for_each_entry_safe(dst, next, head, index_hlist) {
|
|
if (is_ifindex_excluded(excluded_devices, num_excluded,
|
|
dst->dev->ifindex))
|
|
continue;
|
|
|
|
/* we only need n-1 clones; last_dst enqueued below */
|
|
if (!last_dst) {
|
|
last_dst = dst;
|
|
continue;
|
|
}
|
|
|
|
err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
|
|
if (err)
|
|
return err;
|
|
|
|
last_dst = dst;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* consume the first skb and return */
|
|
if (last_dst)
|
|
return dev_map_generic_redirect(last_dst, skb, xdp_prog);
|
|
|
|
/* dtab is empty */
|
|
consume_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
|
|
|
|
return obj ? &obj->val : NULL;
|
|
}
|
|
|
|
static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
|
|
*(u32 *)key);
|
|
return obj ? &obj->val : NULL;
|
|
}
|
|
|
|
static void __dev_map_entry_free(struct rcu_head *rcu)
|
|
{
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
|
|
if (dev->xdp_prog)
|
|
bpf_prog_put(dev->xdp_prog);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
|
|
static long dev_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *old_dev;
|
|
int k = *(u32 *)key;
|
|
|
|
if (k >= map->max_entries)
|
|
return -EINVAL;
|
|
|
|
old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL));
|
|
if (old_dev) {
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
atomic_dec((atomic_t *)&dtab->items);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static long dev_map_hash_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *old_dev;
|
|
int k = *(u32 *)key;
|
|
unsigned long flags;
|
|
int ret = -ENOENT;
|
|
|
|
spin_lock_irqsave(&dtab->index_lock, flags);
|
|
|
|
old_dev = __dev_map_hash_lookup_elem(map, k);
|
|
if (old_dev) {
|
|
dtab->items--;
|
|
hlist_del_init_rcu(&old_dev->index_hlist);
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
ret = 0;
|
|
}
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
|
|
struct bpf_dtab *dtab,
|
|
struct bpf_devmap_val *val,
|
|
unsigned int idx)
|
|
{
|
|
struct bpf_prog *prog = NULL;
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
|
|
GFP_NOWAIT | __GFP_NOWARN,
|
|
dtab->map.numa_node);
|
|
if (!dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
dev->dev = dev_get_by_index(net, val->ifindex);
|
|
if (!dev->dev)
|
|
goto err_out;
|
|
|
|
if (val->bpf_prog.fd > 0) {
|
|
prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
|
|
BPF_PROG_TYPE_XDP, false);
|
|
if (IS_ERR(prog))
|
|
goto err_put_dev;
|
|
if (prog->expected_attach_type != BPF_XDP_DEVMAP ||
|
|
!bpf_prog_map_compatible(&dtab->map, prog))
|
|
goto err_put_prog;
|
|
}
|
|
|
|
dev->idx = idx;
|
|
if (prog) {
|
|
dev->xdp_prog = prog;
|
|
dev->val.bpf_prog.id = prog->aux->id;
|
|
} else {
|
|
dev->xdp_prog = NULL;
|
|
dev->val.bpf_prog.id = 0;
|
|
}
|
|
dev->val.ifindex = val->ifindex;
|
|
|
|
return dev;
|
|
err_put_prog:
|
|
bpf_prog_put(prog);
|
|
err_put_dev:
|
|
dev_put(dev->dev);
|
|
err_out:
|
|
kfree(dev);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static long __dev_map_update_elem(struct net *net, struct bpf_map *map,
|
|
void *key, void *value, u64 map_flags)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *dev, *old_dev;
|
|
struct bpf_devmap_val val = {};
|
|
u32 i = *(u32 *)key;
|
|
|
|
if (unlikely(map_flags > BPF_EXIST))
|
|
return -EINVAL;
|
|
if (unlikely(i >= dtab->map.max_entries))
|
|
return -E2BIG;
|
|
if (unlikely(map_flags == BPF_NOEXIST))
|
|
return -EEXIST;
|
|
|
|
/* already verified value_size <= sizeof val */
|
|
memcpy(&val, value, map->value_size);
|
|
|
|
if (!val.ifindex) {
|
|
dev = NULL;
|
|
/* can not specify fd if ifindex is 0 */
|
|
if (val.bpf_prog.fd > 0)
|
|
return -EINVAL;
|
|
} else {
|
|
dev = __dev_map_alloc_node(net, dtab, &val, i);
|
|
if (IS_ERR(dev))
|
|
return PTR_ERR(dev);
|
|
}
|
|
|
|
/* Use call_rcu() here to ensure rcu critical sections have completed
|
|
* Remembering the driver side flush operation will happen before the
|
|
* net device is removed.
