Alex Deucher 97ddae76dd Revert "drm/amdkfd: SMI report dropped event count"
This reverts commit a3ab2d45b9887ee609cd3bea39f668236935774c.

The userspace side for this code is not ready yet so revert
for now.

Reviewed-by: Philip Yang <Philip.Yang@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Cc: Philip Yang <Philip.Yang@amd.com>
2024-10-22 17:51:20 -04:00

1667 lines
57 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef KFD_IOCTL_H_INCLUDED
#define KFD_IOCTL_H_INCLUDED
#include <drm/drm.h>
#include <linux/ioctl.h>
/*
* - 1.1 - initial version
* - 1.3 - Add SMI events support
* - 1.4 - Indicate new SRAM EDC bit in device properties
* - 1.5 - Add SVM API
* - 1.6 - Query clear flags in SVM get_attr API
* - 1.7 - Checkpoint Restore (CRIU) API
* - 1.8 - CRIU - Support for SDMA transfers with GTT BOs
* - 1.9 - Add available memory ioctl
* - 1.10 - Add SMI profiler event log
* - 1.11 - Add unified memory for ctx save/restore area
* - 1.12 - Add DMA buf export ioctl
* - 1.13 - Add debugger API
* - 1.14 - Update kfd_event_data
* - 1.15 - Enable managing mappings in compute VMs with GEM_VA ioctl
* - 1.16 - Add contiguous VRAM allocation flag
* - 1.17 - Add SDMA queue creation with target SDMA engine ID
*/
#define KFD_IOCTL_MAJOR_VERSION 1
#define KFD_IOCTL_MINOR_VERSION 17
struct kfd_ioctl_get_version_args {
__u32 major_version; /* from KFD */
__u32 minor_version; /* from KFD */
};
/* For kfd_ioctl_create_queue_args.queue_type. */
#define KFD_IOC_QUEUE_TYPE_COMPUTE 0x0
#define KFD_IOC_QUEUE_TYPE_SDMA 0x1
#define KFD_IOC_QUEUE_TYPE_COMPUTE_AQL 0x2
#define KFD_IOC_QUEUE_TYPE_SDMA_XGMI 0x3
#define KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID 0x4
#define KFD_MAX_QUEUE_PERCENTAGE 100
#define KFD_MAX_QUEUE_PRIORITY 15
struct kfd_ioctl_create_queue_args {
__u64 ring_base_address; /* to KFD */
__u64 write_pointer_address; /* from KFD */
__u64 read_pointer_address; /* from KFD */
__u64 doorbell_offset; /* from KFD */
__u32 ring_size; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 queue_type; /* to KFD */
__u32 queue_percentage; /* to KFD */
__u32 queue_priority; /* to KFD */
__u32 queue_id; /* from KFD */
__u64 eop_buffer_address; /* to KFD */
__u64 eop_buffer_size; /* to KFD */
__u64 ctx_save_restore_address; /* to KFD */
__u32 ctx_save_restore_size; /* to KFD */
__u32 ctl_stack_size; /* to KFD */
__u32 sdma_engine_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_destroy_queue_args {
__u32 queue_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_update_queue_args {
__u64 ring_base_address; /* to KFD */
__u32 queue_id; /* to KFD */
__u32 ring_size; /* to KFD */
__u32 queue_percentage; /* to KFD */
__u32 queue_priority; /* to KFD */
};
struct kfd_ioctl_set_cu_mask_args {
__u32 queue_id; /* to KFD */
__u32 num_cu_mask; /* to KFD */
__u64 cu_mask_ptr; /* to KFD */
};
struct kfd_ioctl_get_queue_wave_state_args {
__u64 ctl_stack_address; /* to KFD */
__u32 ctl_stack_used_size; /* from KFD */
__u32 save_area_used_size; /* from KFD */
__u32 queue_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_get_available_memory_args {
__u64 available; /* from KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_dbg_device_info_entry {
__u64 exception_status;
__u64 lds_base;
__u64 lds_limit;
__u64 scratch_base;
__u64 scratch_limit;
__u64 gpuvm_base;
__u64 gpuvm_limit;
__u32 gpu_id;
__u32 location_id;
__u32 vendor_id;
__u32 device_id;
__u32 revision_id;
__u32 subsystem_vendor_id;
__u32 subsystem_device_id;
__u32 fw_version;
__u32 gfx_target_version;
__u32 simd_count;
__u32 max_waves_per_simd;
__u32 array_count;
__u32 simd_arrays_per_engine;
__u32 num_xcc;
__u32 capability;
__u32 debug_prop;
};
/* For kfd_ioctl_set_memory_policy_args.default_policy and alternate_policy */
#define KFD_IOC_CACHE_POLICY_COHERENT 0
#define KFD_IOC_CACHE_POLICY_NONCOHERENT 1
struct kfd_ioctl_set_memory_policy_args {
__u64 alternate_aperture_base; /* to KFD */
__u64 alternate_aperture_size; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 default_policy; /* to KFD */
__u32 alternate_policy; /* to KFD */
__u32 pad;
};
/*
* All counters are monotonic. They are used for profiling of compute jobs.
* The profiling is done by userspace.
*
* In case of GPU reset, the counter should not be affected.
*/
struct kfd_ioctl_get_clock_counters_args {
__u64 gpu_clock_counter; /* from KFD */
__u64 cpu_clock_counter; /* from KFD */
__u64 system_clock_counter; /* from KFD */
__u64 system_clock_freq; /* from KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_process_device_apertures {
__u64 lds_base; /* from KFD */
__u64 lds_limit; /* from KFD */
__u64 scratch_base; /* from KFD */
__u64 scratch_limit; /* from KFD */
__u64 gpuvm_base; /* from KFD */
__u64 gpuvm_limit; /* from KFD */
__u32 gpu_id; /* from KFD */
__u32 pad;
};
/*
* AMDKFD_IOC_GET_PROCESS_APERTURES is deprecated. Use
* AMDKFD_IOC_GET_PROCESS_APERTURES_NEW instead, which supports an
* unlimited number of GPUs.
*/
#define NUM_OF_SUPPORTED_GPUS 7
struct kfd_ioctl_get_process_apertures_args {
struct kfd_process_device_apertures
process_apertures[NUM_OF_SUPPORTED_GPUS];/* from KFD */
/* from KFD, should be in the range [1 - NUM_OF_SUPPORTED_GPUS] */
__u32 num_of_nodes;
__u32 pad;
};
struct kfd_ioctl_get_process_apertures_new_args {
/* User allocated. Pointer to struct kfd_process_device_apertures
* filled in by Kernel
*/
__u64 kfd_process_device_apertures_ptr;
/* to KFD - indicates amount of memory present in
* kfd_process_device_apertures_ptr
* from KFD - Number of entries filled by KFD.
