mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
81eff2e364
Emit tnum representation as just a constant if all bits are known. Use decimal-vs-hex logic to determine exact format of emitted constant value, just like it's done for register range values. For that move tnum_strn() to kernel/bpf/log.c to reuse decimal-vs-hex determination logic and constants. Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231202175705.885270-12-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
214 lines
5.1 KiB
C
214 lines
5.1 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* tnum: tracked (or tristate) numbers
|
|
*
|
|
* A tnum tracks knowledge about the bits of a value. Each bit can be either
|
|
* known (0 or 1), or unknown (x). Arithmetic operations on tnums will
|
|
* propagate the unknown bits such that the tnum result represents all the
|
|
* possible results for possible values of the operands.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/tnum.h>
|
|
|
|
#define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
|
|
/* A completely unknown value */
|
|
const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
|
|
|
|
struct tnum tnum_const(u64 value)
|
|
{
|
|
return TNUM(value, 0);
|
|
}
|
|
|
|
struct tnum tnum_range(u64 min, u64 max)
|
|
{
|
|
u64 chi = min ^ max, delta;
|
|
u8 bits = fls64(chi);
|
|
|
|
/* special case, needed because 1ULL << 64 is undefined */
|
|
if (bits > 63)
|
|
return tnum_unknown;
|
|
/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
|
|
* if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
|
|
* constant min (since min == max).
|
|
*/
|
|
delta = (1ULL << bits) - 1;
|
|
return TNUM(min & ~delta, delta);
|
|
}
|
|
|
|
struct tnum tnum_lshift(struct tnum a, u8 shift)
|
|
{
|
|
return TNUM(a.value << shift, a.mask << shift);
|
|
}
|
|
|
|
struct tnum tnum_rshift(struct tnum a, u8 shift)
|
|
{
|
|
return TNUM(a.value >> shift, a.mask >> shift);
|
|
}
|
|
|
|
struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
|
|
{
|
|
/* if a.value is negative, arithmetic shifting by minimum shift
|
|
* will have larger negative offset compared to more shifting.
|
|
* If a.value is nonnegative, arithmetic shifting by minimum shift
|
|
* will have larger positive offset compare to more shifting.
|
|
*/
|
|
if (insn_bitness == 32)
|
|
return TNUM((u32)(((s32)a.value) >> min_shift),
|
|
(u32)(((s32)a.mask) >> min_shift));
|
|
else
|
|
return TNUM((s64)a.value >> min_shift,
|
|
(s64)a.mask >> min_shift);
|
|
}
|
|
|
|
struct tnum tnum_add(struct tnum a, struct tnum b)
|
|
{
|
|
u64 sm, sv, sigma, chi, mu;
|
|
|
|
sm = a.mask + b.mask;
|
|
sv = a.value + b.value;
|
|
sigma = sm + sv;
|
|
chi = sigma ^ sv;
|
|
mu = chi | a.mask | b.mask;
|
|
return TNUM(sv & ~mu, mu);
|
|
}
|
|
|
|
struct tnum tnum_sub(struct tnum a, struct tnum b)
|
|
{
|
|
u64 dv, alpha, beta, chi, mu;
|
|
|
|
dv = a.value - b.value;
|
|
alpha = dv + a.mask;
|
|
beta = dv - b.mask;
|
|
chi = alpha ^ beta;
|
|
mu = chi | a.mask | b.mask;
|
|
return TNUM(dv & ~mu, mu);
|
|
}
|
|
|
|
struct tnum tnum_and(struct tnum a, struct tnum b)
|
|
{
|
|
u64 alpha, beta, v;
|
|
|
|
alpha = a.value | a.mask;
|
|
beta = b.value | b.mask;
|
|
v = a.value & b.value;
|
|
return TNUM(v, alpha & beta & ~v);
|
|
}
|
|
|
|
struct tnum tnum_or(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v, mu;
|
|
|
|
v = a.value | b.value;
|
|
mu = a.mask | b.mask;
|
|
return TNUM(v, mu & ~v);
|
|
}
|
|
|
|
struct tnum tnum_xor(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v, mu;
|
|
|
|
v = a.value ^ b.value;
|
|
mu = a.mask | b.mask;
|
|
return TNUM(v & ~mu, mu);
|
|
}
|
|
|
|
/* Generate partial products by multiplying each bit in the multiplier (tnum a)
|
|
* with the multiplicand (tnum b), and add the partial products after
|
|
* appropriately bit-shifting them. Instead of directly performing tnum addition
|
|
* on the generated partial products, equivalenty, decompose each partial
|
|
* product into two tnums, consisting of the value-sum (acc_v) and the
|
|
* mask-sum (acc_m) and then perform tnum addition on them. The following paper
|
|
* explains the algorithm in more detail: https://arxiv.org/abs/2105.05398.