|
|
*/
|
|
old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev)));
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
else
|
|
atomic_inc((atomic_t *)&dtab->items);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long dev_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 map_flags)
|
|
{
|
|
return __dev_map_update_elem(current->nsproxy->net_ns,
|
|
map, key, value, map_flags);
|
|
}
|
|
|
|
static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
|
|
void *key, void *value, u64 map_flags)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *dev, *old_dev;
|
|
struct bpf_devmap_val val = {};
|
|
u32 idx = *(u32 *)key;
|
|
unsigned long flags;
|
|
int err = -EEXIST;
|
|
|
|
/* already verified value_size <= sizeof val */
|
|
memcpy(&val, value, map->value_size);
|
|
|
|
if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&dtab->index_lock, flags);
|
|
|
|
old_dev = __dev_map_hash_lookup_elem(map, idx);
|
|
if (old_dev && (map_flags & BPF_NOEXIST))
|
|
goto out_err;
|
|
|
|
dev = __dev_map_alloc_node(net, dtab, &val, idx);
|
|
if (IS_ERR(dev)) {
|
|
err = PTR_ERR(dev);
|
|
goto out_err;
|
|
}
|
|
|
|
if (old_dev) {
|
|
hlist_del_rcu(&old_dev->index_hlist);
|
|
} else {
|
|
if (dtab->items >= dtab->map.max_entries) {
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
call_rcu(&dev->rcu, __dev_map_entry_free);
|
|
return -E2BIG;
|
|
}
|
|
dtab->items++;
|
|
}
|
|
|
|
hlist_add_head_rcu(&dev->index_hlist,
|
|
dev_map_index_hash(dtab, idx));
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
return err;
|
|
}
|
|
|
|
static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 map_flags)
|
|
{
|
|
return __dev_map_hash_update_elem(current->nsproxy->net_ns,
|
|
map, key, value, map_flags);
|
|
}
|
|
|
|
static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
|
|
{
|
|
return __bpf_xdp_redirect_map(map, ifindex, flags,
|
|
BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
|
|
__dev_map_lookup_elem);
|
|
}
|
|
|
|
static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
|
|
{
|
|
return __bpf_xdp_redirect_map(map, ifindex, flags,
|
|
BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
|
|
__dev_map_hash_lookup_elem);
|
|
}
|
|
|
|
static u64 dev_map_mem_usage(const struct bpf_map *map)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
u64 usage = sizeof(struct bpf_dtab);
|
|
|
|
if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)
|
|
usage += (u64)dtab->n_buckets * sizeof(struct hlist_head);
|
|
else
|
|
usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *);
|
|
usage += atomic_read((atomic_t *)&dtab->items) *
|
|
(u64)sizeof(struct bpf_dtab_netdev);
|
|
return usage;
|
|
}
|
|
|
|
BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab)
|
|
const struct bpf_map_ops dev_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc_check = dev_map_alloc_check,
|
|
.map_alloc = dev_map_alloc,
|
|
.map_free = dev_map_free,
|
|
.map_get_next_key = dev_map_get_next_key,
|
|
.map_lookup_elem = dev_map_lookup_elem,
|
|
.map_update_elem = dev_map_update_elem,
|
|
.map_delete_elem = dev_map_delete_elem,
|
|
.map_check_btf = map_check_no_btf,
|
|
.map_mem_usage = dev_map_mem_usage,
|
|
.map_btf_id = &dev_map_btf_ids[0],
|
|
.map_redirect = dev_map_redirect,
|
|
};
|
|
|
|
const struct bpf_map_ops dev_map_hash_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc_check = dev_map_alloc_check,
|
|
.map_alloc = dev_map_alloc,
|
|
.map_free = dev_map_free,
|
|
.map_get_next_key = dev_map_hash_get_next_key,
|
|
.map_lookup_elem = dev_map_hash_lookup_elem,
|
|
.map_update_elem = dev_map_hash_update_elem,
|
|
.map_delete_elem = dev_map_hash_delete_elem,
|
|
.map_check_btf = map_check_no_btf,
|
|
.map_mem_usage = dev_map_mem_usage,
|
|
.map_btf_id = &dev_map_btf_ids[0],
|
|
.map_redirect = dev_hash_map_redirect,
|
|
};
|
|
|
|
static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
|
|
struct net_device *netdev)
|
|
{
|
|
unsigned long flags;
|
|
u32 i;
|
|
|
|
spin_lock_irqsave(&dtab->index_lock, flags);
|
|
for (i = 0; i < dtab->n_buckets; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
|
|
head = dev_map_index_hash(dtab, i);
|
|
|
|
hlist_for_each_entry_safe(dev, next, head, index_hlist) {
|
|
if (netdev != dev->dev)
|
|
continue;
|
|
|
|
dtab->items--;
|
|
hlist_del_rcu(&dev->index_hlist);
|
|
call_rcu(&dev->rcu, __dev_map_entry_free);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&dtab->index_lock, flags);
|
|
}
|
|
|
|
static int dev_map_notification(struct notifier_block *notifier,
|
|
ulong event, void *ptr)
|
|
{
|
|
struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
|
|
struct bpf_dtab *dtab;
|
|
int i, cpu;
|
|
|
|
switch (event) {
|
|
case NETDEV_REGISTER:
|
|
if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
|
|
break;
|
|
|
|
/* will be freed in free_netdev() */
|
|
netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
|
|
if (!netdev->xdp_bulkq)
|
|
return NOTIFY_BAD;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
|
|
break;
|
|
case NETDEV_UNREGISTER:
|
|
/* This rcu_read_lock/unlock pair is needed because
|
|
* dev_map_list is an RCU list AND to ensure a delete
|
|
* operation does not free a netdev_map entry while we
|
|
* are comparing it against the netdev being unregistered.
|
|
*/
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(dtab, &dev_map_list, list) {
|
|
if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
|
|
dev_map_hash_remove_netdev(dtab, netdev);
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < dtab->map.max_entries; i++) {
|
|
struct bpf_dtab_netdev *dev, *odev;
|
|
|
|
dev = rcu_dereference(dtab->netdev_map[i]);
|
|
if (!dev || netdev != dev->dev)
|
|
continue;
|
|
odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL));
|
|
if (dev == odev) {
|
|
call_rcu(&dev->rcu,
|
|
__dev_map_entry_free);
|
|
atomic_dec((atomic_t *)&dtab->items);
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block dev_map_notifier = {
|
|
.notifier_call = dev_map_notification,
|
|
};
|
|
|
|
static int __init dev_map_init(void)
|
|
{
|
|
/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
|
|
BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
|
|
offsetof(struct _bpf_dtab_netdev, dev));
|
|
register_netdevice_notifier(&dev_map_notifier);
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(dev_map_init);
|