*/
__u32 num_of_nodes;
__u32 pad;
};
#define MAX_ALLOWED_NUM_POINTS 100
#define MAX_ALLOWED_AW_BUFF_SIZE 4096
#define MAX_ALLOWED_WAC_BUFF_SIZE 128
struct kfd_ioctl_dbg_register_args {
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_dbg_unregister_args {
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_dbg_address_watch_args {
__u64 content_ptr; /* a pointer to the actual content */
__u32 gpu_id; /* to KFD */
__u32 buf_size_in_bytes; /*including gpu_id and buf_size */
};
struct kfd_ioctl_dbg_wave_control_args {
__u64 content_ptr; /* a pointer to the actual content */
__u32 gpu_id; /* to KFD */
__u32 buf_size_in_bytes; /*including gpu_id and buf_size */
};
#define KFD_INVALID_FD 0xffffffff
/* Matching HSA_EVENTTYPE */
#define KFD_IOC_EVENT_SIGNAL 0
#define KFD_IOC_EVENT_NODECHANGE 1
#define KFD_IOC_EVENT_DEVICESTATECHANGE 2
#define KFD_IOC_EVENT_HW_EXCEPTION 3
#define KFD_IOC_EVENT_SYSTEM_EVENT 4
#define KFD_IOC_EVENT_DEBUG_EVENT 5
#define KFD_IOC_EVENT_PROFILE_EVENT 6
#define KFD_IOC_EVENT_QUEUE_EVENT 7
#define KFD_IOC_EVENT_MEMORY 8
#define KFD_IOC_WAIT_RESULT_COMPLETE 0
#define KFD_IOC_WAIT_RESULT_TIMEOUT 1
#define KFD_IOC_WAIT_RESULT_FAIL 2
#define KFD_SIGNAL_EVENT_LIMIT 4096
/* For kfd_event_data.hw_exception_data.reset_type. */
#define KFD_HW_EXCEPTION_WHOLE_GPU_RESET 0
#define KFD_HW_EXCEPTION_PER_ENGINE_RESET 1
/* For kfd_event_data.hw_exception_data.reset_cause. */
#define KFD_HW_EXCEPTION_GPU_HANG 0
#define KFD_HW_EXCEPTION_ECC 1
/* For kfd_hsa_memory_exception_data.ErrorType */
#define KFD_MEM_ERR_NO_RAS 0
#define KFD_MEM_ERR_SRAM_ECC 1
#define KFD_MEM_ERR_POISON_CONSUMED 2
#define KFD_MEM_ERR_GPU_HANG 3
struct kfd_ioctl_create_event_args {
__u64 event_page_offset; /* from KFD */
__u32 event_trigger_data; /* from KFD - signal events only */
__u32 event_type; /* to KFD */
__u32 auto_reset; /* to KFD */
__u32 node_id; /* to KFD - only valid for certain
event types */
__u32 event_id; /* from KFD */
__u32 event_slot_index; /* from KFD */
};
struct kfd_ioctl_destroy_event_args {
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_set_event_args {
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_reset_event_args {
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_memory_exception_failure {
__u32 NotPresent; /* Page not present or supervisor privilege */
__u32 ReadOnly; /* Write access to a read-only page */
__u32 NoExecute; /* Execute access to a page marked NX */
__u32 imprecise; /* Can't determine the exact fault address */
};
/* memory exception data */
struct kfd_hsa_memory_exception_data {
struct kfd_memory_exception_failure failure;
__u64 va;
__u32 gpu_id;
__u32 ErrorType; /* 0 = no RAS error,
* 1 = ECC_SRAM,
* 2 = Link_SYNFLOOD (poison),
* 3 = GPU hang (not attributable to a specific cause),
* other values reserved
*/
};
/* hw exception data */
struct kfd_hsa_hw_exception_data {
__u32 reset_type;
__u32 reset_cause;
__u32 memory_lost;
__u32 gpu_id;
};
/* hsa signal event data */
struct kfd_hsa_signal_event_data {
__u64 last_event_age; /* to and from KFD */
};
/* Event data */
struct kfd_event_data {
union {
/* From KFD */
struct kfd_hsa_memory_exception_data memory_exception_data;
struct kfd_hsa_hw_exception_data hw_exception_data;
/* To and From KFD */
struct kfd_hsa_signal_event_data signal_event_data;
};
__u64 kfd_event_data_ext; /* pointer to an extension structure
for future exception types */
__u32 event_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_wait_events_args {
__u64 events_ptr; /* pointed to struct
kfd_event_data array, to KFD */
__u32 num_events; /* to KFD */
__u32 wait_for_all; /* to KFD */
__u32 timeout; /* to KFD */
__u32 wait_result; /* from KFD */
};
struct kfd_ioctl_set_scratch_backing_va_args {
__u64 va_addr; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_get_tile_config_args {
/* to KFD: pointer to tile array */
__u64 tile_config_ptr;
/* to KFD: pointer to macro tile array */
__u64 macro_tile_config_ptr;
/* to KFD: array size allocated by user mode
* from KFD: array size filled by kernel
*/
__u32 num_tile_configs;
/* to KFD: array size allocated by user mode
* from KFD: array size filled by kernel
*/
__u32 num_macro_tile_configs;
__u32 gpu_id; /* to KFD */
__u32 gb_addr_config; /* from KFD */
__u32 num_banks; /* from KFD */
__u32 num_ranks; /* from KFD */
/* struct size can be extended later if needed
* without breaking ABI compatibility
*/
};
struct kfd_ioctl_set_trap_handler_args {
__u64 tba_addr; /* to KFD */
__u64 tma_addr; /* to KFD */
__u32 gpu_id; /* to KFD */
__u32 pad;
};
struct kfd_ioctl_acquire_vm_args {
__u32 drm_fd; /* to KFD */
__u32 gpu_id; /* to KFD */
};
/* Allocation flags: memory types */
#define KFD_IOC_ALLOC_MEM_FLAGS_VRAM (1 << 0)
#define KFD_IOC_ALLOC_MEM_FLAGS_GTT (1 << 1)
#define KFD_IOC_ALLOC_MEM_FLAGS_USERPTR (1 << 2)
#define KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL (1 << 3)
#define KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP (1 << 4)
/* Allocation flags: attributes/access options */
#define KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE (1 << 31)
#define KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE (1 << 30)
#define KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC (1 << 29)
#define KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE (1 << 28)
#define KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM (1 << 27)
#define KFD_IOC_ALLOC_MEM_FLAGS_COHERENT (1 << 26)
#define KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED (1 << 25)
#define KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT (1 << 24)
#define KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS (1 << 23)
/* Allocate memory for later SVM (shared virtual memory) mapping.
*
* @va_addr: virtual address of the memory to be allocated
* all later mappings on all GPUs will use this address
* @size: size in bytes
* @handle: buffer handle returned to user mode, used to refer to
* this allocation for mapping, unmapping and freeing
* @mmap_offset: for CPU-mapping the allocation by mmapping a render node
* for userptrs this is overloaded to specify the CPU address
* @gpu_id: device identifier
* @flags: memory type and attributes. See KFD_IOC_ALLOC_MEM_FLAGS above
*/
struct kfd_ioctl_alloc_memory_of_gpu_args {
__u64 va_addr; /* to KFD */
__u64 size; /* to KFD */
__u64 handle; /* from KFD */
__u64 mmap_offset; /* to KFD (userptr), from KFD (mmap offset) */
__u32 gpu_id; /* to KFD */
__u32 flags;
};
/* Free memory allocated with kfd_ioctl_alloc_memory_of_gpu
*
* @handle: memory handle returned by alloc
*/
struct kfd_ioctl_free_memory_of_gpu_args {
__u64 handle; /* to KFD */
};
/* Map memory to one or more GPUs
*
* @handle: memory handle returned by alloc
* @device_ids_array_ptr: array of gpu_ids (__u32 per device)
* @n_devices: number of devices in the array
* @n_success: number of devices mapped successfully
*
* @n_success returns information to the caller how many devices from
* the start of the array have mapped the buffer successfully. It can
* be passed into a subsequent retry call to skip those devices. For
* the first call the caller should initialize it to 0.
*
* If the ioctl completes with return code 0 (success), n_success ==
* n_devices.
*/
struct kfd_ioctl_map_memory_to_gpu_args {
__u64 handle; /* to KFD */
__u64 device_ids_array_ptr; /* to KFD */
__u32 n_devices; /* to KFD */
__u32 n_success; /* to/from KFD */
};
/* Unmap memory from one or more GPUs
*
* same arguments as for mapping
*/
struct kfd_ioctl_unmap_memory_from_gpu_args {
__u64 handle; /* to KFD */
__u64 device_ids_array_ptr; /* to KFD */
__u32 n_devices; /* to KFD */
__u32 n_success; /* to/from KFD */
};
/* Allocate GWS for specific queue
*
* @queue_id: queue's id that GWS is allocated for
* @num_gws: how many GWS to allocate
* @first_gws: index of the first GWS allocated.