|
|
*/
|
|
struct tnum tnum_mul(struct tnum a, struct tnum b)
|
|
{
|
|
u64 acc_v = a.value * b.value;
|
|
struct tnum acc_m = TNUM(0, 0);
|
|
|
|
while (a.value || a.mask) {
|
|
/* LSB of tnum a is a certain 1 */
|
|
if (a.value & 1)
|
|
acc_m = tnum_add(acc_m, TNUM(0, b.mask));
|
|
/* LSB of tnum a is uncertain */
|
|
else if (a.mask & 1)
|
|
acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask));
|
|
/* Note: no case for LSB is certain 0 */
|
|
a = tnum_rshift(a, 1);
|
|
b = tnum_lshift(b, 1);
|
|
}
|
|
return tnum_add(TNUM(acc_v, 0), acc_m);
|
|
}
|
|
|
|
/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
|
|
* a 'known 0' - this will return a 'known 1' for that bit.
|
|
*/
|
|
struct tnum tnum_intersect(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v, mu;
|
|
|
|
v = a.value | b.value;
|
|
mu = a.mask & b.mask;
|
|
return TNUM(v & ~mu, mu);
|
|
}
|
|
|
|
struct tnum tnum_cast(struct tnum a, u8 size)
|
|
{
|
|
a.value &= (1ULL << (size * 8)) - 1;
|
|
a.mask &= (1ULL << (size * 8)) - 1;
|
|
return a;
|
|
}
|
|
|
|
bool tnum_is_aligned(struct tnum a, u64 size)
|
|
{
|
|
if (!size)
|
|
return true;
|
|
return !((a.value | a.mask) & (size - 1));
|
|
}
|
|
|
|
bool tnum_in(struct tnum a, struct tnum b)
|
|
{
|
|
if (b.mask & ~a.mask)
|
|
return false;
|
|
b.value &= ~a.mask;
|
|
return a.value == b.value;
|
|
}
|
|
|
|
int tnum_sbin(char *str, size_t size, struct tnum a)
|
|
{
|
|
size_t n;
|
|
|
|
for (n = 64; n; n--) {
|
|
if (n < size) {
|
|
if (a.mask & 1)
|
|
str[n - 1] = 'x';
|
|
else if (a.value & 1)
|
|
str[n - 1] = '1';
|
|
else
|
|
str[n - 1] = '0';
|
|
}
|
|
a.mask >>= 1;
|
|
a.value >>= 1;
|
|
}
|
|
str[min(size - 1, (size_t)64)] = 0;
|
|
return 64;
|
|
}
|
|
|
|
struct tnum tnum_subreg(struct tnum a)
|
|
{
|
|
return tnum_cast(a, 4);
|
|
}
|
|
|
|
struct tnum tnum_clear_subreg(struct tnum a)
|
|
{
|
|
return tnum_lshift(tnum_rshift(a, 32), 32);
|
|
}
|
|
|
|
struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg)
|
|
{
|
|
return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg));
|
|
}
|
|
|
|
struct tnum tnum_const_subreg(struct tnum a, u32 value)
|
|
{
|
|
return tnum_with_subreg(a, tnum_const(value));
|
|
}
|