* only support contiguous GWS allocation
*/
struct kfd_ioctl_alloc_queue_gws_args {
__u32 queue_id; /* to KFD */
__u32 num_gws; /* to KFD */
__u32 first_gws; /* from KFD */
__u32 pad;
};
struct kfd_ioctl_get_dmabuf_info_args {
__u64 size; /* from KFD */
__u64 metadata_ptr; /* to KFD */
__u32 metadata_size; /* to KFD (space allocated by user)
* from KFD (actual metadata size)
*/
__u32 gpu_id; /* from KFD */
__u32 flags; /* from KFD (KFD_IOC_ALLOC_MEM_FLAGS) */
__u32 dmabuf_fd; /* to KFD */
};
struct kfd_ioctl_import_dmabuf_args {
__u64 va_addr; /* to KFD */
__u64 handle; /* from KFD */
__u32 gpu_id; /* to KFD */
__u32 dmabuf_fd; /* to KFD */
};
struct kfd_ioctl_export_dmabuf_args {
__u64 handle; /* to KFD */
__u32 flags; /* to KFD */
__u32 dmabuf_fd; /* from KFD */
};
/*
* KFD SMI(System Management Interface) events
*/
enum kfd_smi_event {
KFD_SMI_EVENT_NONE = 0, /* not used */
KFD_SMI_EVENT_VMFAULT = 1, /* event start counting at 1 */
KFD_SMI_EVENT_THERMAL_THROTTLE = 2,
KFD_SMI_EVENT_GPU_PRE_RESET = 3,
KFD_SMI_EVENT_GPU_POST_RESET = 4,
KFD_SMI_EVENT_MIGRATE_START = 5,
KFD_SMI_EVENT_MIGRATE_END = 6,
KFD_SMI_EVENT_PAGE_FAULT_START = 7,
KFD_SMI_EVENT_PAGE_FAULT_END = 8,
KFD_SMI_EVENT_QUEUE_EVICTION = 9,
KFD_SMI_EVENT_QUEUE_RESTORE = 10,
KFD_SMI_EVENT_UNMAP_FROM_GPU = 11,
/*
* max event number, as a flag bit to get events from all processes,
* this requires super user permission, otherwise will not be able to
* receive event from any process. Without this flag to receive events
* from same process.
*/
KFD_SMI_EVENT_ALL_PROCESS = 64
};
/* The reason of the page migration event */
enum KFD_MIGRATE_TRIGGERS {
KFD_MIGRATE_TRIGGER_PREFETCH, /* Prefetch to GPU VRAM or system memory */
KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, /* GPU page fault recover */
KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, /* CPU page fault recover */
KFD_MIGRATE_TRIGGER_TTM_EVICTION /* TTM eviction */
};
/* The reason of user queue evition event */
enum KFD_QUEUE_EVICTION_TRIGGERS {
KFD_QUEUE_EVICTION_TRIGGER_SVM, /* SVM buffer migration */
KFD_QUEUE_EVICTION_TRIGGER_USERPTR, /* userptr movement */
KFD_QUEUE_EVICTION_TRIGGER_TTM, /* TTM move buffer */
KFD_QUEUE_EVICTION_TRIGGER_SUSPEND, /* GPU suspend */
KFD_QUEUE_EVICTION_CRIU_CHECKPOINT, /* CRIU checkpoint */
KFD_QUEUE_EVICTION_CRIU_RESTORE /* CRIU restore */
};
/* The reason of unmap buffer from GPU event */
enum KFD_SVM_UNMAP_TRIGGERS {
KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY, /* MMU notifier CPU buffer movement */
KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE,/* MMU notifier page migration */
KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU /* Unmap to free the buffer */
};
#define KFD_SMI_EVENT_MASK_FROM_INDEX(i) (1ULL << ((i) - 1))
#define KFD_SMI_EVENT_MSG_SIZE 96
struct kfd_ioctl_smi_events_args {
__u32 gpuid; /* to KFD */
__u32 anon_fd; /* from KFD */
};
/*
* SVM event tracing via SMI system management interface
*
* Open event file descriptor
* use ioctl AMDKFD_IOC_SMI_EVENTS, pass in gpuid and return a anonymous file
* descriptor to receive SMI events.
* If calling with sudo permission, then file descriptor can be used to receive
* SVM events from all processes, otherwise, to only receive SVM events of same
* process.
*
* To enable the SVM event
* Write event file descriptor with KFD_SMI_EVENT_MASK_FROM_INDEX(event) bitmap
* mask to start record the event to the kfifo, use bitmap mask combination
* for multiple events. New event mask will overwrite the previous event mask.
* KFD_SMI_EVENT_MASK_FROM_INDEX(KFD_SMI_EVENT_ALL_PROCESS) bit requires sudo
* permisson to receive SVM events from all process.
*
* To receive the event
* Application can poll file descriptor to wait for the events, then read event
* from the file into a buffer. Each event is one line string message, starting
* with the event id, then the event specific information.
*
* To decode event information
* The following event format string macro can be used with sscanf to decode
* the specific event information.
* event triggers: the reason to generate the event, defined as enum for unmap,
* eviction and migrate events.
* node, from, to, prefetch_loc, preferred_loc: GPU ID, or 0 for system memory.
* addr: user mode address, in pages
* size: in pages
* pid: the process ID to generate the event
* ns: timestamp in nanosecond-resolution, starts at system boot time but
* stops during suspend
* migrate_update: GPU page fault is recovered by 'M' for migrate, 'U' for update
* rw: 'W' for write page fault, 'R' for read page fault
* rescheduled: 'R' if the queue restore failed and rescheduled to try again
* error_code: migrate failure error code, 0 if no error
*/
#define KFD_EVENT_FMT_UPDATE_GPU_RESET(reset_seq_num, reset_cause)\
"%x %s\n", (reset_seq_num), (reset_cause)
#define KFD_EVENT_FMT_THERMAL_THROTTLING(bitmask, counter)\
"%llx:%llx\n", (bitmask), (counter)
#define KFD_EVENT_FMT_VMFAULT(pid, task_name)\
"%x:%s\n", (pid), (task_name)
#define KFD_EVENT_FMT_PAGEFAULT_START(ns, pid, addr, node, rw)\
"%lld -%d @%lx(%x) %c\n", (ns), (pid), (addr), (node), (rw)
#define KFD_EVENT_FMT_PAGEFAULT_END(ns, pid, addr, node, migrate_update)\
"%lld -%d @%lx(%x) %c\n", (ns), (pid), (addr), (node), (migrate_update)
#define KFD_EVENT_FMT_MIGRATE_START(ns, pid, start, size, from, to, prefetch_loc,\
preferred_loc, migrate_trigger)\
"%lld -%d @%lx(%lx) %x->%x %x:%x %d\n", (ns), (pid), (start), (size),\
(from), (to), (prefetch_loc), (preferred_loc), (migrate_trigger)
#define KFD_EVENT_FMT_MIGRATE_END(ns, pid, start, size, from, to, migrate_trigger, error_code) \
"%lld -%d @%lx(%lx) %x->%x %d %d\n", (ns), (pid), (start), (size),\
(from), (to), (migrate_trigger), (error_code)
#define KFD_EVENT_FMT_QUEUE_EVICTION(ns, pid, node, evict_trigger)\
"%lld -%d %x %d\n", (ns), (pid), (node), (evict_trigger)
#define KFD_EVENT_FMT_QUEUE_RESTORE(ns, pid, node, rescheduled)\
"%lld -%d %x %c\n", (ns), (pid), (node), (rescheduled)
#define KFD_EVENT_FMT_UNMAP_FROM_GPU(ns, pid, addr, size, node, unmap_trigger)\
"%lld -%d @%lx(%lx) %x %d\n", (ns), (pid), (addr), (size),\
(node), (unmap_trigger)
/**************************************************************************************************
* CRIU IOCTLs (Checkpoint Restore In Userspace)
*
* When checkpointing a process, the userspace application will perform:
* 1. PROCESS_INFO op to determine current process information. This pauses execution and evicts
* all the queues.
* 2. CHECKPOINT op to checkpoint process contents (BOs, queues, events, svm-ranges)
* 3. UNPAUSE op to un-evict all the queues
*
* When restoring a process, the CRIU userspace application will perform:
*
* 1. RESTORE op to restore process contents
* 2. RESUME op to start the process
*
* Note: Queues are forced into an evicted state after a successful PROCESS_INFO. User
* application needs to perform an UNPAUSE operation after calling PROCESS_INFO.
*/
enum kfd_criu_op {
KFD_CRIU_OP_PROCESS_INFO,
KFD_CRIU_OP_CHECKPOINT,
KFD_CRIU_OP_UNPAUSE,
KFD_CRIU_OP_RESTORE,
KFD_CRIU_OP_RESUME,
};
/**
* kfd_ioctl_criu_args - Arguments perform CRIU operation
* @devices: [in/out] User pointer to memory location for devices information.
* This is an array of type kfd_criu_device_bucket.
* @bos: [in/out] User pointer to memory location for BOs information
* This is an array of type kfd_criu_bo_bucket.
* @priv_data: [in/out] User pointer to memory location for private data
* @priv_data_size: [in/out] Size of priv_data in bytes
* @num_devices: [in/out] Number of GPUs used by process. Size of @devices array.
* @num_bos [in/out] Number of BOs used by process. Size of @bos array.
* @num_objects: [in/out] Number of objects used by process. Objects are opaque to
* user application.
* @pid: [in/out] PID of the process being checkpointed
* @op [in] Type of operation (kfd_criu_op)
*
* Return: 0 on success, -errno on failure
*/
struct kfd_ioctl_criu_args {
__u64 devices; /* Used during ops: CHECKPOINT, RESTORE */
__u64 bos; /* Used during ops: CHECKPOINT, RESTORE */
__u64 priv_data; /* Used during ops: CHECKPOINT, RESTORE */
__u64 priv_data_size; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 num_devices; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 num_bos; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 num_objects; /* Used during ops: PROCESS_INFO, RESTORE */
__u32 pid; /* Used during ops: PROCESS_INFO, RESUME */
__u32 op;
};
struct kfd_criu_device_bucket {
__u32 user_gpu_id;
__u32 actual_gpu_id;
__u32 drm_fd;
__u32 pad;
};
struct kfd_criu_bo_bucket {
__u64 addr;
__u64 size;
__u64 offset;
__u64 restored_offset; /* During restore, updated offset for BO */
__u32 gpu_id; /* This is the user_gpu_id */
__u32 alloc_flags;
__u32 dmabuf_fd;
__u32 pad;
};
/* CRIU IOCTLs - END */
/**************************************************************************************************/
/* Register offset inside the remapped mmio page
*/
enum kfd_mmio_remap {
KFD_MMIO_REMAP_HDP_MEM_FLUSH_CNTL = 0,
KFD_MMIO_REMAP_HDP_REG_FLUSH_CNTL = 4,
};
/* Guarantee host access to memory */
#define KFD_IOCTL_SVM_FLAG_HOST_ACCESS 0x00000001
/* Fine grained coherency between all devices with access */
#define KFD_IOCTL_SVM_FLAG_COHERENT 0x00000002
/* Use any GPU in same hive as preferred device */
#define KFD_IOCTL_SVM_FLAG_HIVE_LOCAL 0x00000004
/* GPUs only read, allows replication */
#define KFD_IOCTL_SVM_FLAG_GPU_RO 0x00000008
/* Allow execution on GPU */
#define KFD_IOCTL_SVM_FLAG_GPU_EXEC 0x00000010
/* GPUs mostly read, may allow similar optimizations as RO, but writes fault */
#define KFD_IOCTL_SVM_FLAG_GPU_READ_MOSTLY 0x00000020
/* Keep GPU memory mapping always valid as if XNACK is disable */
#define KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED 0x00000040
/* Fine grained coherency between all devices using device-scope atomics */
#define KFD_IOCTL_SVM_FLAG_EXT_COHERENT 0x00000080
/**
* kfd_ioctl_svm_op - SVM ioctl operations
*
* @KFD_IOCTL_SVM_OP_SET_ATTR: Modify one or more attributes
* @KFD_IOCTL_SVM_OP_GET_ATTR: Query one or more attributes
*/
enum kfd_ioctl_svm_op {
KFD_IOCTL_SVM_OP_SET_ATTR,
KFD_IOCTL_SVM_OP_GET_ATTR
};
/** kfd_ioctl_svm_location - Enum for preferred and prefetch locations
*
* GPU IDs are used to specify GPUs as preferred and prefetch locations.
* Below definitions are used for system memory or for leaving the preferred
* location unspecified.
*/
enum kfd_ioctl_svm_location {
KFD_IOCTL_SVM_LOCATION_SYSMEM = 0,
KFD_IOCTL_SVM_LOCATION_UNDEFINED = 0xffffffff
};
/**
* kfd_ioctl_svm_attr_type - SVM attribute types
*
* @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: gpuid of the preferred location, 0 for
* system memory
* @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: gpuid of the prefetch location, 0 for
* system memory. Setting this triggers an
* immediate prefetch (migration).
* @KFD_IOCTL_SVM_ATTR_ACCESS:
* @KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
* @KFD_IOCTL_SVM_ATTR_NO_ACCESS: specify memory access for the gpuid given
* by the attribute value
* @KFD_IOCTL_SVM_ATTR_SET_FLAGS: bitmask of flags to set (see
* KFD_IOCTL_SVM_FLAG_...)
* @KFD_IOCTL_SVM_ATTR_CLR_FLAGS: bitmask of flags to clear
* @KFD_IOCTL_SVM_ATTR_GRANULARITY: migration granularity
* (log2 num pages)
*/
enum kfd_ioctl_svm_attr_type {
KFD_IOCTL_SVM_ATTR_PREFERRED_LOC,
KFD_IOCTL_SVM_ATTR_PREFETCH_LOC,
KFD_IOCTL_SVM_ATTR_ACCESS,
KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE,
KFD_IOCTL_SVM_ATTR_NO_ACCESS,
KFD_IOCTL_SVM_ATTR_SET_FLAGS,
KFD_IOCTL_SVM_ATTR_CLR_FLAGS,
KFD_IOCTL_SVM_ATTR_GRANULARITY
};
/**
* kfd_ioctl_svm_attribute - Attributes as pairs of type and value
*
* The meaning of the @value depends on the attribute type.
*
* @type: attribute type (see enum @kfd_ioctl_svm_attr_type)
* @value: attribute value
*/
struct kfd_ioctl_svm_attribute {
__u32 type;
__u32 value;
};
/**
* kfd_ioctl_svm_args - Arguments for SVM ioctl
*
* @op specifies the operation to perform (see enum
* @kfd_ioctl_svm_op). @start_addr and @size are common for all
* operations.
*
* A variable number of attributes can be given in @attrs.
* @nattr specifies the number of attributes. New attributes can be
* added in the future without breaking the ABI. If unknown attributes
* are given, the function returns -EINVAL.
*
* @KFD_IOCTL_SVM_OP_SET_ATTR sets attributes for a virtual address
* range. It may overlap existing virtual address ranges. If it does,
* the existing ranges will be split such that the attribute changes
* only apply to the specified address range.
*
* @KFD_IOCTL_SVM_OP_GET_ATTR returns the intersection of attributes
* over all memory in the given range and returns the result as the
* attribute value. If different pages have different preferred or
* prefetch locations, 0xffffffff will be returned for
* @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC or
* @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC resepctively. For
* @KFD_IOCTL_SVM_ATTR_SET_FLAGS, flags of all pages will be
* aggregated by bitwise AND. That means, a flag will be set in the
* output, if that flag is set for all pages in the range. For
* @KFD_IOCTL_SVM_ATTR_CLR_FLAGS, flags of all pages will be
* aggregated by bitwise NOR. That means, a flag will be set in the
* output, if that flag is clear for all pages in the range.
* The minimum migration granularity throughout the range will be
* returned for @KFD_IOCTL_SVM_ATTR_GRANULARITY.
*
* Querying of accessibility attributes works by initializing the
* attribute type to @KFD_IOCTL_SVM_ATTR_ACCESS and the value to the
* GPUID being queried. Multiple attributes can be given to allow
* querying multiple GPUIDs. The ioctl function overwrites the
* attribute type to indicate the access for the specified GPU.
*/
struct kfd_ioctl_svm_args {
__u64 start_addr;
__u64 size;
__u32 op;
__u32 nattr;
/* Variable length array of attributes */
struct kfd_ioctl_svm_attribute attrs[];
};
/**
* kfd_ioctl_set_xnack_mode_args - Arguments for set_xnack_mode
*
* @xnack_enabled: [in/out] Whether to enable XNACK mode for this process
*
* @xnack_enabled indicates whether recoverable page faults should be
* enabled for the current process. 0 means disabled, positive means
* enabled, negative means leave unchanged. If enabled, virtual address
* translations on GFXv9 and later AMD GPUs can return XNACK and retry
* the access until a valid PTE is available. This is used to implement
* device page faults.
*
* On output, @xnack_enabled returns the (new) current mode (0 or
* positive). Therefore, a negative input value can be used to query
* the current mode without changing it.
*
* The XNACK mode fundamentally changes the way SVM managed memory works
* in the driver, with subtle effects on application performance and
* functionality.
*
* Enabling XNACK mode requires shader programs to be compiled
* differently. Furthermore, not all GPUs support changing the mode
* per-process. Therefore changing the mode is only allowed while no
* user mode queues exist in the process. This ensure that no shader
* code is running that may be compiled for the wrong mode. And GPUs
* that cannot change to the requested mode will prevent the XNACK
* mode from occurring. All GPUs used by the process must be in the
* same XNACK mode.
*
* GFXv8 or older GPUs do not support 48 bit virtual addresses or SVM.
* Therefore those GPUs are not considered for the XNACK mode switch.
*
* Return: 0 on success, -errno on failure
*/
struct kfd_ioctl_set_xnack_mode_args {
__s32 xnack_enabled;
};
/* Wave launch override modes */
enum kfd_dbg_trap_override_mode {
KFD_DBG_TRAP_OVERRIDE_OR = 0,
KFD_DBG_TRAP_OVERRIDE_REPLACE = 1
};
/* Wave launch overrides */
enum kfd_dbg_trap_mask {
KFD_DBG_TRAP_MASK_FP_INVALID = 1,
KFD_DBG_TRAP_MASK_FP_INPUT_DENORMAL = 2,
KFD_DBG_TRAP_MASK_FP_DIVIDE_BY_ZERO = 4,
KFD_DBG_TRAP_MASK_FP_OVERFLOW = 8,
KFD_DBG_TRAP_MASK_FP_UNDERFLOW = 16,
KFD_DBG_TRAP_MASK_FP_INEXACT = 32,
KFD_DBG_TRAP_MASK_INT_DIVIDE_BY_ZERO = 64,
KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH = 128,
KFD_DBG_TRAP_MASK_DBG_MEMORY_VIOLATION = 256,
KFD_DBG_TRAP_MASK_TRAP_ON_WAVE_START = (1 << 30),
KFD_DBG_TRAP_MASK_TRAP_ON_WAVE_END = (1 << 31)
};
/* Wave launch modes */
enum kfd_dbg_trap_wave_launch_mode {
KFD_DBG_TRAP_WAVE_LAUNCH_MODE_NORMAL = 0,
KFD_DBG_TRAP_WAVE_LAUNCH_MODE_HALT = 1,
KFD_DBG_TRAP_WAVE_LAUNCH_MODE_DEBUG = 3
};
/* Address watch modes */
enum kfd_dbg_trap_address_watch_mode {
KFD_DBG_TRAP_ADDRESS_WATCH_MODE_READ = 0,
KFD_DBG_TRAP_ADDRESS_WATCH_MODE_NONREAD = 1,
KFD_DBG_TRAP_ADDRESS_WATCH_MODE_ATOMIC = 2,
KFD_DBG_TRAP_ADDRESS_WATCH_MODE_ALL = 3
};
/* Additional wave settings */
enum kfd_dbg_trap_flags {
KFD_DBG_TRAP_FLAG_SINGLE_MEM_OP = 1,
KFD_DBG_TRAP_FLAG_SINGLE_ALU_OP = 2,
};
/* Trap exceptions */
enum kfd_dbg_trap_exception_code {
EC_NONE = 0,
/* per queue */
EC_QUEUE_WAVE_ABORT = 1,
EC_QUEUE_WAVE_TRAP = 2,
EC_QUEUE_WAVE_MATH_ERROR = 3,
EC_QUEUE_WAVE_ILLEGAL_INSTRUCTION = 4,
EC_QUEUE_WAVE_MEMORY_VIOLATION = 5,
EC_QUEUE_WAVE_APERTURE_VIOLATION = 6,
EC_QUEUE_PACKET_DISPATCH_DIM_INVALID = 16,
EC_QUEUE_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID = 17,
EC_QUEUE_PACKET_DISPATCH_CODE_INVALID = 18,
EC_QUEUE_PACKET_RESERVED = 19,
EC_QUEUE_PACKET_UNSUPPORTED = 20,
EC_QUEUE_PACKET_DISPATCH_WORK_GROUP_SIZE_INVALID = 21,
EC_QUEUE_PACKET_DISPATCH_REGISTER_INVALID = 22,
EC_QUEUE_PACKET_VENDOR_UNSUPPORTED = 23,
EC_QUEUE_PREEMPTION_ERROR = 30,
EC_QUEUE_NEW = 31,
/* per device */
EC_DEVICE_QUEUE_DELETE = 32,
EC_DEVICE_MEMORY_VIOLATION = 33,
EC_DEVICE_RAS_ERROR = 34,
EC_DEVICE_FATAL_HALT = 35,
EC_DEVICE_NEW = 36,
/* per process */
EC_PROCESS_RUNTIME = 48,
EC_PROCESS_DEVICE_REMOVE = 49,
EC_MAX
};
/* Mask generated by ecode in kfd_dbg_trap_exception_code */
#define KFD_EC_MASK(ecode) (1ULL << (ecode - 1))
/* Masks for exception code type checks below */
#define KFD_EC_MASK_QUEUE (KFD_EC_MASK(EC_QUEUE_WAVE_ABORT) | \
KFD_EC_MASK(EC_QUEUE_WAVE_TRAP) | \
KFD_EC_MASK(EC_QUEUE_WAVE_MATH_ERROR) | \
KFD_EC_MASK(EC_QUEUE_WAVE_ILLEGAL_INSTRUCTION) | \
KFD_EC_MASK(EC_QUEUE_WAVE_MEMORY_VIOLATION) | \
KFD_EC_MASK(EC_QUEUE_WAVE_APERTURE_VIOLATION) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_DIM_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_CODE_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_RESERVED) | \
KFD_EC_MASK(EC_QUEUE_PACKET_UNSUPPORTED) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_WORK_GROUP_SIZE_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_REGISTER_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_VENDOR_UNSUPPORTED) | \
KFD_EC_MASK(EC_QUEUE_PREEMPTION_ERROR) | \
KFD_EC_MASK(EC_QUEUE_NEW))
#define KFD_EC_MASK_DEVICE (KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE) | \
KFD_EC_MASK(EC_DEVICE_RAS_ERROR) | \
KFD_EC_MASK(EC_DEVICE_FATAL_HALT) | \
KFD_EC_MASK(EC_DEVICE_MEMORY_VIOLATION) | \
KFD_EC_MASK(EC_DEVICE_NEW))
#define KFD_EC_MASK_PROCESS (KFD_EC_MASK(EC_PROCESS_RUNTIME) | \
KFD_EC_MASK(EC_PROCESS_DEVICE_REMOVE))
#define KFD_EC_MASK_PACKET (KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_DIM_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_CODE_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_RESERVED) | \
KFD_EC_MASK(EC_QUEUE_PACKET_UNSUPPORTED) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_WORK_GROUP_SIZE_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_REGISTER_INVALID) | \
KFD_EC_MASK(EC_QUEUE_PACKET_VENDOR_UNSUPPORTED))
/* Checks for exception code types for KFD search */
#define KFD_DBG_EC_IS_VALID(ecode) (ecode > EC_NONE && ecode < EC_MAX)
#define KFD_DBG_EC_TYPE_IS_QUEUE(ecode) \
(KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_QUEUE))
#define KFD_DBG_EC_TYPE_IS_DEVICE(ecode) \
(KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_DEVICE))
#define KFD_DBG_EC_TYPE_IS_PROCESS(ecode) \
(KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_PROCESS))
#define KFD_DBG_EC_TYPE_IS_PACKET(ecode) \
(KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_PACKET))
/* Runtime enable states */
enum kfd_dbg_runtime_state {
DEBUG_RUNTIME_STATE_DISABLED = 0,
DEBUG_RUNTIME_STATE_ENABLED = 1,
DEBUG_RUNTIME_STATE_ENABLED_BUSY = 2,
DEBUG_RUNTIME_STATE_ENABLED_ERROR = 3
};
/* Runtime enable status */
struct kfd_runtime_info {
__u64 r_debug;
__u32 runtime_state;
__u32 ttmp_setup;
};
/* Enable modes for runtime enable */
#define KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK 1
#define KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK 2
/**
* kfd_ioctl_runtime_enable_args - Arguments for runtime enable
*
* Coordinates debug exception signalling and debug device enablement with runtime.
*
* @r_debug - pointer to user struct for sharing information between ROCr and the debuggger
* @mode_mask - mask to set mode
* KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK - enable runtime for debugging, otherwise disable
* KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK - enable trap temporary setup (ignore on disable)
* @capabilities_mask - mask to notify runtime on what KFD supports
*
* Return - 0 on SUCCESS.
* - EBUSY if runtime enable call already pending.
* - EEXIST if user queues already active prior to call.
* If process is debug enabled, runtime enable will enable debug devices and
* wait for debugger process to send runtime exception EC_PROCESS_RUNTIME
* to unblock - see kfd_ioctl_dbg_trap_args.
*
*/
struct kfd_ioctl_runtime_enable_args {
__u64 r_debug;
__u32 mode_mask;
__u32 capabilities_mask;
};
/* Queue information */
struct kfd_queue_snapshot_entry {
__u64 exception_status;
__u64 ring_base_address;
__u64 write_pointer_address;
__u64 read_pointer_address;
__u64 ctx_save_restore_address;
__u32 queue_id;
__u32 gpu_id;
__u32 ring_size;
__u32 queue_type;
__u32 ctx_save_restore_area_size;
__u32 reserved;
};
/* Queue status return for suspend/resume */
#define KFD_DBG_QUEUE_ERROR_BIT 30
#define KFD_DBG_QUEUE_INVALID_BIT 31
#define KFD_DBG_QUEUE_ERROR_MASK (1 << KFD_DBG_QUEUE_ERROR_BIT)
#define KFD_DBG_QUEUE_INVALID_MASK (1 << KFD_DBG_QUEUE_INVALID_BIT)
/* Context save area header information */
struct kfd_context_save_area_header {
struct {
__u32 control_stack_offset;
__u32 control_stack_size;
__u32 wave_state_offset;
__u32 wave_state_size;
} wave_state;
__u32 debug_offset;
__u32 debug_size;
__u64 err_payload_addr;
__u32 err_event_id;
__u32 reserved1;
};
/*
* Debug operations
*
* For specifics on usage and return values, see documentation per operation
* below. Otherwise, generic error returns apply:
* - ESRCH if the process to debug does not exist.
*
* - EINVAL (with KFD_IOC_DBG_TRAP_ENABLE exempt) if operation
* KFD_IOC_DBG_TRAP_ENABLE has not succeeded prior.
* Also returns this error if GPU hardware scheduling is not supported.
*
* - EPERM (with KFD_IOC_DBG_TRAP_DISABLE exempt) if target process is not
* PTRACE_ATTACHED. KFD_IOC_DBG_TRAP_DISABLE is exempt to allow
* clean up of debug mode as long as process is debug enabled.
*
* - EACCES if any DBG_HW_OP (debug hardware operation) is requested when
* AMDKFD_IOC_RUNTIME_ENABLE has not succeeded prior.
*
* - ENODEV if any GPU does not support debugging on a DBG_HW_OP call.
*
* - Other errors may be returned when a DBG_HW_OP occurs while the GPU
* is in a fatal state.
*
*/
enum kfd_dbg_trap_operations {
KFD_IOC_DBG_TRAP_ENABLE = 0,
KFD_IOC_DBG_TRAP_DISABLE = 1,
KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT = 2,
KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED = 3,
KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE = 4, /* DBG_HW_OP */
KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE = 5, /* DBG_HW_OP */
KFD_IOC_DBG_TRAP_SUSPEND_QUEUES = 6, /* DBG_HW_OP */
KFD_IOC_DBG_TRAP_RESUME_QUEUES = 7, /* DBG_HW_OP */
KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH = 8, /* DBG_HW_OP */
KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH = 9, /* DBG_HW_OP */
KFD_IOC_DBG_TRAP_SET_FLAGS = 10,
KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT = 11,
KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO = 12,
KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT = 13,
KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT = 14
};
/**
* kfd_ioctl_dbg_trap_enable_args
*
* Arguments for KFD_IOC_DBG_TRAP_ENABLE.
*
* Enables debug session for target process. Call @op KFD_IOC_DBG_TRAP_DISABLE in
* kfd_ioctl_dbg_trap_args to disable debug session.
*
* @exception_mask (IN) - exceptions to raise to the debugger
* @rinfo_ptr (IN) - pointer to runtime info buffer (see kfd_runtime_info)
* @rinfo_size (IN/OUT) - size of runtime info buffer in bytes
* @dbg_fd (IN) - fd the KFD will nofify the debugger with of raised
* exceptions set in exception_mask.
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* Copies KFD saved kfd_runtime_info to @rinfo_ptr on enable.
* Size of kfd_runtime saved by the KFD returned to @rinfo_size.
* - EBADF if KFD cannot get a reference to dbg_fd.
* - EFAULT if KFD cannot copy runtime info to rinfo_ptr.
* - EINVAL if target process is already debug enabled.
*
*/
struct kfd_ioctl_dbg_trap_enable_args {
__u64 exception_mask;
__u64 rinfo_ptr;
__u32 rinfo_size;
__u32 dbg_fd;
};
/**
* kfd_ioctl_dbg_trap_send_runtime_event_args
*
*
* Arguments for KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT.
* Raises exceptions to runtime.
*
* @exception_mask (IN) - exceptions to raise to runtime
* @gpu_id (IN) - target device id
* @queue_id (IN) - target queue id
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* - ENODEV if gpu_id not found.
* If exception_mask contains EC_PROCESS_RUNTIME, unblocks pending
* AMDKFD_IOC_RUNTIME_ENABLE call - see kfd_ioctl_runtime_enable_args.
* All other exceptions are raised to runtime through err_payload_addr.
* See kfd_context_save_area_header.
*/
struct kfd_ioctl_dbg_trap_send_runtime_event_args {
__u64 exception_mask;
__u32 gpu_id;
__u32 queue_id;
};
/**
* kfd_ioctl_dbg_trap_set_exceptions_enabled_args
*
* Arguments for KFD_IOC_SET_EXCEPTIONS_ENABLED
* Set new exceptions to be raised to the debugger.
*
* @exception_mask (IN) - new exceptions to raise the debugger
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
*/
struct kfd_ioctl_dbg_trap_set_exceptions_enabled_args {
__u64 exception_mask;
};
/**
* kfd_ioctl_dbg_trap_set_wave_launch_override_args
*
* Arguments for KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE
* Enable HW exceptions to raise trap.
*
* @override_mode (IN) - see kfd_dbg_trap_override_mode
* @enable_mask (IN/OUT) - reference kfd_dbg_trap_mask.
* IN is the override modes requested to be enabled.
* OUT is referenced in Return below.
* @support_request_mask (IN/OUT) - reference kfd_dbg_trap_mask.
* IN is the override modes requested for support check.
* OUT is referenced in Return below.
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* Previous enablement is returned in @enable_mask.
* Actual override support is returned in @support_request_mask.
* - EINVAL if override mode is not supported.
* - EACCES if trap support requested is not actually supported.
* i.e. enable_mask (IN) is not a subset of support_request_mask (OUT).
* Otherwise it is considered a generic error (see kfd_dbg_trap_operations).
*/
struct kfd_ioctl_dbg_trap_set_wave_launch_override_args {
__u32 override_mode;
__u32 enable_mask;
__u32 support_request_mask;
__u32 pad;
};
/**
* kfd_ioctl_dbg_trap_set_wave_launch_mode_args
*
* Arguments for KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE
* Set wave launch mode.
*
* @mode (IN) - see kfd_dbg_trap_wave_launch_mode
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
*/
struct kfd_ioctl_dbg_trap_set_wave_launch_mode_args {
__u32 launch_mode;
__u32 pad;
};
/**
* kfd_ioctl_dbg_trap_suspend_queues_ags
*
* Arguments for KFD_IOC_DBG_TRAP_SUSPEND_QUEUES
* Suspend queues.
*
* @exception_mask (IN) - raised exceptions to clear
* @queue_array_ptr (IN) - pointer to array of queue ids (u32 per queue id)
* to suspend
* @num_queues (IN) - number of queues to suspend in @queue_array_ptr
* @grace_period (IN) - wave time allowance before preemption
* per 1K GPU clock cycle unit
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Destruction of a suspended queue is blocked until the queue is
* resumed. This allows the debugger to access queue information and
* the its context save area without running into a race condition on
* queue destruction.
* Automatically copies per queue context save area header information
* into the save area base
* (see kfd_queue_snapshot_entry and kfd_context_save_area_header).
*
* Return - Number of queues suspended on SUCCESS.
* . KFD_DBG_QUEUE_ERROR_MASK and KFD_DBG_QUEUE_INVALID_MASK masked
* for each queue id in @queue_array_ptr array reports unsuccessful
* suspend reason.
* KFD_DBG_QUEUE_ERROR_MASK = HW failure.
* KFD_DBG_QUEUE_INVALID_MASK = queue does not exist, is new or
* is being destroyed.
*/
struct kfd_ioctl_dbg_trap_suspend_queues_args {
__u64 exception_mask;
__u64 queue_array_ptr;
__u32 num_queues;
__u32 grace_period;
};
/**
* kfd_ioctl_dbg_trap_resume_queues_args
*
* Arguments for KFD_IOC_DBG_TRAP_RESUME_QUEUES
* Resume queues.
*
* @queue_array_ptr (IN) - pointer to array of queue ids (u32 per queue id)
* to resume
* @num_queues (IN) - number of queues to resume in @queue_array_ptr
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - Number of queues resumed on SUCCESS.
* KFD_DBG_QUEUE_ERROR_MASK and KFD_DBG_QUEUE_INVALID_MASK mask
* for each queue id in @queue_array_ptr array reports unsuccessful
* resume reason.
* KFD_DBG_QUEUE_ERROR_MASK = HW failure.
* KFD_DBG_QUEUE_INVALID_MASK = queue does not exist.
*/
struct kfd_ioctl_dbg_trap_resume_queues_args {
__u64 queue_array_ptr;
__u32 num_queues;
__u32 pad;
};
/**
* kfd_ioctl_dbg_trap_set_node_address_watch_args
*
* Arguments for KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH
* Sets address watch for device.
*
* @address (IN) - watch address to set
* @mode (IN) - see kfd_dbg_trap_address_watch_mode
* @mask (IN) - watch address mask
* @gpu_id (IN) - target gpu to set watch point
* @id (OUT) - watch id allocated
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* Allocated watch ID returned to @id.
* - ENODEV if gpu_id not found.
* - ENOMEM if watch IDs can be allocated
*/
struct kfd_ioctl_dbg_trap_set_node_address_watch_args {
__u64 address;
__u32 mode;
__u32 mask;
__u32 gpu_id;
__u32 id;
};
/**
* kfd_ioctl_dbg_trap_clear_node_address_watch_args
*
* Arguments for KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH
* Clear address watch for device.
*
* @gpu_id (IN) - target device to clear watch point
* @id (IN) - allocated watch id to clear
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* - ENODEV if gpu_id not found.
* - EINVAL if watch ID has not been allocated.
*/
struct kfd_ioctl_dbg_trap_clear_node_address_watch_args {
__u32 gpu_id;
__u32 id;
};
/**
* kfd_ioctl_dbg_trap_set_flags_args
*
* Arguments for KFD_IOC_DBG_TRAP_SET_FLAGS
* Sets flags for wave behaviour.
*
* @flags (IN/OUT) - IN = flags to enable, OUT = flags previously enabled
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* - EACCESS if any debug device does not allow flag options.
*/
struct kfd_ioctl_dbg_trap_set_flags_args {
__u32 flags;
__u32 pad;
};
/**
* kfd_ioctl_dbg_trap_query_debug_event_args
*
* Arguments for KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT
*
* Find one or more raised exceptions. This function can return multiple
* exceptions from a single queue or a single device with one call. To find
* all raised exceptions, this function must be called repeatedly until it
* returns -EAGAIN. Returned exceptions can optionally be cleared by
* setting the corresponding bit in the @exception_mask input parameter.
* However, clearing an exception prevents retrieving further information
* about it with KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO.
*
* @exception_mask (IN/OUT) - exception to clear (IN) and raised (OUT)
* @gpu_id (OUT) - gpu id of exceptions raised
* @queue_id (OUT) - queue id of exceptions raised
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on raised exception found
* Raised exceptions found are returned in @exception mask
* with reported source id returned in @gpu_id or @queue_id.
* - EAGAIN if no raised exception has been found
*/
struct kfd_ioctl_dbg_trap_query_debug_event_args {
__u64 exception_mask;
__u32 gpu_id;
__u32 queue_id;
};
/**
* kfd_ioctl_dbg_trap_query_exception_info_args
*
* Arguments KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO
* Get additional info on raised exception.
*
* @info_ptr (IN) - pointer to exception info buffer to copy to
* @info_size (IN/OUT) - exception info buffer size (bytes)
* @source_id (IN) - target gpu or queue id
* @exception_code (IN) - target exception
* @clear_exception (IN) - clear raised @exception_code exception
* (0 = false, 1 = true)
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* If @exception_code is EC_DEVICE_MEMORY_VIOLATION, copy @info_size(OUT)
* bytes of memory exception data to @info_ptr.
* If @exception_code is EC_PROCESS_RUNTIME, copy saved
* kfd_runtime_info to @info_ptr.
* Actual required @info_ptr size (bytes) is returned in @info_size.
*/
struct kfd_ioctl_dbg_trap_query_exception_info_args {
__u64 info_ptr;
__u32 info_size;
__u32 source_id;
__u32 exception_code;
__u32 clear_exception;
};
/**
* kfd_ioctl_dbg_trap_get_queue_snapshot_args
*
* Arguments KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT
* Get queue information.
*
* @exception_mask (IN) - exceptions raised to clear
* @snapshot_buf_ptr (IN) - queue snapshot entry buffer (see kfd_queue_snapshot_entry)
* @num_queues (IN/OUT) - number of queue snapshot entries
* The debugger specifies the size of the array allocated in @num_queues.
* KFD returns the number of queues that actually existed. If this is
* larger than the size specified by the debugger, KFD will not overflow
* the array allocated by the debugger.
*
* @entry_size (IN/OUT) - size per entry in bytes
* The debugger specifies sizeof(struct kfd_queue_snapshot_entry) in
* @entry_size. KFD returns the number of bytes actually populated per
* entry. The debugger should use the KFD_IOCTL_MINOR_VERSION to determine,
* which fields in struct kfd_queue_snapshot_entry are valid. This allows
* growing the ABI in a backwards compatible manner.
* Note that entry_size(IN) should still be used to stride the snapshot buffer in the
* event that it's larger than actual kfd_queue_snapshot_entry.
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* Copies @num_queues(IN) queue snapshot entries of size @entry_size(IN)
* into @snapshot_buf_ptr if @num_queues(IN) > 0.
* Otherwise return @num_queues(OUT) queue snapshot entries that exist.
*/
struct kfd_ioctl_dbg_trap_queue_snapshot_args {
__u64 exception_mask;
__u64 snapshot_buf_ptr;
__u32 num_queues;
__u32 entry_size;
};
/**
* kfd_ioctl_dbg_trap_get_device_snapshot_args
*
* Arguments for KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT
* Get device information.
*
* @exception_mask (IN) - exceptions raised to clear
* @snapshot_buf_ptr (IN) - pointer to snapshot buffer (see kfd_dbg_device_info_entry)
* @num_devices (IN/OUT) - number of debug devices to snapshot
* The debugger specifies the size of the array allocated in @num_devices.
* KFD returns the number of devices that actually existed. If this is
* larger than the size specified by the debugger, KFD will not overflow
* the array allocated by the debugger.
*
* @entry_size (IN/OUT) - size per entry in bytes
* The debugger specifies sizeof(struct kfd_dbg_device_info_entry) in
* @entry_size. KFD returns the number of bytes actually populated. The
* debugger should use KFD_IOCTL_MINOR_VERSION to determine, which fields
* in struct kfd_dbg_device_info_entry are valid. This allows growing the
* ABI in a backwards compatible manner.
* Note that entry_size(IN) should still be used to stride the snapshot buffer in the
* event that it's larger than actual kfd_dbg_device_info_entry.
*
* Generic errors apply (see kfd_dbg_trap_operations).
* Return - 0 on SUCCESS.
* Copies @num_devices(IN) device snapshot entries of size @entry_size(IN)
* into @snapshot_buf_ptr if @num_devices(IN) > 0.
* Otherwise return @num_devices(OUT) queue snapshot entries that exist.
*/
struct kfd_ioctl_dbg_trap_device_snapshot_args {
__u64 exception_mask;
__u64 snapshot_buf_ptr;
__u32 num_devices;
__u32 entry_size;
};
/**
* kfd_ioctl_dbg_trap_args
*
* Arguments to debug target process.
*
* @pid - target process to debug
* @op - debug operation (see kfd_dbg_trap_operations)
*
* @op determines which union struct args to use.
* Refer to kern docs for each kfd_ioctl_dbg_trap_*_args struct.
*/
struct kfd_ioctl_dbg_trap_args {
__u32 pid;
__u32 op;
union {
struct kfd_ioctl_dbg_trap_enable_args enable;
struct kfd_ioctl_dbg_trap_send_runtime_event_args send_runtime_event;
struct kfd_ioctl_dbg_trap_set_exceptions_enabled_args set_exceptions_enabled;
struct kfd_ioctl_dbg_trap_set_wave_launch_override_args launch_override;
struct kfd_ioctl_dbg_trap_set_wave_launch_mode_args launch_mode;
struct kfd_ioctl_dbg_trap_suspend_queues_args suspend_queues;
struct kfd_ioctl_dbg_trap_resume_queues_args resume_queues;
struct kfd_ioctl_dbg_trap_set_node_address_watch_args set_node_address_watch;
struct kfd_ioctl_dbg_trap_clear_node_address_watch_args clear_node_address_watch;
struct kfd_ioctl_dbg_trap_set_flags_args set_flags;
struct kfd_ioctl_dbg_trap_query_debug_event_args query_debug_event;
struct kfd_ioctl_dbg_trap_query_exception_info_args query_exception_info;
struct kfd_ioctl_dbg_trap_queue_snapshot_args queue_snapshot;
struct kfd_ioctl_dbg_trap_device_snapshot_args device_snapshot;
};
};
#define AMDKFD_IOCTL_BASE 'K'
#define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr)
#define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type)
#define AMDKFD_IOW(nr, type) _IOW(AMDKFD_IOCTL_BASE, nr, type)
#define AMDKFD_IOWR(nr, type) _IOWR(AMDKFD_IOCTL_BASE, nr, type)
#define AMDKFD_IOC_GET_VERSION \
AMDKFD_IOR(0x01, struct kfd_ioctl_get_version_args)
#define AMDKFD_IOC_CREATE_QUEUE \
AMDKFD_IOWR(0x02, struct kfd_ioctl_create_queue_args)
#define AMDKFD_IOC_DESTROY_QUEUE \
AMDKFD_IOWR(0x03, struct kfd_ioctl_destroy_queue_args)
#define AMDKFD_IOC_SET_MEMORY_POLICY \
AMDKFD_IOW(0x04, struct kfd_ioctl_set_memory_policy_args)
#define AMDKFD_IOC_GET_CLOCK_COUNTERS \
AMDKFD_IOWR(0x05, struct kfd_ioctl_get_clock_counters_args)
#define AMDKFD_IOC_GET_PROCESS_APERTURES \
AMDKFD_IOR(0x06, struct kfd_ioctl_get_process_apertures_args)
#define AMDKFD_IOC_UPDATE_QUEUE \
AMDKFD_IOW(0x07, struct kfd_ioctl_update_queue_args)
#define AMDKFD_IOC_CREATE_EVENT \
AMDKFD_IOWR(0x08, struct kfd_ioctl_create_event_args)
#define AMDKFD_IOC_DESTROY_EVENT \
AMDKFD_IOW(0x09, struct kfd_ioctl_destroy_event_args)
#define AMDKFD_IOC_SET_EVENT \
AMDKFD_IOW(0x0A, struct kfd_ioctl_set_event_args)
#define AMDKFD_IOC_RESET_EVENT \
AMDKFD_IOW(0x0B, struct kfd_ioctl_reset_event_args)
#define AMDKFD_IOC_WAIT_EVENTS \
AMDKFD_IOWR(0x0C, struct kfd_ioctl_wait_events_args)
#define AMDKFD_IOC_DBG_REGISTER_DEPRECATED \
AMDKFD_IOW(0x0D, struct kfd_ioctl_dbg_register_args)
#define AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED \
AMDKFD_IOW(0x0E, struct kfd_ioctl_dbg_unregister_args)
#define AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED \
AMDKFD_IOW(0x0F, struct kfd_ioctl_dbg_address_watch_args)
#define AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED \
AMDKFD_IOW(0x10, struct kfd_ioctl_dbg_wave_control_args)
#define AMDKFD_IOC_SET_SCRATCH_BACKING_VA \
AMDKFD_IOWR(0x11, struct kfd_ioctl_set_scratch_backing_va_args)
#define AMDKFD_IOC_GET_TILE_CONFIG \
AMDKFD_IOWR(0x12, struct kfd_ioctl_get_tile_config_args)
#define AMDKFD_IOC_SET_TRAP_HANDLER \
AMDKFD_IOW(0x13, struct kfd_ioctl_set_trap_handler_args)
#define AMDKFD_IOC_GET_PROCESS_APERTURES_NEW \
AMDKFD_IOWR(0x14, \
struct kfd_ioctl_get_process_apertures_new_args)
#define AMDKFD_IOC_ACQUIRE_VM \
AMDKFD_IOW(0x15, struct kfd_ioctl_acquire_vm_args)
#define AMDKFD_IOC_ALLOC_MEMORY_OF_GPU \
AMDKFD_IOWR(0x16, struct kfd_ioctl_alloc_memory_of_gpu_args)
#define AMDKFD_IOC_FREE_MEMORY_OF_GPU \
AMDKFD_IOW(0x17, struct kfd_ioctl_free_memory_of_gpu_args)
#define AMDKFD_IOC_MAP_MEMORY_TO_GPU \
AMDKFD_IOWR(0x18, struct kfd_ioctl_map_memory_to_gpu_args)
#define AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU \
AMDKFD_IOWR(0x19, struct kfd_ioctl_unmap_memory_from_gpu_args)
#define AMDKFD_IOC_SET_CU_MASK \
AMDKFD_IOW(0x1A, struct kfd_ioctl_set_cu_mask_args)
#define AMDKFD_IOC_GET_QUEUE_WAVE_STATE \
AMDKFD_IOWR(0x1B, struct kfd_ioctl_get_queue_wave_state_args)
#define AMDKFD_IOC_GET_DMABUF_INFO \
AMDKFD_IOWR(0x1C, struct kfd_ioctl_get_dmabuf_info_args)
#define AMDKFD_IOC_IMPORT_DMABUF \
AMDKFD_IOWR(0x1D, struct kfd_ioctl_import_dmabuf_args)
#define AMDKFD_IOC_ALLOC_QUEUE_GWS \
AMDKFD_IOWR(0x1E, struct kfd_ioctl_alloc_queue_gws_args)
#define AMDKFD_IOC_SMI_EVENTS \
AMDKFD_IOWR(0x1F, struct kfd_ioctl_smi_events_args)
#define AMDKFD_IOC_SVM AMDKFD_IOWR(0x20, struct kfd_ioctl_svm_args)
#define AMDKFD_IOC_SET_XNACK_MODE \
AMDKFD_IOWR(0x21, struct kfd_ioctl_set_xnack_mode_args)
#define AMDKFD_IOC_CRIU_OP \
AMDKFD_IOWR(0x22, struct kfd_ioctl_criu_args)
#define AMDKFD_IOC_AVAILABLE_MEMORY \
AMDKFD_IOWR(0x23, struct kfd_ioctl_get_available_memory_args)
#define AMDKFD_IOC_EXPORT_DMABUF \
AMDKFD_IOWR(0x24, struct kfd_ioctl_export_dmabuf_args)
#define AMDKFD_IOC_RUNTIME_ENABLE \
AMDKFD_IOWR(0x25, struct kfd_ioctl_runtime_enable_args)
#define AMDKFD_IOC_DBG_TRAP \
AMDKFD_IOWR(0x26, struct kfd_ioctl_dbg_trap_args)
#define AMDKFD_COMMAND_START 0x01
#define AMDKFD_COMMAND_END 0x27
#endif